Citation: | ZANG H, BI X J, HE J Y, LIN C, ZHANG Q, ZHANG Y W. Regulation mechanism of HIPPs in response to heavy metal stress in plants. Pratacultural Science, 2023, 40(9): 2276-2291. DOI: 10.11829/j.issn.1001-0629.2022-0574 |
Heavy-metal-associated isoprenylated plant proteins (HIPPs) are characteristic proteins of vascular plants that contain two kinds of conserved structures, including heavy-metal-associated (HMA) domains and C-terminal isoprenylation sites (CaaX motifs). HIPPs play essential roles in plant responses to biotic and abiotic stresses. In this review, we analyzed the structural characteristics of HIPPs, and their evolutionary relationships, together with their classification characteristics for different species, and explored the subcellular locations of HIPPs and the expression patterns of HIPP genes under different heavy metal stresses. We also explored the functions and regulatory mechanisms of different HIPPs in response to heavy metal stress in Arabidopsis thaliana, Oryza sativa, and other species. Furthermore, we reviewed the relationship between the structural classifications of HIPPs and their responses to heavy metal stress in order to provide a theoretical basis for the functional identification and evaluation of the mechanism of HIPPs in other species in response to heavy metal stresses. Studying the stress resistance of grass is of great significance for improving the ecological environment. It is important to explore and identify the function of grass HIPPs, which will help to unveil the internal regulation network of grass responses to stress.
[1] |
SHAHID M, XIONG T, MASOOD N, LEVEQUE T, QUENEA K, AUSTRUY A, FOUCAULT Y, DUMAT C. Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: A case study of food-chain contamination. Journal of Soils and Sediments, 2014, 14(4): 655-665. doi: 10.1007/s11368-013-0745-8
|
[2] |
CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 2016, 67(1): 489-512. doi: 10.1146/annurev-arplant-043015-112301
|
[3] |
HEO D H, BAEK I J, KANG H J, KIM J H, CHANG M, KANG C M, YUN C W. Cd2+ binds to Atx1 and affects the physical interaction between Atx1 and Ccc2 in Saccharomyces cerevisiae. Biotechnology Letters, 2012, 34(2): 303-307. doi: 10.1007/s10529-011-0763-9
|
[4] |
COBINE P, WICKRAMASINGHE W A, HARRISON M D, WEBER T, SOLIOZ M, DAMERON C T. The Enterococcus hirae copper chaperone CopZ delivers copper (I) to the CopY repressor. FEBS Letters, 1999, 445(1): 27-30. doi: 10.1016/S0014-5793(99)00091-5
|
[5] |
COBINE P A, GEORGE G N, JONES C E, WICKRAMASINGHE W A, SOLIOZ M, DAMERON C T. Copper transfer from the Cu (I) chaperone, CopZ, to the repressor, Zn (II) CopY: Metal coordination environments and protein interactions. Biochemistry, 2002, 41(18): 5822-5829. doi: 10.1021/bi025515c
|
[6] |
TEHSEEN M, CAIRNS N, SHERSON S, COBBETT C S. Metallochaperone-like genes in Arabidopsis thaliana. Metallomics, 2010, 2(8): 556-564. doi: 10.1039/c003484c
|
[7] |
XIAO C, XIN H, DONG A W, SUN C R, CAO K M. A novel calmodulin-like protein gene in rice which has an unusual prolonged C-terminal sequence carrying a putative prenylation site. DNA Research, 1999, 6(3): 179-181. doi: 10.1093/dnares/6.3.179
|
[8] |
CROWELL D N. Functional implications of protein isoprenylation in plants. Progress in Lipid Research, 2000, 39(5): 393-408. doi: 10.1016/S0163-7827(00)00010-2
|
[9] |
MA L L, AN R, JIANG L, ZHANG C, LI Z L, ZOU C Y, YANG C, PAN G T, LÜBBERSTEDT T, SHEN Y O. Effects of ZmHIPP on lead tolerance in maize seedlings: Novel ideas for soil bioremediation. Journal of Hazardous Materials, 2022, 430: 128457. doi: 10.1016/j.jhazmat.2022.128457
|
[10] |
HUNG I H, CASARENO R L B, LABESSE G, MATHEWS F S, GITLIN J D. HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. Journal of Biological Chemistry, 1998, 273(3): 1749-1754. doi: 10.1074/jbc.273.3.1749
|
[11] |
DYKEMA P E, SIPES P R, MARIE A, BIERMANN B J, CROWELL D N, RANDALL S K. A new class of proteins capable of binding transition metals. Plant Molecular Biology, 1999, 41(1): 139-150. doi: 10.1023/A:1006367609556
|
[12] |
HARRISON M D, JONES C E, SOLIOZ M, DAMERON C T. Intracellular copper routing: the role of copper chaperones. Trends in Biochemical Sciences, 2000, 25(1): 29-32. doi: 10.1016/S0968-0004(99)01492-9
|
[13] |
GALICHET A, GRUISSEM W. Protein farnesylation in plants-conserved mechanisms but different targets. Current Opinion in Plant Biology, 2003, 6(6): 530-535. doi: 10.1016/j.pbi.2003.09.005
|
[14] |
GORITSCHNIG S, WEIHMANN T, ZHANG Y L, FOBERT P, MCCOURT P, LI X. A novel role for protein farnesylation in plant innate immunity. Plant Physiology, 2008, 148(1): 348-357. doi: 10.1104/pp.108.117663
|
[15] |
李颖波. 簇毛麦Hv-CMPG1互作蛋白基因HvHIPP1的克隆及其在抗白粉病中的功能分析. 南京: 南京农业大学博士学位论文, 2014.
LI Y B. Identification of a Hv-CMPG1 interaction protein HvHIPP1 from Haynaldia villosa L. and its functional analysis in powdery mildew resistance. PhD Thesis. Nanjing: Nanjing Agricultural University, 2014.
|
[16] |
COWAN G H, ROBERTS A G, JONES S, KUMAR P, KALYANDURG P B, GIL J F, SAVENKOV E I, HEMSLEY P A, TORRANCEA L. Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement. Plant Physiology, 2018, 176(3): 2052-2070. doi: 10.1104/pp.17.01698
|
[17] |
张常旭. 菠菜SpoHIPP39基因的克隆及其逆境应答. 哈尔滨: 东北农业大学硕士学位论文, 2019.
ZHANG C X. Cloning of spinach SpoHIPP39 gene and its stress response. Master Thesis. Harbin: Northeast Agricultural University, 2019.
|
[18] |
NAKAO M, NAKAMURA R, KITA K, INUKAI R, ISHIKAWA A. Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Scientific Reports, 2011, 1(1): 171. doi: 10.1038/srep00171
|
[19] |
SUZUKI N, YAMAGUCHI Y, KOIZUMI N, SANO H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. The Plant Journal, 2002, 32(2): 165-173. doi: 10.1046/j.1365-313X.2002.01412.x
|
[20] |
FUKUOKA S, SAKA N, KOGA H, ONO K, SHIMIZU T, EBANA K, HAYASHI N, TAKAHASHI A, HIROCHIKA H, OKUNO K, YANO M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998-1001. doi: 10.1126/science.1175550
|
[21] |
BARTH O, VOGT S, UHLEMANN R, ZSCHIESCHE W, HUMBECK K. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Molecular Biology, 2009, 69(1-2): 213-226. doi: 10.1007/s11103-008-9419-0
|
[22] |
DE ABREU-NETO J B, TURCHETTO-ZOLET A C, DE OLIVEIRA L F V, ZANETTINI M H B, MARGIS-PINHEIRO M. Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. The FEBS Journal, 2013, 280(7): 1604-1616. doi: 10.1111/febs.12159
|
[23] |
ZHANG H, ZHANG X, LIU J, NIU Y, CHEN Y M, HAO Y L, ZHAO J, SUN L, WANG H Y, XIAO J, WANG X E. Characterization of the heavy-metal-associated isoprenylated plant protein (HIPP) gene family from Triticeae species. International Journal of Molecular Sciences, 2020, 21(17): 6191. doi: 10.3390/ijms21176191
|
[24] |
KHAN I U, RONO J K, ZHANG B Q, LIU X S, WANG M Q, WANG L L, WU X C, CHEN X, CAO H W, YANG Z M. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotoxicology and Environmental Safety, 2019, 175: 8-18. doi: 10.1016/j.ecoenv.2019.03.040
|
[25] |
NIU M Y, BAO C J, ZHAN J Y, YUE X M, ZOU J W, SU N N, CUI J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. Ecotoxicology and Environmental Safety, 2021, 227: 112920. doi: 10.1016/j.ecoenv.2021.112920
|
[26] |
郑巧玲. 欧洲葡萄VvHOS1互作蛋白VvHIPP21响应逆境胁迫的功能分析. 银川: 宁夏大学硕士学位论文, 2021.
ZHENG Q L. Functional analysis of VvHOS1-interacting protein VvHIPP21 in stress resistance in Vitis vinifera. Master Thesis. Yinchuan: Ningxia University, 2021.
|
[27] |
RADAKOVIC Z S, ANJAM M S, ESCOBAR E, CHOPRA D, CABRERA J, SILVA A C, ESCOBAR C, SOBCZAK M, GRUNDLER F M W, SIDDIQUE S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. Molecular Plant Pathology, 2018, 19(8): 1917-1928. doi: 10.1111/mpp.12668
|
[28] |
GUO T Q, WEBER H, NIEMANN M C E, THEISL L, LEONTE G, NOVÁK O, WERNER T. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. Molecular Plant, 2021, 14(11): 1918-1934. doi: 10.1016/j.molp.2021.07.015
|
[29] |
ZSCHIESCHE W, BARTH O, DANIEL K, BӧHME S, RAUSCHE J, HUMBECK K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytologist, 2015, 207(4): 1084-1096. doi: 10.1111/nph.13419
|
[30] |
HÁLA M, ŽÁRSKÝ V. Protein prenylation in plant stress responses. Molecules, 2019, 24(21): 3906. doi: 10.3390/molecules24213906
|
[31] |
ZHAO J F, ZHOU H P, LI X Y. UBIQUITIN-SPECIFIC PROTEASE16 interacts with a HEAVY METAL ASSOCIATED ISOPRENYLATED PLANT PROTEIN27 and modulates cadmium tolerance. Plant Signaling and Behavior, 2013, 8(10): e25680. doi: 10.4161/psb.25680
|
[32] |
ZHANG P, WANG R L, JU Q, LI W Q, TRAN L S P, XU J. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiology, 2019, 180(1): 529-542. doi: 10.1104/pp.18.01380
|
[33] |
GAO W, XIAO S, LI H Y, TSAO S W, CHYE M L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytologist, 2009, 181(1): 89-102. doi: 10.1111/j.1469-8137.2008.02631.x
|
[34] |
WU Z M, LIU D, YUE N Y, SONG H X, LUO J S, ZHANG Z H. PDF1.5 enhances adaptation to low nitrogen levels and cadmium stress. International Journal of Molecular Sciences, 2021, 22(19): 10455. doi: 10.3390/ijms221910455
|
[35] |
SUZUKI N, KOIZUMI N, SANO H. Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell and Environment, 2001, 24(11): 1177-1188. doi: 10.1046/j.1365-3040.2001.00773.x
|
[36] |
ZHANG B Q, LIU X S, FENG S J, ZHAO Y N, WANG L L, RONO J K, LI H, YANG Z M. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 2020, 247: 125958. doi: 10.1016/j.chemosphere.2020.125958
|
[37] |
KHAN I U, RONO J K, LIU X S, FENG S J, LI H, CHEN X, YANG Z M. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. Journal of Cleaner Production, 2020, 272: 123152. doi: 10.1016/j.jclepro.2020.123152
|
[38] |
CAO H W, LI C, ZHANG B Q, RONO J K, YANG Z M. A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity. Agronomy, 2022, 12(2): 488. doi: 10.3390/agronomy12020488
|
[39] |
ZHAO Y N, WANG M Q, LI C, CAO H W, RONO J K, YANG Z M. The metallochaperone OsHIPP56 gene is required for cadmium detoxification in rice crops. Environmental and Experimental Botany, 2022, 193: 104680. doi: 10.1016/j.envexpbot.2021.104680
|
[40] |
WANG B X, ZHANG M M, ZHANG J, HUANG L P, CHEN X, JIANG M Y, TAN M P. Profiling of rice Cd-tolerant genes through yeast-based cDNA library survival screening. Plant Physiology and Biochemistry, 2020, 155: 429-436. doi: 10.1016/j.plaphy.2020.07.046
|
[41] |
CHENG D, TAN M P, YU H J, LI L, ZHU D D, CHEN Y H, JIANG M Y. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics, 2018, 19(1): 709. doi: 10.1186/s12864-018-5109-8
|
[42] |
BARTH O, ZSCHIESCHE W, SIERSLEBEN S, HUMBECK K. Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiologia Plantarum, 2004, 121(2): 282-293. doi: 10.1111/j.0031-9317.2004.00325.x
|
[43] |
VILLAO L, SÁNCHEZ E, ROMERO C, GALARZA L, FLORES J, SANTOS-ORDÓñEZ E. Activity characterization of the plantain promoter from the heavy metal-associated isoprenylated plant gene (MabHIPP) using the luciferase reporter gene. Plant Gene, 2019, 19: 100187. doi: 10.1016/j.plgene.2019.100187
|
[44] |
LI C, WANG L L, WU J T, BLAMEY F P C, WANG N N, CHEN Y L, YE Y, WANG L, PATERSON D J, READ T L, WANG P, LOMBI E, WANG Y H, KOPITTKE P M. Translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Frontiers in Plant Science, 2022, 13: 757048. doi: 10.3389/fpls.2022.757048
|
[45] |
FU Y Z, ZHATOVA H, LI Y Q, LIU Q, TROTSENKO V, LI C Q. Physiological and transcriptomic comparison of two sunflower (Helianthus annuus L.) cultivars with high/low cadmium accumulation. Frontiers in Plant Science, 2022, 13: 854386. doi: 10.3389/fpls.2022.854386
|
[46] |
ZHANG F G, XIN X, YAN G X, HU J H, CHENG X, LI L X, LI H G, WU X M. Association mapping of cadmium-tolerant QTLs in Brassica napus L. and insight into their contributions to phytoremediation. Environmental and Experimental Botany, 2018, 155: 420-428. doi: 10.1016/j.envexpbot.2018.07.014
|
[47] |
ZHANG F G, XIAO X, XU K, CHENG X, XIE T, HU J H, WU X M. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics, 2020, 21(1): 139. doi: 10.1186/s12864-020-6558-4
|
[48] |
王琪, 许志茹, 陈瑾元, 张双, 黄佳欢, 刘关君. 杨树重金属相关异戊二烯化植物蛋白(HIPPs)基因的鉴定及表达分析. 植物研究, 2019, 39(6): 935-946.
WANG Q, XU Z R, CHEN J Y, ZHANG S, HUANG J H, LIU G J. Identification and expression analysis of heavy metal-associated isoprenylated plant proteins (HIPPs) genes in Populus. Bulletin of Botanical Research, 2019, 39(6): 935-946.
|
[49] |
WANG Y Z, MENG Y, MU S J, YAN D, XU X B, ZHANG L, XU B. Changes in phenotype and gene expression under lead stress revealed key genetic responses to lead tolerance in Medicago sativa L. Gene, 2021, 791(1): 145714.
|
[50] |
ZHANG X, FENG H, FENG C, XU H, HUANG X, WANG Q, DUAN X, WANG X, WEI G, HUANG L, KANG Z. Isolation and characterisation of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. Plant Biology, 2015, 17(6): 1176-1186. doi: 10.1111/plb.12344
|
[51] |
裴晨铃. 小麦候选感病基因TaHIPP1的功能分析. 杨凌: 西北农林科技大学硕士学位论文, 2018.
PEI C L. The functional analysis of candidates-gene TaHIPP1. Master Thesis. Yangling: Northwest Agriculture and Forestry University, 2018.
|
[52] |
鲁振强, 王锦霞, 董大鹏, 张司扬, 刘大丽. 镉逆境胁迫下甜菜BvHIPP24基因在大肠杆菌的功能分析. 中国糖料, 2019, 41(4): 6-10.
LU Z Q, WANG J X, DONG D P, ZHANG S Y, LIU D L. Functional analysis of Beta vulgaris BvHIPP24 in E. coli under cadmium stress. Sugar Crops of China, 2019, 41(4): 6-10.
|
[53] |
高卓, 谭义雯, 魏多, 王锦霞, 汪曼, 周婉婷, 刘大丽, 鲁振强. 能源甜菜BvHIPP24基因的特性及在酵母中的镉耐受功能分析. 中国农学通报, 2021, 37(21): 126-133.
GAO Z, TAN Y W, WEI D, WANG J X, WANG M, ZHOU W T, LIU D L, LU Z Q. BvHIPP24 characterization of energy beet and its function analysis in yeast under cadmium stress. Chinese Agricultural Science Bulletin, 2021, 37(21): 126-133.
|
[54] |
KABIR A H, DAS U, RAHMAN M A, LEE K W. Silicon induces metallochaperone-driven cdmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. Physiologia Plantarum, 2021, 173(1): 352-368.
|
[55] |
MANARA A, FASANI E, MOLESINI B, DALCORSO G, PENNISI F, PANDOLFINI T, FURINI A. The tomato metallocarboxypeptidase inhibitor I, which interacts with a heavy metal-associated isoprenylated protein, is implicated in plant response to cadmium. Molecules, 2020, 25(3): 700. doi: 10.3390/molecules25030700
|
[56] |
崔楠. CRISPR/Cas9技术编辑大豆GmHIPP26基因及其镉胁迫功能研究. 杭州: 浙江大学硕士学位论文, 2021.
CUI N. Editing GmHIPP26 gene by CRISPR/Cas9 and its function under cadmium stress in soybean (Glycine max L.). Master Thesis. Hangzhou: Zhejiang University, 2021.
|
[57] |
张培红, 张仕泽, 张治远, 李明悦, 刘奕君, 张雪洁, 白宁宁, 马敏, 彭佳师. 伴矿景天SpHIPP45基因特异介导镉耐受性. 植物生理学报, 2022, 58(7): 1346-1352.
ZHANG P H, ZHANG S Z, ZHANG Z Y, LI M Y, LIU Y J, ZHANG X J, BAI N N, MA M, PENG J S. SpHIPP45 gene from Sedum plumbizincicola specifically mediates cadmium tolerance. Plant Physiology Journal, 2022, 58(7): 1346-1352.
|
[58] |
ZHANG Y Y, CHEN K, ZHAO F J, SUN C J, JIN C, SHI Y H, SUN Y Y, LI Y, YANG M, JING X Y, LUO J, LIAN X M. OsATX1 interacts with heavy metal P1B-type ATPases and affects copper transport and distribution. Plant Physiology, 2018, 178(1): 329-344. doi: 10.1104/pp.18.00425
|