Citation: | ZHANG C, SUN J, ZHANG M Q, LI R W, WU J H, SUN L, Duojieji. Effect of fence management on soil phosphorus content in the Alpine grassland in Qinghai-Xizang Plateau. Pratacultural Science, 2024, 41(8): 1802-1813. DOI: 10.11829/j.issn.1001-0629.2024-0197 |
Fences are widely used in grassland management practices, and phosphorus is an essential nutrient for plant growth. It is crucial to investigate the impact and drivers of fence placement on soil phosphorus cycling to evaluate the dynamics of phosphorus in alpine grassland ecosystems. Moreover, there is a lack of systematic research on fence management and soil phosphorus content. To bridge this knowledge gap, 101 articles were selected for a meta-analysis, based on the Web of Science core database and the China Knowledge Network search platform, to explore the responses of soil total phosphorus (STP) and soil available phosphorus (SAP) in different alpine grasslands to fence management measures and fencing years (short-term 1~4 years, medium-term 5~8 years, and long-term 9~30 years). The results showed that: 1) Generally, fencing significantly increased STP, SAP, total nitrogen (STN), organic carbon (SOC), available nitrogen (SAN), and moisture (SM) levels (P < 0.001) but decreased pH and bulk density (P < 0.01). 2) The positive effect of fencing on STP and SAP in the alpine steppe was significantly higher than that on phosphorus content in the alpine meadow (P < 0.001). 3) According to the years of fencing, medium-term and long-term fencing exerted a significant positive effect on STP (P < 0.001), short-term fencing significantly promoted steppe STP, and medium-term and long-term fencing resulted in a decrease in steppe STP. Fencing helped to improve SAP, and medium term exerted the greatest effect of fencing on steppe SAP. 4) The effects of fencing on STP, STN, and SOC varied synergistically. However, soil acidification significantly increased the effect of fencing on STP. The effect of fencing on STP increased significantly with an increase in temperature. In addition, the effects of fencing on SAP and STN were significantly correlated. Our study revealed that reasonable fencing improves soil phosphorus content in alpine grassland ecosystems, and the results provide a theoretical reference for the scientific management of alpine grasslands.
[1] |
陈佐忠, 汪诗平. 中国典型草原生态系统. 北京: 科学出版社, 2000: 37-38.
CHEN Z Z, WANG S P. Typical Grassland Ecosystems in China. Beijing: Science Press, 2000: 37-38.
|
[2] |
贺有龙, 周华坤, 赵新全, 来德珍, 赵建中. 青藏高原高寒草地的退化及其恢复. 草业与畜牧, 2008(11): 1-9.
HE Y L, ZHOU H K, ZHAO X Q, LAI D Z, ZHAO J Z. Degradation and restoration of alpine grasslands on the Qinghai-Tibet Plateau. Grassland and Animal Husbandry, 2008(11): 1-9.
|
[3] |
WANG Y, WESCHE K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodiversity and Conservation, 2016, 25(12): 2401-2420. doi: 10.1007/s10531-015-1034-1
|
[4] |
CHEN J, LUO Y Q, XIA J Y, ZHOU X H, NIU S L, SHELTON S, GUO W, LIU S X, DAI W T, CAO J J. Divergent responses of ecosystem respiration components to livestock exclusion on the Qinghai Tibetan Plateau. Land Degradation & Development, 2018, 29(6): 1726-1737.
|
[5] |
LIU M, ZHANG Z, SUN J, WANG Y, WANG J, TSUNEKAWA A, YIBELTAL M, XU M, CHEN Y. One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau. Global Ecology and Conservation, 2020, 22: e00951. doi: 10.1016/j.gecco.2020.e00951
|
[6] |
王德利, 杨利民. 草地生态与管理利用. 北京: 化学工业出版社, 2004: 32-37.
WANG D L, YANG L M. Grassland Ecology and Management and Utilization. Beijing: Chemical Industry Press, 2004: 32-37.
|
[7] |
OBERSON A, PYPERS P, BÜNEMANN E K, FROSSARD E. Management impacts on biological phosphorus cycling in cropped soils. Phosphorus in Action, 2011, 26: 431-458.
|
[8] |
CUI Y X, BING H J, FANG L C, JIANG M, SHEN G T, YU J L, WANG X, ZHU H, WU Y H, ZHANG X C. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil, 2021, 458(1-2): 7-20. doi: 10.1007/s11104-019-04159-x
|
[9] |
WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis. Geoderma, 1976, 15(1): 1-19. doi: 10.1016/0016-7061(76)90066-5
|
[10] |
DU E, TERRER C, PELLEGRINI A F A, AHLSTRÖM A, VAN LISSA C J, ZHAO X, XIA N, WU X, JACKSON R B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 2020, 13(3): 221-226. doi: 10.1038/s41561-019-0530-4
|
[11] |
WU G L, LI W, ZHAO L P, SHI Z H. Artificial management improves soil moisture, C, N and P in an alpine sandy meadow of western China. Pedosphere, 2011, 21(3): 407-412. doi: 10.1016/S1002-0160(11)60142-2
|
[12] |
SHI H, JIANG S, BIAN J, HE J S. Livestock exclusion enhances shrub encroachment in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Land Degradation & Development, 2023, 34(5): 1390-1402.
|
[13] |
ZHANG T, LI F Y, SHI C, LI Y, TANG S, BAOYIN T. Enhancement of nutrient resorption efficiency increases plant production and helps maintain soil nutrients under summer grazing in a semi-arid steppe. Agriculture, Ecosystems & Environment, 2020, 292: 106840.
|
[14] |
BAI Y, WU J, CLARK C M, PAN Q, ZHANG L, CHEN S, WANG Q, HAN X. Grazing alters ecosystem functioning and C ꞉ N ꞉ P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204-1215. doi: 10.1111/j.1365-2664.2012.02205.x
|
[15] |
HE M, ZHOU G, YUAN T, VAN GROENIGEN K J, SHAO J, ZHOU X. Grazing intensity significantly changes the C ꞉ N ꞉ P stoichiometry in grassland ecosystems. Global Ecology and Biogeography, 2020, 29(2): 355-369. doi: 10.1111/geb.13028
|
[16] |
董全民, 赵新全, 李世雄, 施建军, 王彦龙, 郑伟, 侯宪宽, 宋磊. 基于高寒草地放牧系统次级生产力的优化放牧强度研究. 草地学报, 2014, 22(5): 919-923.
DONG Q M, ZHAO X Q, LI S X, SHI J J, WANG Y L, ZHENG W, HOU X K, SONG L. Study on the optimal grazing intensity based on secondary productivity of alpine grassland grazing system. Acta Grassland Sinica, 2014, 22(5): 919-923.
|
[17] |
ZHAN T Y, ZHANG Z C, SUN J, LIU M, ZHANG X B, PENG F, TSUNEKAWA A, ZHOU H K, GOU X W, FU S. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Applied Soil Ecology, 2020, 147: 103438. doi: 10.1016/j.apsoil.2019.103438
|
[18] |
ZHOU Z C, GAN Z T, SHANGGUAN Z P, DONG Z B. Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). Catena, 2010, 82(2): 87-91. doi: 10.1016/j.catena.2010.05.005
|
[19] |
THOMAS S M, BEARE M H, FRANCIS G S, BARLOW H E, HEDDERLEY D I. Effects of tillage, simulated cattle grazing and soil moisture on N2O emissions from a winter forage crop. Plant and Soil, 2008, 309(1-2): 131-145. doi: 10.1007/s11104-008-9586-4
|
[20] |
ZHAO Y, PETH S, RESZKOWSKA A, GAN L, KRüMMELBEIN J, PENG X H, HORN R. Response of soil moisture and temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia. Plant and Soil, 2011, 340(1/2): 89-102. doi: 10.1007/s11104-010-0460-9
|
[21] |
PIÑEIRO G, PARUELO J M, OESTERHELD M, JOBBÁGY E G. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63(1): 109-119.
|
[22] |
LIU Y Y, GONG Y M, WANG X, HU Y K. Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees. Journal of Arid Land, 2013, 5(4): 480-487. doi: 10.1007/s40333-013-0184-9
|
[23] |
FTERICH A, MANDHI M, MARS M. Impact of grazing on soil microbial communities along a chronosequence of Acacia tortilis subsp. raddiana in arid soils in Tunisia. European Journal of Soil Biology, 2012, 50: 56-63. doi: 10.1016/j.ejsobi.2011.12.002
|
[24] |
李志丹. 川西北高寒草甸草地放牧退化演替研究. 雅安: 四川农业大学硕士学位论文, 2005.
LI Z D. Study on the degradation and succession of alpine meadow in northwestern Sichuan due to grazing. Master Thesis. Yaan: Sichuan Agricultural University, 2005.
|
[25] |
李强, 宋彦涛, 周道玮, 王敏玲, 陈笑莹. 围封和放牧对退化盐碱草地土壤碳、氮、磷储量的影响. 草业科学, 2014, 31(10): 1811-1819.
LI Q, SONG Y T, ZHOU D W, WANG M L, CHEN X Y. Effects of enclosure and grazing on soil carbon, nitrogen, and phosphorus storage in degraded saline-alkali grassland. Pratacultural Science, 2014, 31(10): 1811-1819.
|
[26] |
LI W, SHANG X, YAN H, XU J, LIANG T, ZHOU H. Impact of restoration measures on plant and soil characteristics in the degraded alpine grasslands of the Qinghai Tibetan Plateau: A Meta-analysis. Agriculture, Ecosystems & Environment, 2023, 347: 108394.
|
[27] |
MCINTURFF A, XU W J, WILKINSON C E, DEJID N, BRASHARES J S. Fence ecology: Frameworks for understanding the ecological effects of fences. Bioscience, 2020, 70(11): 971-985.
|
[28] |
罗明, 刘世梁, 高岩, 孙雨芹, 杨崇曜, 张琰, 胡俊涛. 基于自然的解决方案在北方防沙带生态屏障建设中的应用. 生态学报, 2024, 44(8): 3121-3131.
LUO M, LIU S L, GAO Y, SUN Y Q, YANG Z Y, ZHANG Y, HU J T. Application of nature-based solutions in the construction of ecological barriers in the northern sand-control belt. Acta Ecologica Sinica, 2024, 44(8): 3121-3131.
|
[29] |
罗明, 应凌霄, 周妍. 基于自然解决方案的全球标准之准则透析与启示. 中国土地, 2020, (4): 9-13.
LUO M, YING L X, ZHOU Y. Analysis and enlightenment of the global standard for nature-based solutions. Chinese Land, 2020(4): 9-13.
|
[30] |
BI X, LI B, FU Q, FAN Y, MA L X, YANG Z H, NAN B, DAI X H, ZHANG X S. Effects of grazing exclusion on the grassland ecosystems of mountain meadows and temperate typical steppe in a mountain-basin system in Central Asia’s arid regions, China. Science of the Total Environment, 2018, 630: 254-263. doi: 10.1016/j.scitotenv.2018.02.055
|
[31] |
SHI F S, CHEN H, WU Y, WU N. Effects of livestock exclusion on vegetation and soil properties under two topographic habitats in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Polish Journal of Ecology, 2010, 58(1): 125-133.
|
[32] |
SPOONER P, LUNT I, ROBINSON W. Is fencing enough? The short-term effects of stock exclusion in remnant grassy woodlands in southern NSW. Ecological Management & Restoration, 2002, 3(2): 117-126.
|
[33] |
WU G L, DU G Z, LIU Z H, THIRGOOD S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 2009, 319(1/2): 115-126. doi: 10.1007/s11104-008-9854-3
|
[34] |
WANG L, LUAN L M, HOU F J, SIDDIQUE K H M. Nexus of grazing management with plant and soil properties in northern China grasslands. Scientific Data, 2020, 7(1): 39. doi: 10.1038/s41597-020-0375-0
|
[35] |
LU X, KELSEY K C, YAN Y, SUN J, WANG X, CHENG G, NEFF J C. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis. Ecosphere, 2017, 8(1): e01656. doi: 10.1002/ecs2.1656
|
[36] |
SUN J, LIU M, FU B, KEMP D, ZHAO W, LIU G, HAN G, WILKES A, LU X, CHEN Y, CHENG G, ZHOU T, HOU G, ZHAN T, PENG F, SHANG H, XU M, SHI P, HE Y, LI M, WANG J, TSUNEKAWA A, ZHOU H, LIU Y, LI Y, LIU S. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Science Bulletin, 2020, 65(16): 1405-1414. doi: 10.1016/j.scib.2020.04.035
|
[37] |
宾振钧, 张仁懿, 张文鹏, 徐当会. 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 2015, 35(14): 4699-4706.
BIN Z J, ZHANG R Y, ZHANG W P, XU D H. Effects of nitrogen, phosphorus and silicon addition on leaf carbon, nitrogen, and phosphorus concentration of Elymus nutans of alpine meadow on Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 2015, 35(14): 4699-4706.
|
[38] |
赵彬彬, 牛克昌, 杜国祯. 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响. 生态学报, 2009, 29(3): 1596-1606. doi: 10.3321/j.issn:1000-0933.2009.03.059
ZHAO B B, NIU K C, DU G Z. The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2009, 29(3): 1596-1606. doi: 10.3321/j.issn:1000-0933.2009.03.059
|
[39] |
CHEN H, ZHU Q A, PENG C H, WU N, WANG Y F, FANG X Q, GAO Y H, ZHU D, YANG G, TIAN J Q, KANG X M, PIAO S L, OUYANG H, XIANG W H, LUO Z B, JIANG H, SONG X Z, ZHANG Y, YU G R, ZHAO X Q, GONG P, YAO T D, WU J H. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955. doi: 10.1111/gcb.12277
|
[40] |
CHEN X P, ZHANG T, GUO R Y, LI H Y, ZHANG R, DEGEN A A, HUANG K W, WANG X M, BAI Y F, SHANG Z H. Fencing enclosure alters nitrogen distribution patterns and tradeoff strategies in an alpine meadow on the Qinghai-Tibetan Plateau. Catena, 2021, 197: 104948. doi: 10.1016/j.catena.2020.104948
|
[41] |
DU C, GAO Y. Opposite patterns of soil organic and inorganic carbon along a climate gradient in the alpine steppe of northern Tibetan Plateau. Catena, 2020, 186: 104366. doi: 10.1016/j.catena.2019.104366
|
[42] |
FENG R, LONG R, SHANG Z, MA Y, DONG S, WANG Y. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant and Soil, 2010, 327(1/2): 403-411. doi: 10.1007/s11104-009-0065-3
|
[43] |
HONG J, WANG X, WU J. Effects of soil fertility on the N ꞉ P stoichiometry of herbaceous plants on a nutrient-limited alpine steppe on the northern Tibetan Plateau. Plant and Soil, 2015, 391(1/2): 179-194. doi: 10.1007/s11104-015-2416-6
|
[44] |
LI Y, DEGEN A A, SUN T, WANG W, BAI Y, ZHANG T, LONG R, SHANG Z. Three years of cultivating or fencing lands have different impacts on soil nutrients and properties of a subalpine meadow in the Tibetan Plateau. Catena, 2020, 186: 104306. doi: 10.1016/j.catena.2019.104306
|
[45] |
牛佳, 周小奇, 蒋娜, 王艳芬. 若尔盖高寒湿地干湿土壤条件下微生物群落结构特征. 生态学报, 2011, 31(2): 474-482.
NIU J, ZHOU X Q, JIANG N, WANG Y F. Characteristics of soil microbial communities under dry and wet condition in Zoige alpine wetland. Acta Ecologica Sinica, 2011, 31(2): 474-482.
|
[46] |
WU J, SHEN Z, SHI P, ZHOU Y, ZHANG X. Effects of grazing exclusion on plant functional group diversity alpine grasslands along a precipitation gradient on the northern Tibetan Plateau. Arctic Antarctic and Alpine Research, 2014, 46(2): 419-429. doi: 10.1657/1938-4246-46.2.419
|
[47] |
ZHAN T, ZHAO W, FENG S, HUA T. Plant community traits respond to grazing exclusion duration in alpine meadow and alpine steppe on the Tibetan Plateau. Frontiers in Plant Science, 2022, 13: 863246. doi: 10.3389/fpls.2022.863246
|
[48] |
LU X, YAN Y, SUN J, ZHANG X, CHEN Y, WANG X, CHENG G. Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: Effects of grazing exclusion. Ecology and Evolution, 2015, 5(19): 4492-4504. doi: 10.1002/ece3.1732
|
[49] |
SUN J, MA B, LU X. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 2018, 29(2): 337-348.
|
[50] |
LIU C, LI H, LIU K, SHAO X, HUANG J, SIRI M, FENG C, YANG X. Vegetation characteristics of the main grassland types in China respond differently to the duration of enclosure: A Meta-analysis. Agronomy-Basel, 2023, 13(3): 854. doi: 10.3390/agronomy13030854
|
[51] |
樊丹丹, 刘艳娇, 曹慧丽, 陈昊, 孔维栋, 李香真. 围栏工程对退化草地土壤理化性质和微生物群落的影响. 科技导报, 2022, 40(3): 41-51.
FAN D D, LIU Y J, CAO H L, CHEN H, KONG W D, LI X Z. Effects of fencing projects on soil physical and chemical properties and microbial communities in degraded grasslands. Science and Technology Review, 2022, 40(3): 41-51.
|
[52] |
XIAO J N, DONG S K, SHEN H, LI S, WESSELL K, LIU S L, LI W, ZHI Y L, MU Z Y, LI H B. N addition overwhelmed the effects of P addition on the soil C, N, and P cycling genes in alpine meadow of the Qinghai-Tibetan Plateau. Frontiers in Plant Science, 2022, 13: 860590. doi: 10.3389/fpls.2022.860590
|
[53] |
张震. 草地植物与土壤磷库对施肥和围封的响应. 重庆: 西南大学硕士学位论文, 2017.
ZHANG Z. Responses of grassland plants and soil phosphorus pools to fertilization and enclosure. Master Thesis. Chongqing: Southwest University, 2017.
|
[54] |
SHEN M, WANG S, JIANG N, SUN J, CAO R, LING X, FANG B, ZHANG L, ZHANG L, XU X, LYU W, LI B, SUN Q, MENG F, JIANG Y, DORJI T, FU Y, ILER A, VITASSE Y, STELTZER H, JI Z, ZHAO W, PIAO S, FU B. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 633-651.
|
[55] |
WANG Y, LYU W, XUE K, WANG S, ZHANG L, HU R, ZENG H, XU X, LI Y, JIANG L, HAO Y, DU J, SUN J, DORJI T, PIAO S, WANG C, LUO C, ZHANG Z, CHANG X, ZHANG M, HU Y, WU T, WANG J, LI B, LIU P, ZHOU Y, WANG A, DONG S, ZHANG X, GAO Q, ZHOU H, SHEN M, WILKES A, MIEHE G, ZHAO X, NIU H. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 668-683.
|
[56] |
LUO Y, DAFENG H, DEQIANG Z. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A Meta-analysis. Ecology, 2006, 87(1): 53-56. doi: 10.1890/04-1724
|
[57] |
HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
|
[58] |
程雨婷. 围栏封育后我国草地植被与土壤恢复的Meta分析研究. 上海: 华东师范大学硕士学位论文, 2020.
CHENG Y T. Meta-analysis of grassland vegetation and soil restoration in my country after enclosure. Master Thesis. Shanghai: Shanghai: East China Normal University, 2020.
|
[59] |
何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应. 植物生态学报, 2023, 47(3): 291-305.
HE M, XU Q Y, XIA Y, YANG L M, FAN Y X, YANG Y S. Phosphorus acquisition mechanisms of plants and their responses to global change. Acta Plant Ecologica Sinica, 2023, 47(3): 291-305.
|
[60] |
NURFADILAH S, SWARTS N D, DIXON K W, LAMBERS H, MERRITT D J. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Annals of Botany, 2013, 111(6): 1233-1241. doi: 10.1093/aob/mct064
|
[61] |
SMITH S E, ANDERSON I C, SMITH F A. Mycorrhizal Associations and Phosphorus Acquisition: From Cells to Ecosystems.//PLAXTON W C, LAMBERS H. Annual Plant Reviews Volume 48: Phosphorus Metabolism in Plants. UK: John Wiley and Sons, Ltd., 2015: 409-439.
|
[62] |
GÜSEWELL S, KOERSELMAN W, VERHOEVEN J T. Biomass N ꞉ P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 2003, 13(2): 372-384. doi: 10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2
|
[63] |
WU J, FENG Y, ZHANG X, WURST S, TIETJEN B, TAROLLI P, SONG C. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Scientific Reports, 2017, 7(1): 15202. doi: 10.1038/s41598-017-15530-2
|
[64] |
苏永中, 赵哈林. 持续放牧和围封对科尔沁退化沙地草地碳截存的影响. 环境科学, 2003(4): 23-28. doi: 10.3321/j.issn:0250-3301.2003.04.005
SU Y Z, ZHAO H L. Effects of continuous grazing and enclosure on carbon sequestration in degraded sandy grasslands of Horqin. Environmental Science, 2003(4): 23-28. doi: 10.3321/j.issn:0250-3301.2003.04.005
|
[65] |
王光州, 贾吉玉, 张俊伶. 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展. 生态学报, 2021, 41(23): 9130-9143.
WANG G Z, JIA J Y, ZHANG J L. Research progress on plant-soil feedback theory and its application in natural and farmland ecosystems. Acta Ecologica Sinica, 2021, 41(23): 9130-9143.
|
[66] |
旦增塔庆, 白玛嘎翁, 多吉顿珠, 拉巴. 围封年限对西藏高寒草甸植被特征与土壤养分的影响. 草业科学, 2018, 35(1): 10-17. doi: 10.11829/j.issn.1001-0629.2017-0366
Danzengtaqin, Baimagaweng, Duojidunzhu, Laba. Effects of enclosure years on vegetation characteristics and soil nutrients in alpine meadows in Tibet. Pratacultural Science, 2018, 35(1): 10-17. doi: 10.11829/j.issn.1001-0629.2017-0366
|
[67] |
刘玉祯, 孙彩彩, 刘文亭, 杨晓霞, 冯斌, 时光, 张雪, 李彩弟, 杨增增, 高婕, 张小芳, 俞旸, 张春平, 董全民. 高寒草地植物群落关键种对不同放牧家畜组合放牧的响应. 生态学报, 2022, 42(18): 7529-7540.
LIU Y Z, SUN C C, LIU W T, YANG X X, FENG B, SHI G, ZHANG X, LI C D, YANG Z Z, GAO J, ZHANG X F, YU Y, ZHANG C P, DONG Q M. Responses of key species in alpine grassland plant communities to grazing by different livestock combinations. Acta Ecologica Sinica, 2022, 42(18): 7529-7540.
|
[68] |
WANG K B, DENG L, REN Z P, LI J P, SHANGGUAN Z P. Grazing exclusion significantly improves grassland ecosystem C and N pools in a desert steppe of Northwest China. Catena, 2016, 137: 441-448. doi: 10.1016/j.catena.2015.10.018
|
[69] |
PENN C J, CAMBERATO J J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 2019, 9(6): 120. doi: 10.3390/agriculture9060120
|
[70] |
HONG J, XU X, PANG B, MA X, WANG X. Significant soil acidification caused by grazing exclusion across China’s grassland areas. Land Degradation & Development, 2021, 32(2): 535-545.
|
[71] |
吴艳宏. 贡嘎山磷及微量金属元素生物地球化学循环与生态效应. 北京: 科学出版社, 2019: 126-144.
WU Y H. Biogeochemical Cycles and Ecological Effects of Phosphorus and Trace Metal Elements in Mount Gongga. Beijing: Science Press, 2019: 126-144.
|
[72] |
MUINDI E D M. Understanding soil phosphorus. International Journal of Plant Soil Science, 2019, 31(2): 1-18.
|
[73] |
HAVLIN J L, TISDALE S L, NELSON W L, BEATON J D. Soil Fertility and Fertilizers. New Jersry: Prentice Hall Publishers, 1985.
|
[74] |
PIERZYNSKI G M, MCDOWELL R W, THOMAS SIMS J. Chemistry, Cycling, and Potential Movement of Inorganic Phosphorus in Soils. //SIMS J T, SHARPLEY A N, GM PIERZYNSKI G M, MCDOWELL R W. Phosphorus: Agriculture the Environment. Madison, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America Publisher, 2005: 51-86.
|
[75] |
DRISCOLL C T, LAWRENCE G B, BULGER A J, BUTLER T J, CRONAN C S, EAGAR C, LAMBERT K F, LIKENS G E, STODDARD J L, WEATHERS K C. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. Bioscience, 2001, 51(3): 180-198. doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
|
[76] |
马琳娜. 松嫩草原土壤有机碳、氮素、磷素对模拟增温及施氮的响应. 长春: 东北师范大学硕士学位论文, 2009.
MA L N. Responses of soil organic carbon, nitrogen and phosphorus to simulated warming and nitrogen fertilization in Songnen grassland. Master Thesis. Changchun: Northeast Normal University, 2009.
|
[77] |
MEI L, YANG X, ZHANG S, ZHANG T, GUO J. Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N ꞉ P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of the Total Environment, 2019, 686: 1129-1139. doi: 10.1016/j.scitotenv.2019.06.035
|
[78] |
REN H, KANG J, YUAN Z, XU Z, HAN G. Responses of nutrient resorption to warming and nitrogen fertilization in contrasting wet and dry years in a desert grassland. Plant and Soil, 2018, 432(1): 65-73.
|
[79] |
权国玲, 尚占环. 中国草地生态系统模拟增温实验的综合比较. 生态学杂志, 2015, 34(4): 1166-1173.
QUAN G L, SHANG Z H. Comprehensive comparison of simulated warming experiments of grassland ecosystems in China. Journal of Ecology, 2015, 34(4): 1166-1173.
|
[80] |
孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛. 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 2012, 31(12): 1715-1723. doi: 10.11820/dlkxjz.2012.12.018
SUN L J, QI Y C, DONG Y S, PENG Q, HE Y T, LIU X C, JIA J Q, CAO C C. Research progress on effects of global changes on soil microbial community diversity in grassland. Geography Progress, 2012, 31(12): 1715-1723. doi: 10.11820/dlkxjz.2012.12.018
|
[81] |
田沐雨, 郭静, 武国慧, 汪景宽. 全球气候变化对草地土壤磷循环的影响研究进展. 土壤通报, 2020, 51(4): 996-1002.
TIAN M Y, GUO J, WU G H, WANG J K. Research progress on effects of global climate change on soil phosphorus cycling in grassland. Journal of Soil Science, 2020, 51(4): 996-1002.
|
[82] |
魏金明, 姜勇, 符明明, 张玉革, 徐柱文. 水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响. 生态学杂志, 2011, 30(8): 1642-1646.
WEI J M, JIANG Y, FU M M, ZHANG Y G, XU Z W. Effects of water and fertilizer supplementation on soil carbon, nitrogen, phosphorus and pH in typical grasslands of Inner Mongolia. Journal of Ecology, 2011, 30(8): 1642-1646.
|
[83] |
BELL C W, TISSUE D T, LOIK M E, WALLENSTEIN M D, ACOSTA-MARTINEZ V, ERICKSON R A, ZAK J C. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Global Change Biology, 2014, 20(5): 1657-1673. doi: 10.1111/gcb.12418
|