Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
WANG G X, JING C Q, DONG P, QIN B Y. Distribution patterns of aboveground and underground biomass in desert grasslands in Xinjiang. Pratacultural Science, 2023, 40(5): 1201-1209 . DOI: 10.11829/j.issn.1001-0629.2022-0608
Citation: WANG G X, JING C Q, DONG P, QIN B Y. Distribution patterns of aboveground and underground biomass in desert grasslands in Xinjiang. Pratacultural Science, 2023, 40(5): 1201-1209 . DOI: 10.11829/j.issn.1001-0629.2022-0608

Distribution patterns of aboveground and underground biomass in desert grasslands in Xinjiang

More Information
  • Corresponding author:

    JING Changqing E-mail: jingchangqing@126.com

  • Received Date: July 29, 2022
  • Available Online: April 20, 2023
  • Published Date: May 14, 2023
  • The allocation of biomass in grassland ecosystems is essential for research on carbon storage and cycling in ecosystems. To explore the distribution patterns of aboveground and underground biomass of desert grasslands in Xinjiang, its distribution characteristics were analysed and evaluated. The results showed that: 1) Aboveground and underground biomass of desert grasslands ranged from 15.16 to 164.67 and 1109.50 to 3284.00 g·m−2, respectively. The root-shoot ratios ranged from 16.09 to 98.42. Therefore, the belowground biomass was greater than the aboveground biomass. 2) The power function relationship between aboveround and underground biomass in the desert grasslands was y = 535.35x0.2916 (R2 = 0.51, P < 0.01), and the slope of the fit (using logarithmic equation) was 0.45, which was significantly different from 1. Thus, an allometric growth relationship between the aboveground and underground biomass was established. 3) Approximately 76.05% of the total underground biomass of the desert grasslands is distributed at a soil depth of 0-50 cm, showing that most roots cluster in this upper layer of soil. Moreover, the distribution curve of underground biomass of the desert grasslands conforms to the power function. The study of biomass distribution patterns in desert grasslands is necessary to accurately assess desert grassland carbon stocks and develop a deeper understanding of the carbon cycle in dryland grasslands.
  • [1]
    SCHLESINGER W H. Carbon balance in terrestrial detritus. Annual Review of Ecology Evolution And Systematics, 1977, 8(2): 51-81.
    [2]
    WANG N, QUESADA B, XIA L L, BAHL B K, GOODALE L C, KIESE R. Effects of climate warming on carbon fluxes in grasslands: A global meta-analysis. Global Change Biology, 2019, 25(5): 1839-1851. doi: 10.1111/gcb.14603
    [3]
    孙金珂, 牛海鹏, 袁鸣. 中国陆地植被生态系统NPP空间格局变迁分析. 农业机械学报, 2020, 51(6): 162-168. doi: 10.6041/j.issn.1000-1298.2020.06.017

    SUN J K, NIU H P, YUAN M. Spatial pattern change and analysis of NPP in terrestrial vegetation ecosystem in China. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 162-168. doi: 10.6041/j.issn.1000-1298.2020.06.017
    [4]
    秦格霞, 芦倩, 孟治元, 李政, 陈泓羽, 孔婕, 吉珍霞, 秦安宁. 1982-2015年中国北方草地NDVI时空动态及其对气候变化的响应. 水土保持研究, 2021, 144(1): 101-108, 117.

    QIN G X, LU Q, MENG Z Y, LI Z, CHEN H Y, KONG J, JI Z X, QIN A N. Spatial-temporal dynamics of grassland NDVI and its response to climate change in northern China from 1982 to 2015. Research of Soil and Water Conservation, 2021, 144(1): 101-108, 117.
    [5]
    张雅, 尹小君, 王伟强, 汪传建, 鲁为华, 孙世泽, 高军. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算. 遥感技术与应用, 2017, 32(6): 1012-1021.

    ZHANG Y, YIN X J, WANG W Q, WANG C J, LU W H, SUN C Z, GAO J. Estimation of grassland aboveground biomass using landsat 8 OLI satellite image in the northern hillside of Tianshan mountain. Remote Sensing Technology and Application, 2017, 32(6): 1012-1021.
    [6]
    王敏, 苏永中, 杨荣, 杨晓. 黑河中游荒漠草地地上和地下生物量的分配格局. 植物生态学报, 2013, 37(3): 209-219. doi: 10.3724/SP.J.1258.2013.00021

    WANG M, SU Y Z, YANG R, YANG X. Allocation patterns of above- and below-ground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China. Chinese Journal of Plant Ecology, 2013, 37(3): 209-219. doi: 10.3724/SP.J.1258.2013.00021
    [7]
    聂秀青, 熊丰, 李长斌, 杨路存, 肖元明, 周国英. 青藏高原高寒灌丛生态系统草本层生物量分配格局. 生态学报, 2018, 38(18): 6664-6669.

    NIE X Q, XIONG F, LI C B, YANG L C, XIAO Y M, ZHOU G Y. Biomass allocation relationships in the grass layer in alpine shrubland ecosystems on the Tibetan plateau. Acta Ecologica Sinica, 2018, 38(18): 6664-6669.
    [8]
    宋鑫, 李微, 刘洪洋, 贾越平, 陈官滨, 陶韦, 刘长发. 双台子河口盐地碱蓬地上和地下生物量分配格局及其异速生长模型. 湿地科学, 2018, 16(6): 771-775. doi: 10.13248/j.cnki.wetlandsci.2018.06.012

    SONG X, LI W, LIU H Y, JIA Y P, CHEN G B, TAO W, LIU C F. Allocation pattern and allometric growth model of above and below ground biomass of Suaeda salsa in Shuangtaizi estuary. Wetland Science, 2018, 16(6): 771-775. doi: 10.13248/j.cnki.wetlandsci.2018.06.012
    [9]
    韩文轩, 方精云. 幂指数异速生长机制模型综述. 植物生态学报, 2008, 32(4): 951-960. doi: 10.3773/j.issn.1005-264x.2008.04.025

    HAN W X, FANG J Y. Review on the mechanism models of allometric scaling laws: 3/4 VS. 2/3 power. Chinese Journal of Plant Ecology, 2008, 32(4): 951-960. doi: 10.3773/j.issn.1005-264x.2008.04.025
    [10]
    徐满厚, 刘敏, 翟大彤, 薛娴, 彭飞, 尤全刚. 青藏高原高寒草甸生物量动态变化及与环境因子的关系: 基于模拟增温实验. 生态学报, 2016, 36(18): 5759-5767.

    XU M H, LIU M, ZHAI D T, XUE X, PENG F, YOU Q G. Dynamic changes in biomass and its relationship with environmental factors in an alpine meadow on the Qinghai-Tibetan plateau: Based on simulated warming experiments. Acta Ecologica Sinica, 2016, 36(18): 5759-5767.
    [11]
    闫帮国, 樊博, 何光熊, 史亮涛, 潘志贤, 李建查, 岳学文, 刘刚才. 干热河谷草本植物生物量分配及其对环境因子的响应. 应用生态学报, 2016, 27(10): 3173-3181. doi: 10.13287/j.1001-9332.201610.005

    YAN B G, FAN B, HE G X, SHI L T, PAN Z X, LI J C, YUE X C, LIU G C. Biomass allocations and their response to environmental factors for grass species in an aridhot valley. Chinese Journal of Applied Ecology, 2016, 27(10): 3173-3181. doi: 10.13287/j.1001-9332.201610.005
    [12]
    马文红, 方精云. 内蒙古温带草原的根冠比及其影响因素. 北京大学学报(自然科学版), 2006(6): 774-778. doi: 10.13209/j.0479-8023.2006.139

    MA W H, FANG J Y. Rbs ratios of temperate steppe and the environmental controls in Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006(6): 774-778. doi: 10.13209/j.0479-8023.2006.139
    [13]
    阿曼古力·马吾提, 罗军. 新疆草地退化原因及治理对策探究. 新疆畜牧业, 2019, 34(1): 37-39. doi: 10.16795/j.cnki.xjxmy.2019.1.007

    Amanguli·Mawuti, LUO J. Study on the causes of grassland degradation and control countermeasures in Xinjiang. Xinjiang Animal Husbandry, 2019, 34(1): 37-39. doi: 10.16795/j.cnki.xjxmy.2019.1.007
    [14]
    FALSTER D S, WETOBY M. Plant height and evolutionary games. Trends in Ecology & Evolution, 2003, 18(7): 337-343.
    [15]
    NIKLASI K J. Modelling below- and above-ground biomass for non-woody plants. Annals of Botany, 2005, 95(2): 315-321. doi: 10.1093/aob/mci028
    [16]
    WARTON D I, WRIGHT I J, FALSTER D S, WETOBY M. Bivariate line-fitting methods for allometry. Biological Reviews, 2006, 81(2): 259-291. doi: 10.1017/S1464793106007007
    [17]
    李学斌, 樊瑞霞, 刘学东. 中国草地生态系统碳储量及碳过程研究进展. 生态环境学报, 2014, 23(11): 1845-1851. doi: 10.3969/j.issn.1674-5906.2014.11.019

    LI X B, FAN R X, LIU X D. Advance in studies on carbon storage and carbon process in grassland ecosystem of China. Ecology and Environmental Sciences, 2014, 23(11): 1845-1851. doi: 10.3969/j.issn.1674-5906.2014.11.019
    [18]
    宇万太, 于永强. 植物地下生物量研究进展. 应用生态学报, 2001, 12(6): 927-932. doi: 10.3321/j.issn:1001-9332.2001.06.030

    YUN W T, YU Y Q. Advances in the research of underground biomass. Chinese Journal of Applied Ecology, 2001, 12(6): 927-932. doi: 10.3321/j.issn:1001-9332.2001.06.030
    [19]
    方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库. //王庚辰, 温玉璞, 编著. 温室气体浓度和排放监测及相关过程. 北京: 中国环境科学出版社, 1996: 109-128.

    FANG J Y, LIU G H, XU S L. Carbon pool of terrestrial ecosystems in China. WANG G C, WEN Y P (eds). Greenhouse Gas Concentration and Emission Monitoring and Related Processes. Beijing: China Environmental Science Press, 1996: 109-128.
    [20]
    NI J. Forage yield-based carbon storage in grasslands of China. Climatic Change, 2004, 67(2): 237-246.
    [21]
    马文红, 杨元合, 贺金生, 曾辉, 方精云. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学(C辑: 生命科学), 2008(1): 84-92.

    MA W H, YANG Y H, HE J S, ZENG H, FANG J Y. Biomass of temperate grassland in Inner Mongolia and its relationship with environmental factors. Scientia Sinica (Vitae), 2008(1): 84-92.
    [22]
    张杰, 张强, 何金梅, 孙冰. 荒漠草原牧草生物量的遥感估算及空间分布. 生态学报, 2007(6): 2294-2301. doi: 10.3321/j.issn:1000-0933.2007.06.019

    ZHANG J, ZHANG Q, HE J M, SUN B. Estimation and analysis of grass biomass in desert by remote sensing. Acta Ecologica Sinica, 2007(6): 2294-2301. doi: 10.3321/j.issn:1000-0933.2007.06.019
    [23]
    马安娜, 于贵瑞, 何念鹏, 王秋凤, 彭舜磊. 中国草地植被地上和地下生物量的关系分析. 第四纪研究, 2014, 34(4): 769-776. doi: 10.3969/j.issn.1001-7410.2014.04.09

    MA A N, YU G R, HE N P, WANG Q F, PENG S L. Above-and below-ground biomass relationships in China’s grassland vegetation. Quaternary Sciences, 2014, 34(4): 769-776. doi: 10.3969/j.issn.1001-7410.2014.04.09
    [24]
    方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花. 中国草地生态系统碳库及其变化. 中国科学(C辑: 生命科学), 2010(7): 566-576.

    FANG J Y, YANG Y H, MA W H, Anniwaer·Maimaiti, SHEN H H. Ecosystem carbon stocks and their changes in China’s grasslands. Scientia Sinica (Vitae), 2010(7): 566-576.
    [25]
    胡飞龙, 闫妍, 于丹丹, 卢晓强, 刘立, 刘志民. 内蒙古温带荒漠草原地上、地下生物量碳分配格局. 生态与农村环境学报, 2020, 36(2): 220-226. doi: 10.19741/j.issn.1673-4831.2019.0542

    HU F L, YAN Y, YU D D, LU X Q, LIU L, LIU Z M. Above-and below-ground biomass carbon allocation pattern in temperate desert steppe of Inner Mongolia, China. Journal of Ecology and Rural Environment, 2020, 36(2): 220-226. doi: 10.19741/j.issn.1673-4831.2019.0542
    [26]
    刘美, 马志良. 青藏高原东部高寒灌丛生物量分配对模拟增温的响应. 生态学报, 2021, 41(4): 1421-1430.

    LIU M, MA Z L. Responses of biomass allocation to simulated warming in an alpine scrubland of eastern Qinghai-Tibetan plateau. Acta Ecologica Sinica, 2021, 41(4): 1421-1430.
    [27]
    查向浩, 王泽, 刘耘华, 李瑞霞, 盛建东, 易海艳. 新疆西部天然草地生物量与根冠比特征. 新疆农业科学, 2018, 55(10): 1943-1951.

    CHA X H, WANG Z, LIU Y H, LI R X, SHENG J D, YI H Y. Study on the characteristics of biomass and root-shoot ratio of the main natural grassland types in western Xinjiang. Xinjiang Agricultural Sciences, 2018, 55(10): 1943-1951.
    [28]
    马维伟, 王辉, 李广, 石万里, 赵锦梅, 罗永忠, 聂志刚, 薛景文. 甘南尕海湿地退化过程中植被生物量变化及其季节动态. 生态学报, 2017, 37(15): 5091-5101.

    MA W W, WANG H, LI G, SHI W L, ZHAO J M, LUO Y Z, NIE Z G, XUE J W. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai wetland. Acta Ecologica Sinica, 2017, 37(15): 5091-5101.
    [29]
    陶韦. 辽河口潮滩湿地盐地碱蓬生长与生态化学计量学研究. 大连: 大连海洋大学硕士学位论文, 2016.

    TAO W. Study on growth ecological stoichiometry relation of Suaeda heteropterain Liaohe River estuary wetland. Master Thesis. Dalian: Dalian Ocean University, 2016.
    [30]
    WANG L, NIU K C, YANG Y H, ZHOU P. Patterns of above- and below-ground biomass allocation in China’s grasslands: Evidence from individual-level observations. Science China Life Sciences, 2010, 53(7): 851-857. doi: 10.1007/s11427-010-4027-z
    [31]
    杨元合. 青藏高原高寒草地生态系统碳氮储量. 北京: 北京大学博士学位论文, 2008.

    YANG Y H. Carbon and nitrogen reserves of alpine grassland ecosystem in Qinghai Tibet plateau. PhD Thesis. Beijing: Peking University, 2008.
    [32]
    程栋梁. 植物生物量分配模式与生长速率的相关规律研究. 兰州: 兰州大学博士学位论文, 2007.

    CHENG D L. Plant allometric study of biomass allocation pattern and biomass production rates. PhD Thesis. Lanzhou: Lanzhou University, 2007.
    [33]
    ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass partitioning in seed plants. Science, 2002, 295: 1517-1520. doi: 10.1126/science.1066360
    [34]
    李楠, 崔耀平, 张帅帅, 刘素洁, 付一鸣. 1990-2015年中国草原和荒漠草原的时空变化及其对温室气体的封存潜力. 草业科学, 2019, 36(2): 324-334.

    LI N, CUI Y P, ZHANG S S, LIU S J, FU Y M. A study of spatiotemporal changes in steppe ecosystems and their potential greenhouse gas sequestrations from 1990 to 2015. Pratacultural Science, 2019, 36(2): 324-334.
    [35]
    张磊, 吕光辉, 蒋腊梅, 腾德雄, 张仰, 李周康. 四种荒漠植物生物量分配对土壤因子的响应及异速生长分析. 广西植物, 2019, 39(9): 1201-1211. doi: 10.11931/guihaia.gxzw201812027

    ZHANG L, LYU G H, JIANG L M, TENG D X, ZAHNG Y, LI Z K. Response of four species of desert plant biomass distribution to soil factors and allometric growth analysis. Guihaia, 2019, 39(9): 1201-1211. doi: 10.11931/guihaia.gxzw201812027
  • Cited by

    Periodical cited type(3)

    1. 吴婷婷,潘虹,梁小春,马道承,罗家儒,王凌晖. 光氮互作对赤苍藤幼苗生长的影响. 热带农业科学. 2024(09): 27-34 .
    2. 董萍,井长青,王公鑫,邵玉庆. 新疆不同草地类型生物量与根冠比特征. 新疆农业大学学报. 2023(05): 352-358 .
    3. 袁明龙,王玉祥,张博,蒋平安. 新疆草原生态保护与草业高质量发展. 草业科学. 2023(05): 1135-1139 . 本站查看

    Other cited types(2)

Catalog

    Article views (841) PDF downloads (20) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return