Citation: | ZHAO X L, Dougajiebu, SHEN Y T, Zhaxijiacuo, SUN Z M, TANG F N, LIAO Y F, LIU K B, DANG Z J, Doulajia, SUN Y. Prediction of the spatial and temporal distribution pattern of Anemone rivularis based on samples collected in a source region of the Yellow River using UAV. Pratacultural Science, 2024, 41(2): 308-321. DOI: 10.11829/j.issn.1001-0629.2023-0433 |
Anemone rivularis is a perennial herb widely distributed in alpine grassland in the source region of the Yellow River (SRYR). It is one of the main poisonous weeds that restrict the development of local grassland animal husbandry and lead to declining ecosystem stability and service function. So far, no research has been conducted on the spatial and temporal distribution of A. rivularis at the regional scale. The main limiting factors are the lack of basic distribution data sets and efficient and high-precision observation methods. This study used unmanned aerial vehicle (UAV) near-ground remote sensing technology and FragMAP to set up sample collection plots in SRYR and obtained the basic distribution data set of A. rivularis. BIOMOD was used to simulate the potential distribution of A. rivularis and explore the spatial distribution patterns and habitat suitability of A. rivularis in the SRYR under different future climate scenarios. The study’s results were as follows: 1) the spatial distribution of A. rivularis is influenced by precipitation, soil pH, and average annual temperature, 2) A. rivularis is primarily distributed in the southeast regions of the SRYR under the current climate scenario, 3) the proportion of extremely suitable habitats for A. rivularis under future climate scenarios generally increases with a rise in temperature. This study depicted the spatial and temporal distribution of A. rivularis at the regional scale, which provides a scientific basis for timely prevention and control, rational management, and utilization of the poisonous weeds on alpine grassland.
[1] |
WU C C, WANG W L, LIU X X, MA F, CAO D D, YANG X W, WANG S S, GENG P S, LU H, ZHAO B Y. Pathogenesis and preventive treatment for animal disease due to locoweed poisoning. Environmental Toxicology and Pharmacology, 2014, 37(1): 336-347. doi: 10.1016/j.etap.2013.11.013
|
[2] |
任继周, 林惠龙, 侯向阳. 发展草地农业确保中国食物安全. 中国农业科学, 2007, 40(3): 614-621.
REN J Z, LIN H L, HOU X Y. Developing the agro-grassland system to insure food security of China. Scientia Agricultura Sinica, 2007, 40(3): 614-621.
|
[3] |
丁永建, 杨建平, 刘时银, 陈仁升, 王根绪, 沈永平, 王建, 谢昌卫, 张世强. 长江黄河源区生态环境范围的探讨. 地理学报, 2003, 58(4): 519-526. doi: 10.11821/xb200304005
DING Y J, YANG J P, LIU S Y, CHEN R S, WANG G X, SHEN Y P, WANG J, XIE C W, ZHANG S Q. Exploration of ecoenvironment range in the source region of the Yangtze River and Yellow River. Acta Geographica Sinica, 2003, 58(4): 519-526. doi: 10.11821/xb200304005
|
[4] |
任继周, 林慧龙. 江河源区草地生态建设构想. 草业学报, 2005, 14(2): 1-8.
REN J Z, LIN H L. Assumed plan on grassland ecological reconstruction in the source region of Yangtse River, Yellow River and Lantsang River. Acta Prataculturae Sinica, 2005, 14(2): 1-8.
|
[5] |
张骞, 马丽, 张中华, 徐文华, 周秉荣, 宋明华, 乔安海, 王芳, 佘延娣, 杨晓渊, 郭婧, 周华坤. 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望. 生态学报, 2019, 39(20): 7441-7451.
ZHANG Q, MA L, ZHANG Z H, XU W H, ZHOU B R, SONG M H, QIAO A H, WANG F, SHE Y D, YANG X Y, GUO J, ZHOU H K. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: Degradation status, restoration measures, effects and prospects. Acta Ecologica Sinica, 2019, 39(20): 7441-7451.
|
[6] |
ZHANG X Y, YUAN Y X, ZHU Z Q, MA Q S, YU H Y, LI M, MA J H, YI S H, HE X Z, SUN Y. Predicting the distribution of Oxytropis ochrocephala bunge in the source region of the Yellow River (China) Based on UAV sampling data and species distribution model. Remote Sensing, 2021, 13: 5129. doi: 10.3390/rs13245129
|
[7] |
刘宏颀, 狄维忠. 小花草玉梅变态花的形态学研究Ⅰ. 变态花的形态学观察. 西北植物学报, 1991(4): 292-298, 366.
LIU H Q, DI W Z. Morphological studies on the metamorphosed flowers of Anemone rivularis var. flore-minore Maxim. Ⅰ. Morphological observation on the metamorphosed flowers. Acta Botanica Sinica, 1991(4): 292-298, 366.
|
[8] |
王文采. 中国银莲花属新分类. 广西植物, 2021, 41(S1): 1-118.
WANG W T. A new classification of Anemone (Ranunculaceae) of China. Guihaia, 2021, 41(S1): 1-118.
|
[9] |
赵志刚. 青藏高原高寒草甸常见毛茛科植物繁殖对策研究. 兰州: 兰州大学博士学位论文, 2006.
ZHAO Z G. Reproductive strategies of common species of Ranunculaceae at alpine meadow in Qinghai Tibet Plateau. PhD Thesis. Lanzhou: Lanzhou University, 2006.
|
[10] |
徐正茹, 张建旗, 王梅, 曹效东, 刘乐乐, 许宏刚, 李文哲. 干旱胁迫对9种野生观赏草本植物生长及生理特性的影响. 草业科学, 2018, 35(12): 2865-2871.
XU Z R, ZHANG J Q, WANG M, CAO X D, LIU L L, XU H G, LI W Z. Effect of drought stress on the growth and physiological characteristics of nine species of wild ornamental plants. Pratacultural Science, 2018, 35(12): 2865-2871.
|
[11] |
李小艳, 张远彬, 潘开文, 孙成仁, 王开运, 王进闯, 亓东明. 温度升高对林线交错带西川韭与草玉梅生殖物候与生长的影响. 生态学杂志, 2009, 28(1): 12-18.
LI X Y, ZHANG Y B, PAN K W, SUN C R, WANG K Y, WANG J C, QI D M. Effects of elevated temperature on reproductive phenology and growth of Allium xichuanense and Anemone rivularis in timberline ecotone. Chinese Journal of Ecology, 2009, 28(1): 12-18.
|
[12] |
王迎新, 王召锋, 程云湘, 侯扶江. 浅议毒害草在草地农业生态系统中的作用. 草业科学, 2014, 31(3): 381-387. doi: 10.11829/j.issn.1001-0629.2013-0720
WANG Y X, WANG Z F, CHENG Y X, HOU F J. The role of toxic and harmful grass in grassland agro-ecosystem. Pratacultural Science, 2014, 31(3): 381-387. doi: 10.11829/j.issn.1001-0629.2013-0720
|
[13] |
王啸洋, 吴君, 皇甫龙韬, 刘红, 李雪梅, 汤海峰, 张艳华. 小花草玉梅的三萜皂苷成分鉴定及抗肿瘤活性研究. 中国药房, 2022, 33(5): 602-610.
WANG X Y, WU J, HUANGPU L T, LIU H, LI X M, TANG H F, ZHANG Y H. Identification of triterpenoid saponins fromAnemone rivularis var. flore-minore and study on their antitumor activities. China Pharmacy, 2022, 33(5): 602-610.
|
[14] |
张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 2019, 27(6): 595-606. doi: 10.17520/biods.2019085
ZHANG X L, LI Y C, WANG Y Y, CAI H Y, ZENG H, WANG Z H. Influence of future climate change in suitable habitats of tea in different countries. Biodiversity Science, 2019, 27(6): 595-606. doi: 10.17520/biods.2019085
|
[15] |
AGUIRRE-GUTIÉRREZ J, CARVALHEIRO L G, POLCE C, VAN LOON E E, RAES N, REEMER M, BIESMEIJER J C. Fit-for-purpose: Species distribution model performance depends on evaluation criteria dutch hoverflies as a case study. PLoS ONE, 2013, 8(5): e63708. doi: 10.1371/journal.pone.0063708
|
[16] |
THUILLER W, LAFOURCADE B, ENGLER R, ARAÚJO M B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography, 2009, 32(3): 369-373. doi: 10.1111/j.1600-0587.2008.05742.x
|
[17] |
SUN Y, YI S H, HOU F J. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecological Indicators, 2018, 95(1): 825-830.
|
[18] |
SUN Y, HOU F J, ANGERER J P, YI S H. Effects of topography and land-use patterns on the spatial heterogeneity of terracette landscapes in the Loess Plateau, China. Ecological Indicators, 2020, 109: 105839. doi: 10.1016/j.ecolind.2019.105839
|
[19] |
朱妮. 基于组合物种分布模型 (Ensemble Model) 的厚朴适宜生境分布模拟. 四川农业大学学报, 2019, 37(4): 481-489.
ZHU N. Modelling the suitable habitat distribution of Magnolia officinalis using Ensemble Model. Journal of Sichuan Agriculture University, 2019, 37(4): 481-489.
|
[20] |
VÁCLAVÍK T, MEENTEMEYER R K. Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions. Ecological Modelling, 2009, 220(23): 3248-3258. doi: 10.1016/j.ecolmodel.2009.08.013
|
[21] |
YI S H. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. International Journal of Remote Sensing, 2017, 38(8/10): 2686-2697.
|
[22] |
陈建军, 黄莹, 赵许宁, 张慧子, 田志林. 黄河源区高寒草地植被覆盖度反演模型精度评价. 科学技术与工程, 2019, 19(15): 37-45.
CHEN J J, HUANG Y, ZHAO X N, ZHANG H Z, TIAN Z L. Accuracy evaluation of vegetation coverage inversion model for alpine grassland in the source region of the Yellow River. Science Technology and Engineering, 2019, 19(15): 37-45.
|
[23] |
梁文涛, 卫林勇, 刘懿, 尹航, 韩振华. 近20年黄河源区陆地水储量增加及其可能原因分析. 中国农村水利水电, 2022(9): 70-74.
LIANG W T, WEI L Y, LIU Y, YIN H, HAN Z H. Increase in terrestrial water storage and possible causes over the source region of the Yellow River in recent two decades. China Rural Water and Hydropower, 2022(9): 70-74.
|
[24] |
张镭, 黄建平, 梁捷宁, 于海鹏, 管晓丹, 马金珠, 沈禹颖, 邓建明, 黄宁, 孟兴民, 王澄海, 李常斌, 牟翠翠, 巩杰, 张帆宇. 气候变化对黄河流域的影响及应对措施. 科技导报, 2020, 38(17): 42-51. doi: 10.3981/j.issn.1000-7857.2020.17.004
ZHANG L, HUANG J P, LIANG J N, YU H P, GUAN X D, MA J Z, SHEN Y Y, DENG J M, HUANG N, MENG X M, WANG C H, LI C B, MU C C, GONG J, ZHANG F Y. Impact of climate change on the Yellow River basin and respons. Science and Technology Review, 2020, 38(17): 42-51. doi: 10.3981/j.issn.1000-7857.2020.17.004
|
[25] |
温丽叶, 靳莉君, 刘静, 王鹏. 黄河源区降水特点及气象成因分析. 人民黄河, 2022, 44(1): 21-25.
WEN L Y, JIN L J, LIU J, WANG P. Analysis of precipitation characteristics and meteorological causes in source area of Yellow River. Yellow River, 2022, 44(1): 21-25.
|
[26] |
万宏伟, 潘庆民, 白永飞. 中国草地生物多样性监测网络的指标体系及实施方案. 生物多样性, 2013, 21(6): 639-650.
WAN H W, PAN Q M, BAI Y F. China grassland biodiversity monitoring network: Indicators and implementation plan. Biodiversity Science, 2013, 21(6): 639-650.
|
[27] |
张欣雨, 朱泽群, 袁雅欣, 姬文翔, 宋岑雨, 陆洪伟, 赵茜蕾, 卞庆瑶, 孙子墨, 宜树华, 孙义. 基于组合物种分布模型的黄河源区鹅绒委陵菜适宜生境及其对气候变化的响应. 草业科学, 2022, 39(2): 1-14. doi: 10.11829/j.issn.1001-0629.2021-0480
ZHANG X Y, ZHU Z Q, YUAN Y X, JI W X, SONG C Y, LU H W, ZHAO X L, BIAN Q Y, SUN Z M, YI S H, SUN Y. Assessment of suitable Potentilla anserina habitat and its response to climate change in the source region of the Yellow River based on ensemble species distribution modeling. Pratacultural Science, 2022, 39(2): 1-14. doi: 10.11829/j.issn.1001-0629.2021-0480
|
[28] |
HENGL T, MENDES DE JESUS J, HEUVELINK G B, RUIPEREZ GONZALEZ M, KILIBARDA M, BLAGOTIĆ A, SHANGGUAN W, WRIGHT M N, GENG X Y, BAUER-MARSCHALLINGER B, GUEVARA M A, VARGAS R, MACMILLAN R A, BATJES N H, LEENAARS J G, RIBEIRO E, WHEELER I, MANTEL S, KEMPEN B. SoilGrids250 m: Global gridded soil information based on machine learning. PLoS One, 2017, 12(2): e0169748. doi: 10.1371/journal.pone.0169748
|
[29] |
郭恺琦, 姜小龙, 徐刚标. 薄片青冈潜在适生区及气候变化对其分布的影响. 生态学杂志, 2021, 8: 2563-2574.
GUO K Q, JIANG X L, XU G B. Potential suitable area of Quercus lamellosa and the influence of climate change on its distribution. Chinese Journal of Ecology, 2021, 8: 2563-2574.
|
[30] |
阎尚博, 钱永强, 张艳, 闫丽, 董丽. 土壤含水量对 4 种委陵菜属植物生长及生理影响. 草业科学, 2020, 37(1): 98-105. doi: 10.11829/j.issn.1001-0629.2019-0512
YAN S B, QIAN Y Q, ZHANG Y, YAN L, DONG L. Effects of soil moisture content on morphophysiological of four Potentilla. Pratacultural Science, 2020, 37(1): 98-105. doi: 10.11829/j.issn.1001-0629.2019-0512
|
[31] |
SHANG Z H, LONG R J. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Frontiers of Agriculture in China, 2007, 1(2): 197-202.
|
[32] |
杨金虎, 张强, 杨博成, 蒋友严, 段欣妤, 刘晓云, 卢国阳, 王鑫. 黄河上游暖湿化的多时间尺度特征及对生态植被的影响. 高原气象, 2023, 42(4): 1018-1030.
YANG J H, ZHANG Q, YANG B C, JIANG Y Y, DUAN X S, LIU X Y, LU G Y, WANG X. The multi-time scale characteristics and impacts on ecologi-cal vegetation of warming and humidification in the upper Yellow River. Plateau Meteorology, 2023, 42(4): 1018-1030.
|
[33] |
李安, 李良涛, 高萌萌, 陈曦, 卢彤, 刘帅帅. 基于MaxEnt 模型和气候变化情景入侵种黄顶菊在中国的分布区预测. 农学学报, 2020, 10(1): 60-67, 76.
LI A, LI L T, GAO M M, CHEN X, LU T, LIU S S. Distribution prediction of invasive species Flaveria bidentis in China: Based on MaxEnt model and climate change scenario. Journal of Agriculture, 2020, 10(1): 60-67, 76.
|
[34] |
黄波, 宜树华, 张欣雨, 马青山, 向波, 杜嘉星, 马建海, 孙义. 基于BIOMOD 的黄河源区黄帚橐吾分布. 草业科学, 2020, 37(11): 2198-2210. doi: 10.11829/j.issn.1001-0629.2020-0341
HUANG B, YI S H, ZHANG X Y, MA Q S, XIANG B, DU J X, MA J H, SUN Y. Distribution of Ligularia virgaurea in the source region of the Yellow River based on BIOMOD. Pratacultural Science, 2020, 37(11): 2198-2210. doi: 10.11829/j.issn.1001-0629.2020-0341
|
[35] |
孙义, 秦彧, 魏天锋, 常丽, 张仁平, 刘志有, 吕燕燕, 宜树华. 草地植物物种多样性测度方法及发展趋势. 应用生态学报, 2022, 33 (3): 655-663.
SUN Y, QIN Y, WEI T F, CHANG L, ZHANG R P, LIU Z Y, LYU Y Y, YI S H. Methods and development trend for measurement of plant diversity in grassland. Chinese Journal of Applied Ecology, 2022, 33 (3): 655-663.
|
[36] |
BREIMAN L. Bagging predictors. Machine Learning, 1996, 24(2): 123-140.
|
[37] |
HEINO J. Positive relationship between regional distribution and local abundance in stream insects: A consequence of niche breadth or niche position. Ecography, 2005, 28(3): 345-354. doi: 10.1111/j.0906-7590.2005.04151.x
|