欢迎访问 草业科学,今天是2025年4月13日 星期日!

藏北高寒草甸土壤线虫群落结构对增温的响应

王学霞, 高清竹, 干珠扎布, 胡国铮, 栗文瀚

王学霞, 高清竹, 干珠扎布, 胡国铮, 栗文瀚. 藏北高寒草甸土壤线虫群落结构对增温的响应[J]. 草业科学, 2018, 12(6): 1528-1538. DOI: 10.11829/j.issn.1001-0629.2017-0346
引用本文: 王学霞, 高清竹, 干珠扎布, 胡国铮, 栗文瀚. 藏北高寒草甸土壤线虫群落结构对增温的响应[J]. 草业科学, 2018, 12(6): 1528-1538. DOI: 10.11829/j.issn.1001-0629.2017-0346
Xue-xia Wang, Qing-zhu Gao, Ganjurjav Hasbagan, Guo-zheng Hu, Wen-han Li. Soil nematode community response to warming in alpine meadows of northern Tibet[J]. Pratacultural Science, 2018, 12(6): 1528-1538. DOI: 10.11829/j.issn.1001-0629.2017-0346
Citation: Xue-xia Wang, Qing-zhu Gao, Ganjurjav Hasbagan, Guo-zheng Hu, Wen-han Li. Soil nematode community response to warming in alpine meadows of northern Tibet[J]. Pratacultural Science, 2018, 12(6): 1528-1538. DOI: 10.11829/j.issn.1001-0629.2017-0346

藏北高寒草甸土壤线虫群落结构对增温的响应

基金项目: 

国家自然科学基金(青年)(31600366)

国家重点研发计划课题(2016YFC0502003)

摘要: 为揭示增温对高寒草甸土壤线虫群落的影响,利用OTC模拟短期和长期增温对藏北高寒草甸土壤线虫群落进行比较研究。结果表明,短期和长期增温改变了土壤线虫的群落组成,增加了双垫刃属(Ditylenchus)和丽突属(Acrobeles)丰度。长期增温导致食真菌类线虫丰度显著增加,但各处理间食细菌类线虫、植物寄生类线虫、杂食/捕食类线虫丰度以及cp1-5类群的丰度和属数量无显著差异(P>0.05)。短期和长期增温均降低了土壤线虫的多样性和均匀度,其中2015年短期增温处理显著降低了其多样性。2015年和2016年短期和长期增温土壤显著降低了线虫数量,较对照分别降低了34.45%、32.09%和25.34%和22.66%。各处理样地间MI(Maturity index)、NCR(Nematode channel ratio)、PPI(Plant parasite index)和WI(Wasilewska index)指数无显著差异(P>0.05),且均表现出WI>1,NCR>0.5,表明增温对高寒草甸的健康状态影响不大,土壤有机质矿化途径主要由食细菌和真菌线虫参与。环境因素与土壤线虫数量冗余分析表明,植物总盖度、莎草科盖度、土壤温湿度、细菌和真菌数量对土壤线虫数量影响达到显著水平(P<0.05),增温通过改变植物、土壤理化性质和微生物数量等环境因子而影响高寒草甸土壤线虫群落组成。

 

English

  • [1]

    Chen X,Peng F,You Q G,Wang T,Xue X.Response of vegetation characteristics in the alpine meadow ecosystem to simulated temperature enhancement:A case study of permafrost regions on the Qinghai-Tibet Plateau,China.Pratacultural Science,2016,33(5):825-834.(in Chinese)

    [1]

    Wu T,Su F,Han H,Du Y,Yu C,Wan S.Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe.Applied Soil Ecology,2014,84(1-2):200-207.

    [2]

    Yin W Y.Pictorial Keys to Soil Animals of China.Beijing:Science Press,1998.(in Chinese)

    [2]

    Hansen J,Sato M,Ruedy R.Perception of climate change.Proceedings of the National Academy of Sciences,2012,109(37):2415-2423.

    [3]

    Xie H.Taxonomy of Plant Nematodes.2nd ed.Beijing:Higher Education Press,2005.(in Chinese)

    [3]

    Bakonyi G,Nagy P,Kovacs-Lang E,Kovacs E,Barabás S,Répási V,Seres A.Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland.Applied Soil Ecology,2007,37:31-40.

    [4]

    Xue H Y,Hu F,Luo D Q.Effects of alpine meadow plant communities on soil nematode functional structure in Northern Tibet,China.Acta Eeologica Sinica,2013,33(5):1482-1494.(in Chinese)

    [4]

    Blankinship J C,Niklaus P A,Hungate B A.A meta analysis of responses of soil biota to global change.Oecologia,2011,165:553-565.

    [5]

    Eisenhauer N,Cesarz S,Koller R,Worm K,Reich P B.Global change belowground:Impacts of elevated CO2,nitrogen,and summer drought on soil food webs and biodiversity.Global Change Biology,2012,18:435-447.

    [5]

    Wu R,Han B H,Han T,Zhou B R,Li B,Niu D C,Fu H.The relationship between natural grassland vegetation growth and climate conditions in Xinghai,Qinghai Province.Pratacultural Science,2017,34(10):1991-1998.

    [6]

    Viketoft M,Sohlenius B,Bostrom S.Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.Soil Biology & Biochemistry,2011,43:1063-1070.

    [6]

    Song M,Liu Y Z,Jing S S.Response of soil nematodes to climate change:A review.Acta Eeologiea Siniea,2015,35(20):6857-6867.(in Chinese)

    [7]

    Sugden A,Stone R,Ash C.Ecology in the underworld.Science,2004,304:1613.

    [7]

    Jia M Q,Huang J,Meng Y,Han G D,Jin B H,Zhang G G.Effects of warming and nitrogen addition on the community composition and diversity of cultivatable fungi from the desert steppe of Inner Mongolia.Pratacultural Science,2017,34(7):1397-1407.

    [8]

    Chen D,Cheng J,Chu P,Hu S,Xie Y,Tuvshintogtokh I,Bai Y.Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau:Relationships with climate,soil,and plants.Ecography,2015,38(6):622-631.

    [9]

    Mueller K E,Blumenthal D M,Carrillo Y,Cesarz S,Ciobanu M,Hines J,Eisenhauer N.Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland.Soil Biology & Biochemistry,2016,103:46-51.

    [10]

    Simmons B,Wall D,Adams B,Ayres E,Barrett J E,Virginia R A.Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys,Antarctica.Soil Biology and Biochemistry,2009,41:2052-2060.

    [11]

    Ruess L,Michelsen A,Jonasson,S.Simulated climate change in subarctic soils:Responses in nematode species composition and dominance structure.Nematology,1999,1(5):513-526.

    [12]

    Li Q,Bai H,Liang W,Xia J,Wan S,van der Putten W H.Nitrogen addition and warming independently influence the belowground micro-food web in a temperate Steppe.PLoS One,2013,8(3):e60441.

    [13]

    Nielsen U N,Wall D H,Adams B J,Virginia,RA.Antarctic nematode communities:Observed and predicted responses to climate change.Polar Biology,2011,34(11):1701-1711.

    [14]

    Yao T,Pu J,Lu A,Wang Y,Yu W.Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau,China,and surrounding regions.Arctic,Antarctic,and Alpine Research,2007,39:642-650.

    [15]

    Klein J A,Harte J,Zhao X Q.Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau.Ecosystems,2008,11(5):775-789.

    [16]

    Ganjurjav H,Gao Q Z,Schwartz M W,Zhu W,Liang Y,Li Y,Guo H.Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.Scientific Reports,2016,6:23356.

    [17]

    Ma Z,Liu H,Mi Z,Zhang Z,Wang Y,Xu W,He J S.Climate warming reduces the temporal stability of plant community biomass production.Nature Communications,2017,8.

    [18]

    Ganjurjav H,Gao Q Z,Gornish E S,Schwartz M W,Liang Y,Cao X,Li Y.Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau.Agricultural and Forest Meteorology,2016,223:233-240.

    [19] 陈翔,彭飞,尤全刚,王涛,薛娴.高寒草甸植被特征对模拟增温的响应:以青藏高原多年冻土区为例.草业科学,2016,33(5):825-834.
    [20]

    Wang X X,Dong S K,Gao Q Z,Zhou H K,Liu S L,Su X K,Li Y Y.Effects of short-term and long-term warming on soil nutrients,microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China.Soil Biology & Biochemistry,2014,76:140-142.

    [21] 尹文英. 中国土壤动物检索图鉴.北京:科学出版社,1998.
    [22] 谢辉. 植物线虫分类学.第2版.北京:高等教育出版社,2005.
    [23]

    Yeates G W,Bongers T,De Goede R G M,Freckman D W,Georgieva S S.Feeding habits in soil nematode families and genera an outline for soil ecologists.Journal of Nematology,1993,25:315-331.

    [24]

    Bongers T.The maturity index:An ecological measure of environmental disturbance based on nematode species composition.Oecologia,1990,83:14-19.

    [25] 薛会英,胡锋,罗大庆.藏北高寒草甸植物群落对土壤线虫群落功能结构的影响.生态学报,2013,33(5):1482-1494.
    [26]

    Briones M J I,Ostle N J,McNamara N P,Poskitt J.Functional shifts of grassland soil communities in response to soil warming.Soil Biology and Biochemistry,2009,41(2):315-322.

    [27]

    Yergeau E,Bezemer T M,Hedlund K,Mortimer S R.Influences of space,soil,nematodes and plants on microbial community composition of chalk grassland soil.Environmental Microbiology,2010,12(8):2096-2106.

    [28]

    Papatheodorou E M,Argyropoulou M D,Stamou G P.The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes.Applied Soil Ecology,2004,25(1):37-49.

    [29]

    Bakonyi G,Nagy P.Temperature and moisture induced changes in the structure of the nematode fauna of a semiarid grassland-patterns and mechanisms.Global Change Biology,2000,6(6):697-707.

    [30]

    Ruess L.Nematode soil faunal analysis of decomposition pathways in different ecosystems.Nematology,2003,5:179-181.

    [31]

    Ilieva-Makulec K,de Boeck H.Changes in soil nematode community structure following warming and drought manipulations in a grassland mesocosm experiment.Polish Journal of Ecology,2013,61(1):157-163.

    [32]

    Ugarte C M,Zaborski E R,Wander M M.Nematode indicators as integrative measures of soil condition in organic cropping systems.Soil Biology and Biochemistry,2013,64:103-113.

    [33]

    Kostenko O,Duyts H,Grootemaat S.Plant diversity and identity effects on predatory nematodes and their prey.Ecology and Evolution,2014,5(4):836-847.

    [34] 吴让,韩炳宏,韩通,周秉荣,李博,牛得草,傅华.青海省兴海县天然草地牧草生长发育与气候条件的关系.草业科学,2017,34(10):1991-1998.
    [35]

    Viketoft M,Sohlenius B.Soil nematode populations in a grassland plant diversity experiment run for seven years.Applied Soil Ecology,2011,48(2):174-184.

    [36] 宋敏,刘银占,井水水.土壤线虫对气候变化的响应研究进展.生态学报,2015,35(20):6857-6867.
    [37]

    Yergeau E,Bokhorst S,Huiskes A H L,Boschker H T S,Kowalchuk A G.Size and structure of bacterial,fungal and nematode communities along an antarctic environmental gradient.FEMS Microbiology Ecology,2007,59(2):436-451.

    [38] 贾美清,黄静,孟元,韩国栋,金宝花,张国刚.增温和增氮对荒漠草原土壤可培养真菌群落结构和多样性的影响.草业科学,2017,34(7):1397-1407.
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 收稿日期:  2017-06-22
  • 修回日期:  2018-02-02
  • 发布日期:  2018-06-19

目录

    /

    返回文章
    返回