Citation: | CAO P F, WANG S P, TANG J, TANG S X, TAN Z L. Study on the in vitro fermentation characteristics and three cellulolytic bacteria of grass fiber from different species and grain size. Pratacultural Science, 2025, 42(0): 1-17. DOI: 10.11829/j.issn.1001-0629.2024-0034 |
Fiber is an important part of grass. Understanding grass fiber degradation in ruminants is beneficial to improve their production efficiency. The consistency of digestion and degradation for different grass fibers in ruminants is unclear. Therefore, here, the effects of the grass fiber source and its particle size on in vitro fermentation and the interface characteristics of microorganisms were studied. Two kinds of forage grass (alfalfa and ‘Guimu No. 1’) were selected. Neutral detergent fiber (NDF) was extracted and crushed into 3 kinds of granules: < 0.15 mm (PS1), 0.15~0.3 mm (PS2), and 0.9~1.2 mm (PS3). The experiment was divided into 6 treatment groups according to fiber source and particle size, with three replicates per treatment. The gas production parameters, fiber degradation rate, fermentation parameters, microbial interface characteristics, and the copy number of fiber-degrading bacteria and total bacteria were determined. The results showed that 1) the maximum gas production (Vf), gas production curve constant (b), time used to reach half of the maximum gas production (T0.5), fermentation gas production fraction (FRDt0.5), ammonia nitrogen (NH3-N) concentration, pH, total volatile fatty acids (TVFA), and molar ratio of propionic acid in the Guimu No. 1 group were significantly higher than those in the alfalfa group (P < 0.05). In the alfalfa group, the initial gas production fraction (FRD0), dry matter degradability (DMD), microbial protein (MCP), molar percentage of acetic acid, valeric acid, isobutyric acid, and isovalerate, and the ratio of ethylene to propylene, cell membrane permeability (CMP), liquid surface tension (ST), Fibrobacter succinogenes, Ruminococcus flavefaciens, and total bacteria were significantly higher than those in the Guimu No. 1 group (P < 0.05). 2) The b value, T0.5, NH3-N, and isobutyric acid molar ratio of grass fiber during fermentation tended to increase with the increase of particle size, while the FRD0, DMD, CMP, and Ruminococcus flavefaciens significantly decreased with the increase of particle size (P < 0.05), and CSH first decreased and then increased with the increase of particle size. In summary, different grass fibers and their grinding sizes affect fiber fermentation and microbial interface characteristics in vitro. Alfalfa has a better fermentation effect than that of ‘Guimu No. 1’ and better fermentation of fiber with small grain sizes.
[1] |
高承芳, 张晓佩, 刘远, 陈鑫珠, 李文杨, 董晓宁. 紫花苜蓿新品种“赛迪10”特征特性与栽培技术. 福建农业科技, 2014(8): 42-44. doi: 10.3969/j.issn.0253-2301.2014.08.019
GAO C F, ZHANG X P, LIU Y, CHEN X Z, LI W Y, DONG X N. Characteristics and cultivation techniques of a new alfalfa cultivar "Saidi 10". Fujian Agricultural Science and Technology, 2014(8): 42-44. doi: 10.3969/j.issn.0253-2301.2014.08.019
|
[2] |
杨毅. 优质牧草“桂牧一号”杂交象草栽培与利用技术. 中国畜牧兽医文摘, 2016, 32(9): 219.
YANG Y. High quality forage grass "Guimu No. 1" hybrid Pennisetum urpureum cultivation and utilization technology. Chinese Animal Husbandry and Veterinary Digest, 2016, 32(9): 219.
|
[3] |
马艳艳, 成艳芬, 朱伟云. 体外发酵法评价不同产地、不同茬次苜蓿的营养价值. 动物营养学报, 2014, 26(8): 2421-2432. doi: 10.3969/j.issn.1006-267x.2014.08.050
MA Y Y, CHENG Y F, ZHU W Y. Different origins and stubbles of alfalfa: Evaluation of nutritional value by an in vitro fermentation method. Chinese Journal of Animal Nutrition, 2014, 26(8): 2421-2432. doi: 10.3969/j.issn.1006-267x.2014.08.050
|
[4] |
刘小飞, 孟可爱, 何华西, 李科云. 氮肥对桂牧一号杂交象草产草量和山羊体外降解率的影响研究. 浙江畜牧兽医, 2018, 43(2): 3-6.
LIU X F , MENG K A, HE H X , LI K Y. Effects of nitrogen fertilizer on grass yield of Guimu No. 1 hybrid Pennisetum urpureum and its in vitro degradation rate of goat. Zhejiang Journal Animal Science and Veterinary Medicine, 2018, 43(2): 3-6.
|
[5] |
黄鼎瑞, 张丽萍, 李真真, 刘庆华, 巫杨永. 福建省肉羊常用粗饲料分级指数的测定. 当代畜牧, 2018(30): 13-15.
HUANG D R, ZHANG L P, LI Z Z, LIU Q H, WU Y Y. Determination of grading index of common roughage for mutton sheep in Fujian Province. Contemporary Animal Husbandry, 2018(30): 13-15.
|
[6] |
曹艳红, 杨帆, 陈少梅, 宣泽义, 吴柱月, 王超, 林波, 杨庸白. 南方七种常见饲用植物营养价值分析. 中国饲料, 2020(17): 117-121.
CAO Y H, YANG F, CHEN S M, XUAN Z Y, WU Z Y, WANG C, LIN B, YANG Y B. Nutritional value analysis of seven common forage plants in southern China. China Feed, 2020(17): 117-121.
|
[7] |
王静, 孔令莹, 徐建风, 康静, 沈振峰, 刘婷. 不同粒度猫尾草对羔羊体外发酵特性和微生物数量的影响. 草业学报, 2023, 32(3): 224-233.
WANG J, KONG L Y, XU J F , KANG J, SHEN Z F, LIU T. Effects of particle size on Uraria crinita rumen in-vitro fermentation characteristics and microbial population in lambs. Acta Prataculturae Sinica, 2023, 32(3): 224-233.
|
[8] |
FREDIN S M, FERRARETTO L F, AKINS M S, BERTICS S J, SHAVER R D. Effects of corn-based diet starch content and corn particle size on lactation performance, digestibility, and bacterial protein flow in dairy cows. Journal of Dairy Science, 2015, 98(1): 541-553. doi: 10.3168/jds.2014-8502
|
[9] |
KAUR M. Effect of particle size on enhancement of biogas production from crop residue. Materials Today: Proceedings, 2022, 57: 1950-1954. doi: 10.1016/j.matpr.2022.03.292
|
[10] |
DUFRENEIX F, FAVERDIN P, PEVRAUD J-L. Influence of particle size and density on mean retention time in the rumen of dairy cows. Journal of Dairy Science, 2019, 102(4): 3010-3022. doi: 10.3168/jds.2018-15926
|
[11] |
马晓文. 饲粮大麦配比和粉碎粒度对育肥湖羊生产性能及瘤胃发酵的影响. 兰州大学硕士学位论文, 2021.
MA X W. Effect of diets barley proportion and particle size on the performance and rumen fermentation of fattening Hu sheep. Master Thesis. Lanzhou: Lanzhou University, 2021.
|
[12] |
张黎杰, 杨新露, 滕战伟, 柳雷振, 张立阳, 付彤, 廉红霞, 高腾云. 体外产气法评价花生秧粉碎粒度对奶牛瘤胃发酵效果的影响. 中国饲料, 2023(7): 153-157.
ZHANG L J, YANG X L, TENG Z W, LIU L Z, ZHANG L Y, FU T, LIAN H X, GAO T Y. Effects of pulverized peanut vine size on rumen fermentation of dairy cows were evaluated by in vitro gas production method. China Feed, 2023(7): 153-157.
|
[13] |
汤少勋, 党坦, 谭支良. 界面物理化学特性在动物营养消化研究中的应用与展望. 农业现代化研究, 2018, 39(6): 977-985.
TANG S X, DANG T, TAN Z L. Research progress and prospects on the interface physical chemistry properties in nutrient digestion. Research of Agricultural Modernization, 2018, 39(6): 977-985.
|
[14] |
VANSOEST P, ROBERTSON J, LEWIS B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, Champaign: Amer Dairy Science Assn, 1991, 74(10): 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2
|
[15] |
卢德勋, 谢崇文. 现代反刍动物营养研究方法和技术. 农业出版社, 1991.
LU D X, XIE C W. Modern Ruminant Nutrition Research Methods and Techniques. Agriculture Press, 1991.
|
[16] |
MENKE K, RAAB L, SALEWSKI A, STEINGASS H, FRITZ D, SCHNEIDER W. Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas-production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science, 1979, 93(AUG): 217-222.
|
[17] |
WANG M, SUN X Z, TANG S X, TAN Z L, Pacheco D. Deriving fractional rate of degradation of logistic-exponential (LE) model to evaluate early in vitro fermentation. Animal, 2013, 7(6): 920-929. doi: 10.1017/S1751731112002443
|
[18] |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37. doi: 10.3969/j.issn.1672-5190.2010.06.015
FENG Z C, GAO M. Improvement of method for determination of ammonia nitrogen content in rumen fluid by colorimetric method. Animal Husbandry and Feed Science, 2010, 31(Z1): 37. doi: 10.3969/j.issn.1672-5190.2010.06.015
|
[19] |
PELLETIER C, BOULEY C, CAYUELA C, BOUTTIER S, BOURLIOUX P, BELLON-FONTAINE M-N. Cell surface characteristics of Lactobacillus casei subsp casei, Lactobacillus paracasei subsp paracasei, and Lactobacillus rhamnosus strains. Applied and Environmental Microbiology, 1997, 63(5): 1725-1731. doi: 10.1128/aem.63.5.1725-1731.1997
|
[20] |
BELLON-FONTAINE M N, RAULT J, VANOSS C J. Microbial adhesion to solvents: A novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids and Surfaces B-Biointerfaces, 1996, 7(1-2): 47-53. doi: 10.1016/0927-7765(96)01272-6
|
[21] |
HORI K, MATSUMOTO S. Bacterial adhesion: From mechanism to control. Biochemical Engineering Journal, 2010, 48(3): 424-434. doi: 10.1016/j.bej.2009.11.014
|
[22] |
王福远, 苗长春, 韩慧龙, 金文标, 刘铮. 电场对黄孢原毛平革菌生长、细胞通透性及其胞外酶反应的影响. 过程工程学报, 2007(2): 385-389. doi: 10.3321/j.issn:1009-606X.2007.02.034
WANG F Y, MIAO C C, HAN H L, JIN W B, LIU Z. Effect of electric field on cell growth, permeability and extracellular enzyme reactions of phanerochaete chrysosporium. The Chinese Journal of Process Engineering, 2007(2): 385-389. doi: 10.3321/j.issn:1009-606X.2007.02.034
|
[23] |
HALL M B, PELL A N, CHASE L E. Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminal microbes. Animal Feed Science and Technology, 1998, 70(1-2): 23-39. doi: 10.1016/S0377-8401(97)00068-0
|
[24] |
金姝, 张斌, 高彤, 扶雄, 黄强. 粒径和含结合酚不溶性膳食纤维对白芸豆皮体外发酵特性的影响. 食品工业科技, 2024, 45(1): 118-127.
JIN S, ZHANG B, GAO T, FU X, HUANG Q. Effect of particle size and phenolics bounded-Insoluble dietary fiber on the in vitro fermentation properties of white kidney bean skin. Science and Technology of Food Industry, 2024, 45(1): 118-127.
|
[25] |
党坦, 方俊, 蒋红梅, 谭支良, 汤少勋. 粗饲料体外发酵特性及对微生物细胞膜界面物理化学特性的影响. 动物营养学报, 2015, 27(1): 124-132. doi: 10.3969/j.issn.1006-267x.2015.01.016
DANG T, FANG J, JIANG H M, TAN Z L, TANG S X. Fermentation characteristics of forage and Its effects on interfacial physical and chemical characteristics of microbes surface in vitro. Chinese Journal of Animal Nutrition, 2015, 27(1): 124-132. doi: 10.3969/j.issn.1006-267x.2015.01.016
|
[26] |
侯玉洁, 徐俊, 葛洪滨, 杨宗英, 侯小辉. 不同牧草茎秆在奶牛瘤胃中动态降解特性的研究. 第十二届中国牛业发展大会论文集. 中国贵州遵义: 2017: 5.
HOU Y J, XU J, GE H B, YANG Z Y, HOU X H. Study on dynamic degradation characteristics of different forage stalks in rumen of dairy cows. Proceedings of the 12th China Cattle Industry Development Conference. Guizhou: Zunyi, 2017: 5.
|
[27] |
ADESOGAN A T, ARRIOLA K G, JIANG Y, OYEBADE A, PAULA E M, PECH-CERVANTES A A, ROMERO J J, FERRARETTO, L F, VYAS D. Symposium review: Technologies for improving fiber utilization. Journal of Dairy Science, 2019, 102(6): 5726-5755. doi: 10.3168/jds.2018-15334
|
[28] |
MIRON J, BEN-GHEDALLA D, MORRISON M. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. Journal of Dairy Science, 2001, 84(6): 1294-1309. doi: 10.3168/jds.S0022-0302(01)70159-2
|
[29] |
WEIMER P J. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms, 2022, 10(12): 2345. doi: 10.3390/microorganisms10122345
|
[30] |
JIANG F G, LIN X Y, Yan Z G, HU Z Y, WANG Y, WANG Z H. Effects of forage source and particle size on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows. Animal Science Journal = Nihon Chikusan Gakkaiho, 2019, 90(3): 382-392.
|
[31] |
SATTER L, SLYTER L. Effect of ammonia concentration on rumen microbial protein production invitro. British Journal of Nutrition, 1974, 32(2): 199-208. doi: 10.1079/BJN19740073
|
[32] |
李娜. 体外法研究不同粗饲料来源纤维组分对瘤胃发酵及菌群结构的影响. 银川: 宁夏大学硕士学位论文, 2020.
LI N. Effects of different crude feed fiber sources on rumen fermentation and microbial community structure in vitro. Master Thesis. Yinchuan: Ningxia University, 2020.
|
[33] |
HILDEBRAND B, BOGUHN J, RODEHUTSCORD M. Effect of maize silage to grass silage ratio and feed particle size on ruminal fermentation in vitro. Animal, 2011, 5(4): 528-536. doi: 10.1017/S1751731110002211
|
[34] |
党坦, 刘志刚, 蒋红梅, 谭支良, 汤少勋. 粗饲料来源和颗粒大小及其纤维成分的表面特性研究. 饲料广角, 2013(23): 38-41. doi: 10.3969/j.issn.1002-8358.2013.23.013
DANG T, LIU Z G, JIANG H M, TAN Z L, TANG S X. Surface properties of forages and their fiber at different particle sizes. Feed China, 2013(23): 38-41. doi: 10.3969/j.issn.1002-8358.2013.23.013
|
[35] |
尹召华, 王梦芝, 王洪荣, 张洁, 喻礼怀. 乙酸与丙酸比对体外瘤胃液挥发性脂肪酸发酵模式和微生物群体多样性的影响. 动物营养学报, 2011, 23(12): 2129-2135. doi: 10.3969/j.issn.1006-267x.2011.12.013
YIN Z H, WANG M Z, WANG H R, ZHANG J, YU L H. Acetate to propionate ratio: effects on volatile fatty acid fermentation pattern and microorganisms diversities in rumen fluid in vitro. Chinese Journal of Animal Nutrition, 2011, 23(12): 2129-2135. doi: 10.3969/j.issn.1006-267x.2011.12.013
|
[36] |
WHITEKETTLE W. Effects of surface-active chemicals on microbial adhesion. Journal of Industrial Microbiology, 1991, 7(2): 105-116. doi: 10.1007/BF01576072
|
[37] |
PARDHI D S, PANCHAL R R, RAVAL V H, JOSHI R G, POCZAI P, ALMALKI W H, RAJPUT K N. Microbial surfactants: A journey from fundamentals to recent advances. Frontiers in Microbiology, 2022, 13: 982603. doi: 10.3389/fmicb.2022.982603
|
[38] |
CIESLA J, BIEGANOWSKI A, JANCZAREK M, URBANIK-SYPNIEWSKA T. Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24.2 using Laser Doppler Velocimetry - A methodological study. Journal of Microbiological Methods, 2011, 85(3): 199-205. doi: 10.1016/j.mimet.2011.03.004
|
[39] |
MALDONADO N C, FICOSECO A C, MANSILLA F I, MELIAN C, HEBERT E M, VIGNOLO G M, NADER-MACIAS E F. Identification, characterization and selection of autochthonous lactic acid bacteria as probiotic for feedlot cattle. Livestock Science, 2018, 212: 99-110. doi: 10.1016/j.livsci.2018.04.003
|
[40] |
DJERIBI R, BOUCHERIT Z, BOUCHLOUKH W, ZOUAOUI W, LATRACHE H, HAMDI F, MENAA B. A study of pH effects on the bacterial surface physicochemical properties of Acinetobacter baumannii. Colloids and Surfaces B-Biointerfaces, 2013, 102: 540-545. doi: 10.1016/j.colsurfb.2012.08.047
|
[41] |
刘勇. 比表面积与表面张力对NDF体外发酵和瘤胃微生物界面物理化学特性的影响研究. 北京: 中国科学院大学硕士学位论文, 2012.
LIU Y. The effects of specific surface area and surface tension on in vitro fermentation characteristics of NDF and physicalchemistry properties of ruminal microbes. Master Thesis. Beijing: University of Chinese Academy of Sciences, 2012.
|
[42] |
ROJAS M, DONAHUE J P, TAN Z J, LIN Y Z. Genetic engineering of proteins with cell membrane permeability. Nature Biotechnology, 1998, 16(4): 370-375. doi: 10.1038/nbt0498-370
|
[43] |
ISRAELI-RUIMY V, BULE P, JINDOU S, DASSA B, MORAIS S, BORVOK I, BARAK Y, SLUTZKI M, HAMBERG Y, CARDOSO V, ALVES V D, NAJMUDIN S, WHITE B A, FLINT H J, GILBERT H J, LAMED R, FONTES C M G A, BAYER E A. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions. Scientific Reports, 2017, 7: 42355. doi: 10.1038/srep42355
|
[44] |
DASSA B, BOROVOK I, RUIMY-ISRAELI V, LAMED R, FLINT H J, DUNCAN S H, HENRISSAT B, COUTINHO P, MORRISON M, MOSONI P, YEOMAN C J, WHITE B A, BAYER E A. Rumen cellulosomics: Divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS ONE, 2014, 9(7): e99221. doi: 10.1371/journal.pone.0099221
|
[45] |
YEOMAN C J, FIELDS C J, LEPERCQ P, RUIZ P, FORANO E, WHITE B A, MOSONI P. In vivo ompetitions between fibrobacter succinogenes, ruminococcus flavefaciens, and ruminoccus albus in a gnotobiotic sheep model revealed by multi-omic analyses. mBio, 2021, 12(2): e03533-20.
|