Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
ZHU J J, CHEN L, YANG G J, MA Z Y, LI F, GUO X S, LI F H. Effects of fermented apple pomace based TMR on the performance and gastrointestinal bacteria community of beef cattle. Pratacultural Science, 2024, 41(9): 2118-2132. DOI: 10.11829/j.issn.1001-0629.2024-0032
Citation: ZHU J J, CHEN L, YANG G J, MA Z Y, LI F, GUO X S, LI F H. Effects of fermented apple pomace based TMR on the performance and gastrointestinal bacteria community of beef cattle. Pratacultural Science, 2024, 41(9): 2118-2132. DOI: 10.11829/j.issn.1001-0629.2024-0032

Effects of fermented apple pomace based TMR on the performance and gastrointestinal bacteria community of beef cattle

More Information
  • Corresponding author:

    LI Fei E-mail: lfei@lzu.edu.cn

  • Received Date: January 15, 2024
  • Accepted Date: March 27, 2024
  • Available Online: July 09, 2024
  • Apple pomace is a by-product of juice industry which rich in polysaccharides and vitamins. But it is also characterized with high-water content that is hard to preserve, which severely restricts its application in ruminant husbandry. In this experiment, apple pomace was mixed into the diet to prepare a fermented total mixed diet (FTMR) utilizing ferulic esterase-producing Lactobacillus plantarum A1 to promote fermentation, and to study the effects of FRMR on growth performance, blood parameters and gastrointestinal microorganisms of beef cattle. The experiment was designed as a one-way completely randomized trial. A total of 50 Simmental steers with similar body weight [(630.0 ± 5.5) kg] were randomly assigned to the regular TMR dietary treatment (CON) or FTMR treatment. The total period of the whole experiment was 60 d, including a pre-feeding period of 15 d. The results showed that FTMR treatment significantly increased average daily gain (P < 0.01), apparent digestibility of crude protein (P < 0.01), but decreased count of white blood cells (P = 0.039), hemoglobin content (P < 0.01) and platelet distribution width (P = 0.039). The concentrations of total volatile fatty acids (P = 0.026), acetate (P = 0.023) and propionate (P = 0.039) in rumen were increased. The FTMR treatment significantly increased the relative abundance of Fibrobacterota, Fibrobacter, Prevotella and Lachnospira in rumen (P < 0.05) compared to the CON treatment. At the genus level, the abundances of Clostridium_sensu_stricto_1 and Parabacteroides in cecum was significantly higher in the FTMR treatment than those in the CON treatment (P < 0.05). In conclusion, the fermented total mixed diet supplemented with apple residue could improve the performance and rumen fermentation parameters, as well as increase beneficial bacteria in gastrointestinal tract of steers. Therefore, fermented TMR technology can efficiently utilize the feedstuffs that were difficult to preserve, and it is important for the development of unconventional feed resources.

  • [1]
    PARK J H, SANG W K, DO Y J, KIM H, CHO Y M. Spent mushroom substrate influences Elk (cervus elaphus canadensis) hematological and serum biochemical parameters. Asian-Australasian Journal of Animal Sciences, 2012, 25(3): 320-324. doi: 10.5713/ajas.2011.11329
    [2]
    赵荆玉. 甘肃省苹果生产的比较优势和省域研究. 甘肃农业科技, 2022, 53(2): 86-90.

    ZHAO J Y. Comparative advantage and provincial study of apple production in Gansu Province. Gansu Agricultural Science and Technology, 2022, 53(2): 86-90.
    [3]
    CAO Y, ZANG Y, JIANG Z, HAN Y, HOU J J, LIU H, ZHONG R, FANG J, ZHANG A, YOSHIDA N. Fermentation quality and nutritive value of fresh and fermented total mixed rations containing Chinese wildrye or corn stover. Grassland Science, 2016, 62(4): 213-223.
    [4]
    SUN Z, LIU S, TAYO G, TANG S, TAN Z, LIN B. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Animal Feed Science Technology, 2009, 152(3/4): 219-231.
    [5]
    SILVA T H D, TAKIYA C S, VENDRAMINI T H A, DEJESUS E F, ZANFERARI F, RENNO´ F P. Effects of dietary fibrolytic enzymes on chewing time, ruminal fermentation, and performance of mid-lactating dairy cows. Animal Feed Science Technology, 2016, 221: 35-43.
    [6]
    CAO Y, TAKAHASHI T, HORIGUCHI K I, YOSHIDA N, CAI Y. Methane emissions from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Animal Feed Science Technology, 2010, 157(1/2): 72-78.
    [7]
    CAO B B, JIN X, YANG H J, LI S L, JIANG L S. Microbial release of ferulic and p-coumaric acids from forages and their digestibility in lactating cows fed total mixed rations with different forage combinations. Journal of the Science and Food Agriculture, 2016, 96(12): 650-655.
    [8]
    KOTSAMPASI B, CHRISTODOULOU C, TSIPLAKOU E, MAVROMMSTIS A, MITSIOPOULOU C, KARAISKOU C, DOTAS V, ROBINSON P H, BAMPIDIS V A, CHRISTODOULOU V, ZERVAS G. Effects of dietary pomegranate pulp silage supplementation on milk yield and composition, milk fatty acid profile and blood plasma antioxidant status of lactating dairy cows. Animal Feed Science and Technology, 2017, 234: 228-236.
    [9]
    马宁, 何立荣, 许迟, 赵强, 马峰, 张琳, 李博宁, 马帆. 不同水平干苹果渣对育肥牛体外产气量、发酵参数、营养物质消化率和生长性能的影响. 畜牧与饲料科学, 2021, 42(6): 1-8. doi: 10.12160/j.issn.1672-5190.2021.06.001

    MA N, HE L R, XU C, ZHAO Q, MA F, ZHANG L, LI B N, MA F. Effects of different levels of dried apple residue on in vitro gas production, fermentation parameters, nutrient digestibility and growth performance of fattening cattle. Animal Husbandry and Feed Science, 2021, 42(6): 1-8. doi: 10.12160/j.issn.1672-5190.2021.06.001
    [10]
    KHOSRAVI M, ROUZBEHAN Y, REZAEI M, REZAEI J. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. Journal of Dairy Science, 2018, 101: 10953-10961.
    [11]
    TIAN X Z, PAENGKOUM P, PAENGKOUM S, CHUMPAWADEE S, BAN C, THONGPEA S. Short communication: Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 2019, 102: 413-418.
    [12]
    WEINBERG Z G, SHATZ O, CHEN Y, YOSEF E, NIKBAHAT M, BEN-GHEDALIA D, MIRON J. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. Journal of Dairy Science, 2007, 90(10): 4754-4762.
    [13]
    JIN L, DUNIERE L, LYNCH J P, MCALLISTER T A, BAAH J, WANG Y. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silages. Animal Feed Science and Technology, 2015, 207: 62-74.
    [14]
    DE-OLIVEIRA D M, FINGER-TEIXEIRA A, MOTA T R, SALVADOR V H, MOREIRA-VILAR F C, MOLINARI H B C, MITCHELL R A C, MARCHIOSI R, FERRARESE-FILHO O, Dos-SANTOS W D. Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnology Journal, 2016, 13: 1224-1232.
    [15]
    LI F, DING Z, KE W, XU D, ZHANG P, BAI J, MUDASSAR S, MUHAMMAD I, GUO X. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresource Technology, 2019, 282: 211-221.
    [16]
    LI F, KE W, DING Z, BAI J, ZHANG Y, XU D, LI Z, GUO X. Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bacteria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresource Technology, 2020, 295: 122261.
    [17]
    COMINO L, TABACCO E, RIGHI F, REVELLO-CHION A, QUARANTELLI A, BORREANI G. Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products, aerobic stability, and fibre digestibility of maize silages harvested at different stages of maturity. Animal Feed Science and Technology, 2014, 198: 94-106.
    [18]
    LYNCH J P, JIN L, LARA E C, BAAH J, BEAUCHEMIN K A. The effect of exogenous fibrolytic enzymes and a ferulic acid esterase-producing inoculant on the fibre degradability, chemical composition and conservation characteristics of alfalfa silages. Animal Feed Science and Technology, 2014, 193: 21-31.
    [19]
    李福厚. 产阿魏酸酯酶乳酸菌对青贮饲料纤维降解、家畜消化及健康的影响及作用机制研究. 兰州: 兰州大学博士学位论文, 2021.

    LI F H. Effect of ferulate esterase-producing lactic acid bacteria on silage fiber degradation, digestion and health of livestock and its mechanism. PhD Thesis. Lanzhou: Lanzhou University, 2021.
    [20]
    陈代文. 动物营养与饲料科学. 北京: 中国农业出版社, 2015.

    CHEN D W. Animal Nutrition and Feed Science. Beijing: China Agriculture Press, 2015.
    [21]
    MA Z Y, ZHANG X M, WANG R, WANG M, LIU T, TAN Z L. Effects of chemical and mechanical lysis on microbial dna yield, integrity, and downstream amplicon sequencing of rumen bacteria and protozoa. Frontiers in Microbiology, 2020, 11: 581227.
    [22]
    FILHO S D C V, SILVA L F C E, GIONBELLI M P, ROTTA P P, PRADOS L F. Nutrient Requirements of Zebu and Crossbred Cattle - BR-CORTE. 2016: 1-334.
    [23]
    牛骁麟, 郭涛, 周文静, 郭龙, 李飞, 李发弟. 日粮粗蛋白质水平对育肥湖羊瘤胃微生物组成和发酵参数的影响. 草业科学, 2020, 37(5): 975-983. doi: 10.11829/j.issn.1001-0629.2019-0439

    NIU X L, GUO T, ZHOU W J, GUO L, LI F, LI F D. Effects of dietary crude protein level on rumen microbial composition and fermentation parameters of fattening lake sheep. Pratacultural Science, 2020, 37(5): 975-983. doi: 10.11829/j.issn.1001-0629.2019-0439
    [24]
    BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014(15): 2114-2120.
    [25]
    MARTIN M. Cut adapt removes adapter sequences from high-throughput sequencing reads. Embnet Journal, 2011, 17(1): 10-12.
    [26]
    EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-1000. doi: 10.1038/nmeth.2604
    [27]
    EDGAR R C, HAAS B J, CLEMENTE J C, QUINCE C, KNIGHT R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16): 2194-2200.
    [28]
    乔庆敏, 宋春梅. 苹果渣的饲料化利用技术及对经济效益的影响研究. 饲料研究, 2022, 45(9): 156-159.

    QIAO Q M, SONG C M. Study on feed utilization technology of apple residue and its influence on economic benefit. Feed Research, 2022, 45(9): 156-159.
    [29]
    郭全恩, 南丽丽, 曹诗瑜, 展宗冰, 李龙. 地形对苹果园近地面微环境的影响. 经济林研究, 2019, 37(2): 29-33.

    GUO Q E, NAN L L, CAO S Y, ZHAN Z B, LI L. Effect of terrain on near-surface microenvironment of apple orchard. Economic Forestry Research, 2019, 37(2): 29-33.
    [30]
    张男吉, 刘江莉, 林波, 邹彩霞. 青绿饲料附生微生物组成特点及其对青贮品质影响的研究进展. 动物营养学报, 2023, 35(5): 2828-2835. doi: 10.12418/CJAN2023.265

    ZHANG N J, LIU J L, LIN B, ZOU C X. Research progress on the composition of epiphytic microorganism in green feed and its effect on silage quality. Chinese Journal of Animal Nutrition, 2023, 35(5): 2828-2835. doi: 10.12418/CJAN2023.265
    [31]
    许冬梅, 张萍, 柯文灿, 郭旭生. 青贮微生物及其对青贮饲料发酵品质影响的研究进展. 草地学报, 2017, 25(3): 460-465.

    XU D M, ZHANG P, KE W C, GUO X S. Research progress of silage microorganisms and their effects on fermentation quality of silage. Journal of Grassland Science, 2017, 25(3): 460-465.
    [32]
    董文卓, 赵帅, 张璐青, 刘佳庆, 柳佳惠, 张家林, 寇建村, 杨文权. 一种新型复合乳酸菌剂对苜蓿青贮品质及细菌群落的影响. 中国草地学报, 2023, 45(10): 78-86.

    DONG W Z, ZHAO S, ZHANG L Q, LIU J Q, LIU J H, ZHANG J L, KOU J C, YANG W Q. Effects of a new compound lactic acid bacteria agent on the quality and bacterial community of alfalfa silage. Chinese Journal of Grassland, 2023, 45(10): 78-86.
    [33]
    张琨. 干苹果渣不同添加量对内蒙古细毛羊育肥效果的研究. 吉林农业科学, 2013, 38(5): 66-68.

    ZHANG K. Study on fattening effect of different amounts of dried apple residue on Inner Mongolia fine wool sheep. Jilin Agricultural Science, 2013, 38(5): 66-68.
    [34]
    ZHANG A R, WEI M, YAN L, ZHOU G L, LIANG Y X. Effects of feeding solid-state fermented wheat bran on growth performance and nutrient digestibility in broiler chickens. Poultry Science, 2021, 101(1): 101402.
    [35]
    KIM T I, MAYAKRISHNAN V, LIM D H, YEON J A, BAEK K L. Effect of fermented total mixed rations on the growth performance, carcass and meat quality characteristics of Hanwoo steers. Animal Science Journal, 2018, 89(3): 606-615.
    [36]
    樊启文, 郭万正, 赵娜, 兰忠, 李巍, 金枫, 魏金涛. 不同比例发酵饲料桑替代基础饲粮对肉牛生长性能、养分表观消化率、血液生理生化指标、血清抗氧化指标的影响. 动物营养学报, 2023, 35(11): 7235-7246. doi: 10.12418/CJAN2023.659

    FAN Q W, GUO W Z, ZHAO N, LAN Z, LI W, JIN F, WEI J T. Effects of different proportion of fermented feed mulberry replacing basal diet on growth performance, nutrient apparent digestibility, blood physiological and biochemical indexes and serum antioxidant indexes of beef cattle. Chinese Journal of Animal Nutrition, 2023, 35(11): 7235-7246. doi: 10.12418/CJAN2023.659
    [37]
    丁亚伟, 郭云霞, 王海玉, 杨彩虹, 田星哲, 徐艳辉, 段春辉, 严慧, 纪守坤, 刘月琴, 张英杰. 复合益生菌发酵饲料对羔羊营养物质表观消化率、血清激素含量、粪便微生物及消化酶活性的影响. 动物营养学报, 2022, 34(12): 7945-7959.

    DING Y W, GUO Y X, WANG H Y, YANG C H, TIAN X Z, XU Y H, DUAN C H, YAN H, JI S K, LIU Y Q, ZHANG Y J. Effects of compound probiotic fermented feed on nutrient apparent digestibility, serum hormone content, fecal microorganisms and digestive enzyme activities of lambs. Chinese Journal of Animal Nutrition, 2022, 34(12): 7945-7959.
    [38]
    丁亚伟, 郭云霞, 王海玉, 刘月琴, 张英杰, 王媛, 郗艳菊, 段春辉. 复合益生菌发酵饲料对哺乳羔羊生长性能、血常规指标及血清免疫、抗氧化指标的影响. 动物营养学报, 2023, 35(4): 2406-2416. doi: 10.12418/CJAN2023.226

    DING Y W, GUO Y X, WANG H Y, LIU Y Q, ZHANG Y J, WANG Y, XI Y J, DUAN C H. Effects of compound probiotic fermented feed on growth performance, blood routine indexes, serum immunity and antioxidant indexes of lactating lambs. Chinese Journal of Animal Nutrition, 2023, 35(4): 2406-2416. doi: 10.12418/CJAN2023.226
    [39]
    周瑞, 李耀东, 罗建芬, 张小明, 吴慧昊, 朱凯, 吴凡, 徐红伟, 臧荣鑫. 西兰花尾菜发酵饲料对绵羊生长性能、营养物质表观消化率及血清生化、抗氧化和免疫指标的影响. 动物营养学报, 2023, 35(10): 6497-6506. doi: 10.12418/CJAN2023.594

    ZHOU R, LI Y D, LUO J F, ZHANG X M, WU H H, ZHU K, WU F, XU H W, ZANG R X. Effects of fermented broccoli feed on growth performance, apparent digestibility of nutrients and serum biochemical, antioxidant and immune indexes of sheep. Chinese Journal of Animal Nutrition, 2023, 35(10): 6497-6506. doi: 10.12418/CJAN2023.594
    [40]
    王涛. 苜蓿草粉的营养价值及其对动物生产和经济效益的影响. 饲料研究, 2021, 44(8): 154-156.

    WANG T. Nutritional value of alfalfa meal and its effect on animal production and economic benefit. Journal of Feed Research, 2021, 44(8): 154-156.
    [41]
    张喆萍, 李瑞银, 李树静, 李建国, 沈宜钊, 高艳霞, 李妍, 范京惠, 谢鹏, 李秋凤, 曹玉凤. 饲粮添加发酵枣粉对高温季节荷斯坦公牛生长性能、免疫性能和抗氧化性能的影响. 动物营养学报, 2022, 34(2): 1027-1039. doi: 10.3969/j.issn.1006-267x.2022.02.034

    ZHANG Z P, LI R Y, LI S J, LI J G, SHEN Y Z, GAO Y X, LI Y, FAN J H, XIE P, LI Q F, CAO Y F. Effects of dietary fermented jujube powder on growth performance, immune performance and antioxidant performance of Holstein bulls in high temperature season. Chinese Journal of Animal Nutrition, 2022, 34(2): 1027-1039. doi: 10.3969/j.issn.1006-267x.2022.02.034
    [42]
    CUNHA G S P, MAIA M D A, FERNANDES L M G, GERASEEV L C, CHAVES A S. Physically effective fiber changes nutrient levels of total mixed ration and fecal parameters in beef feedlots. Ciência Rural, 2021, 51(5): 20200663.
    [43]
    YANG W Z, BEAUCHEMIN K A. Physically effective fiber: Method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. Journal of Dairy Science, 2006, 89(7): 2618-2633. doi: 10.3168/jds.S0022-0302(06)72339-6
    [44]
    尹福泉, 吴征敏, 王志敬, 吴浩浩, AAMIR N, 庄桂锋, 钟耿杰, 黄昇. 不同精粗比饲粮对雷州山羊生长性能、血液生化指标和瘤胃微生物多样性的影响. 广东海洋大学学报, 2018, 38(1): 80-86. doi: 10.3969/j.issn.1673-9159.2018.01.011

    YIN F Q, WU Z M, WANG Z J, WU H H, AAMIR N, ZHUANG G F, ZHONG G J, HUANG S. Effects of different ratio of concentrate to crude diets on growth performance, blood biochemical indexes and rumen microbial diversity of Leizhou goats. Journal of Guangdong Ocean University, 2018, 38(1): 80-86. doi: 10.3969/j.issn.1673-9159.2018.01.011
    [45]
    张霞, 王维中, 王虎成, 郭旭生. 青贮组合型全混合日粮对育肥肉牛生长性能及血液指标的影响. 动物营养学报, 2018, 30(12): 4980-4990. doi: 10.3969/j.issn.1006-267x.2018.12.026

    ZHANG X, WANG W Z, WANG H C, GUO X S. Effects of silage combined total mixed diet on growth performance and blood indexes of fattening beef cattle. Chinese Journal of Animal Nutrition, 2018, 30(12): 4980-4990. doi: 10.3969/j.issn.1006-267x.2018.12.026
    [46]
    LAWAL B, SHITTU O K, OIBIOKPA F I, MOHAMMED H, UMAR S I, HARUNA G M. Antimicrobial evaluation, acute and sub-acute toxicity studies of allium sativum. Journal of Acute Disease, 2016, 5(4): 296-301. doi: 10.1016/j.joad.2016.05.002
    [47]
    TABARRAEI H, HASSAN J, REZA PARVIZI M, GOLSHAHI H, KESHACARZ-TARIKHI H. Evaluation of the acute and sub-acute toxicity of teh black caraway seed essential oil in Wistar rats. Toxicology Reports, 2019(6): 869-874.
    [48]
    朱巧, 郭丽君. 平均血小板体积与心血管疾病的关系. 中国心血管杂志, 2014, 19(3): 225-228. doi: 10.3969/j.issn.1007-5410.2014.03.019

    ZHU Q, GUO L J. Relationship between mean platelet volume and cardiovascular disease. Chinese Journal of Cardiology, 2014, 19(3): 225-228. doi: 10.3969/j.issn.1007-5410.2014.03.019
    [49]
    李红丽, 柴沙驼, 王迅. 不同能量和蛋白质水平饲粮对冷季舍饲育肥牦牛生长性能、血清生化指标及瘤胃发酵参数的影响. 动物营养学报, 2022, 34(7): 4498-4511.

    LI H L, CHAI S T, WANG X. Effects of different energy and protein levels on growth performance, serum biochemical parameters and rumen fermentation parameters of fattening yaks in cold season. Chinese Journal of Animal Nutrition, 2012, 34(7): 4498-4511.
    [50]
    李满双, 薛树媛, 王超, 王莉梅, 郭天龙, 金海. 体外产气法研究沙柳混合发酵饲料对绵羊瘤胃内环境参数的影响. 动物营养学报, 2015, 27(27): 1943-1953.

    LI M S, XUE S Y, WANG C, WANG L M, GUO T L, JIN H. The effects of sallow and willow mixed fermented feed on rumen environmental parameters of sheep were studied by in vitro gas production. Chinese Journal of Animal Nutrition, 2015, 27(27): 1943-1953.
    [51]
    孔雪旺, 周敏, 肖杰, 张书汁. 含发酵饲料的全混合日粮对肉牛瘤胃离体发酵、生长性能和血液特性的影响. 中国饲料, 2020(10): 56-60.

    KONG X W, ZHOU M, XIAO J, ZHANG S Z. Effects of total mixed diet containing fermented feed on in vitro fermentation, growth performance and blood characteristics of rumen of beef cattle. China Feed, 2020(10): 56-60.
    [52]
    张政. 活性酵母及其发酵饲料对瘤胃发酵及营养物质消化率的影响. 呼和浩特: 内蒙古农业大学硕士学位论文, 2017.

    ZHANG Z. Effects of active yeast and its fermented feed on rumen fermentation and nutrient digestibility. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2017.
    [53]
    郭鹏. 奶牛微生物发酵饲料组方及配套使用技术的研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2016.

    GUO P. Study on the formulation of microbial fermented feed for dairy cows and its supporting technology. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2016.
    [54]
    陈光吉, 彭忠利, 宋善丹, 王斌星, 郭春华, 张正帆, 柏雪, 王永, 钟金城, 蹇尚林, 朱友军. 发酵酒糟对舍饲牦牛生产性能、养分表观消化率、瘤胃发酵和血清生化指标的影响. 动物营养学报, 2015, 27(9): 2920-2927. doi: 10.3969/j.issn.1006-267x.2015.09.032

    CHEN G J, PENG Z L, SONG S D, WANG B X, GUO C H, ZHANG Z F, BAI X, WANG Y, ZHONG J C, JAI S L, ZHU Y J. Effects of fermented wine lees on performance, nutrient apparent digestibility, rumen fermentation and serum biochemical indices of farm-fed yaks. Chinese Journal of Animal Nutrition, 2015, 27(9): 2920-2927. doi: 10.3969/j.issn.1006-267x.2015.09.032
    [55]
    杨红建, 黎大洪, 谢春元, 岳群. 阿魏酸酯酶处理对羊草、玉米秸、稻秸及麦秸瘤胃体外发酵特性的影响. 动物营养学报, 2010, 22(1): 207-211.

    YANG H J, LI D H, XIE C Y, YUE Q. Effect of ferulate esterase treatment on rumen fermentation characteristics of leymus chinensis, corn stalk, rice stalk and wheat stalk in vitro. Chinese Journal of Animal Nutrition, 2010, 22(1): 207-211.
    [56]
    NSEREKO V L, BEAUCHEMIN K A, MORGAVI D P, RODE L M, FURTADO A F, MCALLISTER T A, IWAASA D, YANG W Z, WANG Y. Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Canadian Journal of Microbiology, 2002, 48: 14-20.
    [57]
    WANG Y Y, CAO P H, WANG L, ZHAO Z Y, CHEN Y L, YANG Y X. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Applied Microbiology and Biotechnology, 2017, 101(9): 3717-3728. doi: 10.1007/s00253-017-8144-5
    [58]
    YEOMAN C J, ISHAQ S L, BICHI E, OLIVO S K, LOWE J, ALDRIDGE B M. Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract. Scientific Reports, 2018, 8(1): 3197. doi: 10.1038/s41598-018-21440-8
    [59]
    HUSSO A, JALANKA J, ALIPOUR M, HUHTI P, KARESKOSKI M, PESSA-MORIKAWA T, IIVANAINEN A, NIKU M. The composition of the perinatal intestinal microbiota in cattle. Scientific Reports, 2018, 8(1): 10437.
    [60]
    MANGIFESTA M, MANCABELLI L, MILANI C, GAIANI F, DE'ANGELIS N, De'Angelis G L, SINDEREN D, VENTURA M, TURRONI F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Scientific Reports, 2018, 9(18): 13974-13974.
    [61]
    GONG L X, LIU B Y, WU H, FENG J, JIANG T L. Seasonal dietary shifts alter the gut microbiota of avivorous bats: Implication for adaptation to energy harvest and nutritional utilization. mSphere, 2021, 4(6): 54322.
    [62]
    O'HARA E, NEVES A L A, SONG Y, GUAN L L. The role of the gut microbiome in cattle production and health: Driver or passenger. Annual Review of Animal Biosciences, 2020, 8(1): 199-220. doi: 10.1146/annurev-animal-021419-083952

Catalog

    Article views (88) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return