Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
HAN D Y, LI Y B, JU Z X. Microstructure and tensile properties of leaves of six Carex species. Pratacultural Science, 2023, 40(8): 2082-2090. DOI: 10.11829/j.issn.1001-0629.2022-0490
Citation: HAN D Y, LI Y B, JU Z X. Microstructure and tensile properties of leaves of six Carex species. Pratacultural Science, 2023, 40(8): 2082-2090. DOI: 10.11829/j.issn.1001-0629.2022-0490

Microstructure and tensile properties of leaves of six Carex species

More Information
  • Corresponding author:

    JU Zhixin E-mail: 59393770@qq.com

  • Received Date: June 12, 2022
  • Accepted Date: November 25, 2022
  • Available Online: July 12, 2023
  • Carex leaves provide high-quality natural fiber. Studying the tensile properties and microstructure of Carex leaves can provide a theoretical basis for understanding the development and use of Carex leaves. In this study, the leaves of six species of Carex were taken as the object, their mechanical properties were tested with an electronic tensile testing machine, the microstructure was observed via the paraffin section method, and the relationship between mechanical properties and microstructure was analyzed. The maximum tension and elastic modulus were found in the decreasing order of C. arnellii > C. leiorhyncha > C. lanceolata > C. meyeriana > C. humilis > C. callitrichos var. nana; the tensile strength was in the decreasing order of C. humilis > C. callitrichos var. nana > C. leiorhyncha > C. arnellii > C. meyeriana > C. lanceolate. All the six species of Carex had isolateral leaves, and the leaves were composed of epidermis, basic parenchyma, sclerenchyma, and vascular bundles. The maximum tension and elastic modulus were positively correlated with the number of vascular bundles, thickness, and layers of the sclerenchyma cells (P < 0.01). A significant positive correlation was found between the tensile strength and vascular bundle density of leaves ( P < 0.01). In conclusion, the number of vascular bundles and the degree of thick-walled mechanical structure are important factors determining the maximum tensile strength and elastic modulus of the leaves of six Carexspp. vascular bundle density is an important factor determining the tensile strength of the leaves of six Carexspp. The tensile strength of C. humilis was the highest, and the deformation resistance of C. arnellii was the strongest. In future studies of Carexspp., these findings should be further integrated with other related morphological, physiological, and biochemical indicators to lay a foundation for future screening and adaptability research on Carex plants.

  • [1]
    刘庆庭, 区颖刚, 卿上乐, 王万章. 农作物茎秆的力学特性研究进展. 农业机械学报, 2007(7): 172-176.

    LIU Q T, QU Y G, QING S L, WANG W Z. Study progress on mechanics properties of crop stalks. Transactions of the Chinese Society for Agricultural Machinery, 2007(7): 172-176.
    [2]
    李红波, 薛晋霞, 王炳轩, 张燕青, 武新慧, 李晓斌, 崔清亮, 杨作梅. 谷子茎秆叶鞘叶片及其结合部位的拉伸力学性能. 农业工程学报, 2020, 36(18): 11-17. doi: 10.11975/j.issn.1002-6819.2020.18.002

    LI H B, XUE J X, WANG B X, ZHANG Y Q, WU X H, LI X B, CUI Q L, YANG Z M. Tensile properties of foxtail millet leaf sheath, leaf and leaf collar. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 11-17. doi: 10.11975/j.issn.1002-6819.2020.18.002
    [3]
    陈斌, 刘筱玮, 贾琳, 李子葳, 杨宇佳, 岳莉然, 何淼. 不同光强对4种鸭跖草科植物茎秆性状和力学特征的影响. 草业学报, 2021, 30(12): 103-116. doi: 10.11686/cyxb2020466

    CHEN B, LIU X W, JIA L, LI Z W, YANG Y J, YUE L R, HE M. Effects of different light intensities on stem characters and mechanical traits of four Commelinaceae plants. Acta Prataculturae Sinica, 2021, 30(12): 103-116. doi: 10.11686/cyxb2020466
    [4]
    李小城. 收获期小麦茎秆力学特性参数的试验研究. 武汉: 华中农业大学硕士学位论文, 2012.

    LI X C. Experomental research on the mechanical physical parameters of wheat stalks in havesting period. Master Thesis. Wuhan: Huazhong Agricultural University, 2012.
    [5]
    吴良, 赵运林, 张梅清, 徐正刚, 何锐, 王双业, 郭志萍. 洞庭湖短尖苔草不同部位营养成分含量分析. 现代农业科技, 2016(3): 305-307. doi: 10.3969/j.issn.1007-5739.2016.03.178

    WU L, ZHAO Y L, ZHANG M Q, XU Z G, HE R, WANG S Y, GUO Z P. Analysis on nutritional content in different part of Carex brevicuspis in Dongting Lake. Modern Agricultural Science and Technology, 2016(3): 305-307. doi: 10.3969/j.issn.1007-5739.2016.03.178
    [6]
    朱振伟, 张开飞, 李赫, 张红梅. 玉米秸秆力学特性的研究. 江苏农业科学, 2017, 45(12): 178-181. doi: 10.15889/j.issn.1002-1302.2017.12.047

    ZHU Z W, ZHANG K F, LI H, ZHANG H M. Study on mechanical properties of corn straw. Jiangsu Agricultural Sciences, 2017, 45(12): 178-181. doi: 10.15889/j.issn.1002-1302.2017.12.047
    [7]
    柴晓娟, 苏燕, 陈慧, 郭玮龙, 金水虎. 蔺草底部茎秆解剖构造与力学性能. 浙江农林大学学报, 2016, 33(6): 1058-1066. doi: 10.11833/j.issn.2095-0756.2016.06.019

    CHAI X J, SU Y, CHEN H, GUO W L, JIN S H. Anatomical structure and mechanical properties from stem bottoms of Juncus effusus. Journal of Zhejiang A & F University, 2016, 33(6): 1058-1066. doi: 10.11833/j.issn.2095-0756.2016.06.019
    [8]
    赵春花, 韩正晟, 师尚礼, 张锋伟. 新育牧草茎秆收获期力学特性与显微结构. 农业工程学报, 2011, 27(8): 179-183. doi: 10.3969/j.issn.1002-6819.2011.08.030

    ZHAO C H, HAN Z S, SHI S L, ZHANG F W. Mechanical properties and microstructure of new species forage stems in harvesting period. Transactions of the Chinese Society for Agricultural Machinery, 2011, 27(8): 179-183. doi: 10.3969/j.issn.1002-6819.2011.08.030
    [9]
    王芬娥, 黄高宝, 郭维俊, 张锋伟, 吴建民, 赵多佳. 小麦茎秆力学性能与微观结构研究. 农业机械学报, 2009, 40(5): 92-95.

    WANG F E, HUANG G B, GUO W J, ZHANG F W, WU J M, ZHAO D J. Mechanical properties and micro-structure of wheat stems. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(5): 92-95.
    [10]
    李秀娟, 梁云虹, 张志辉, 任露泉. 杨树叶片的微观结构及拉伸特性. 吉林大学学报(工学版), 2012, 42(S1): 440-443. doi: 10.13229/j.cnki.jdxbgxb2012.s1.008

    LI X J, LIANG Y H, ZHANG Z H, REN L Q. Microstructure and tensile property of popla Ponulus hopeiensis leaves. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(S1): 440-443. doi: 10.13229/j.cnki.jdxbgxb2012.s1.008
    [11]
    蒋坤云, 陈丽华, 盖小刚, 杨苑君. 华北护坡阔叶树种根系抗拉性能与其微观结构的关系. 农业工程学报, 2013, 29(3): 115-123.

    JIANG K Y, CHEN L H, GAI X G, YANG Y J. Relationship between tensile properties and microstructures of threedifferent broadleaf tree roots in North China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 115-123.
    [12]
    耿新. 中国薹草属密花薹草组(莎草科)的分类研究. 杭州: 杭州师范大学硕士学位论文, 2018.

    GENG X. Taxonomic studies on Carex sect. Confertiflorae (Cyperaceae) from China. Master Thesis. Hangzhou: Hangzhou Normal University, 2018.
    [13]
    戴伦凯, 梁松筠. 中国植物志(第十二卷). 北京: 科学出版社, 2000.

    DAI L K, LIANG S Y. Flora of China (Vol 12). Beijing: Science Press, 2000.
    [14]
    冷建红, 楼炉焕, 魏琦, 刘彬彬. 薹草属植物研究进展及园林应用前景研究. 北方园艺, 2011(6): 196-201.

    LENG J H, LOU L H, WEI Q, LIU B B. Research prograss of Carex and its application to landscape. Northern Horticulture, 2011(6): 196-201.
    [15]
    杨文斌, 章翔. 刈割弯囊苔草对生活污水净化效果影响. 生态学杂志, 2013, 32(9): 2418-2423. doi: 10.13292/j.1000-4890.2013.0335

    YANG W B, ZHANG X. Effects of cutting intensity on Carex dispalata growth and its sewage purification efficiency. Chinese Journal of Ecology, 2013, 32(9): 2418-2423. doi: 10.13292/j.1000-4890.2013.0335
    [16]
    周淑荣, 董昕瑜, 包秀芳, 郭文场, 刘佳贺, 段维和. 中国东北地区乌拉草资源及开发利用. 特种经济动植物, 2013, 16(6): 37-40. doi: 10.3969/j.issn.1001-4713.2013.06.017

    ZHOU S R, DONG X Y, BAO X F, GUO W C, LIU J H, DUAN W H. Development and utilization of Carex meyeriana resources in Northeast China. Special Economic Animals and Plants, 2013, 16(6): 37-40. doi: 10.3969/j.issn.1001-4713.2013.06.017
    [17]
    吉文丽, 朱清科, 李卫忠, 姚爱静. 苔草植物分类、利用及物质循环研究进展. 草业科学, 2006(2): 15-21. doi: 10.3969/j.issn.1001-0629.2006.02.004

    JI W L, ZHU Q K, LI W Z, YAO A J. Review of studies on the classification, application and material cycle of plants in genus Carex. Pratacultural Science, 2006(2): 15-21. doi: 10.3969/j.issn.1001-0629.2006.02.004
    [18]
    BRUCE F, MAHMOOD I, ROBERT N, JULIAN S, CHERYL J. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. Systematic Botany, 2006, 31(1): 70-82. doi: 10.1600/036364406775971813
    [19]
    张昆, 李明娜, 曹世豪, 孙彦. 白颖苔草对不同浓度NaCl胁迫的响应及其耐盐阈值. 草业科学, 2017, 34(3): 479-487.

    ZHANG K, LI M N, CAO S H, SUN Y. Response of Carex rigescens to different NaCl concentrations and its salinity threshold calculation. Pratacultural Science, 2017, 34(3): 479-487.
    [20]
    梁芳, 董爱香, 马燕. 北京野生苔草属植物资源调查及观赏性状评价. 草业科学, 2012, 29(5): 710-716.

    LIANG F, DONG A X, MA Y. Resource survey of wild Carex plants and evaluation of their ornamental characteristics in Beijing, Pratacultural Science, 2012, 29(5): 710-716.
    [21]
    张宁. 谷子叶片拉伸及撕裂力学特性试验研究. 农业技术与装备, 2018(10): 81-83. doi: 10.3969/j.issn.1673-887X.2018.10.036

    ZHANG N. Experimental study on tensile and tearing mechanical properties of millet leaves. Agricultural Technology & Equipment, 2018(10): 81-83. doi: 10.3969/j.issn.1673-887X.2018.10.036
    [22]
    杨洁, 凌玲玲, 胡江琴, 金水虎, 金孝锋. 薹草属菱形果薹草组9种植物叶片的解剖学研究. 浙江大学学报(农业与生命科学版), 2012, 38(2): 139-146.

    YANG J, LING L L, HU J Q, JIN S H, JIN X F. Leaf anatomy of nine species in Carex sect. Rhomboidales (Cyperaeeae). Journal of Zhejiang University (Agricultural and Life Science Edition), 2012, 38(2): 139-146.
    [23]
    余克娇. 乌拉草化学成分和药理作用的初步研究. 沈阳: 沈阳药科大学硕士学位论文, 2005.

    YU K J. Preliminary study on chemical constituents and pharmacological action of Carex meyeriana. Master Thesis. Shenyang: Shenyang Pharmaceutical University, 2005.
    [24]
    陈春侠, 王曙东, 杜梅, 张国兵. 乌拉草纤维的制备及其结构性能. 棉纺织技术, 2017, 45(12): 5-8.

    CHEN C X, WANG S D, DU M, ZHANG G B. Preparation of meyer sedge fiber and its structural property. Cotton Textile Technology, 2017, 45(12): 5-8.
    [25]
    袁晓颖. 黑龙江省苔草属植物资源. 国土与自然资源研究, 1989(4): 78-79. doi: 10.16202/j.cnki.tnrs.1989.04.023

    YUAN X Y. Carex plant resources in Heilongjiang Province. Territory& Natural Resources Study, 1989(4): 78-79. doi: 10.16202/j.cnki.tnrs.1989.04.023
    [26]
    修娜, 吉文丽, 张杨. 秦岭野生苔草植物资源及坪用价值. 草业科学, 2011, 28(7): 1253-1258.

    XIU N, JI W L, ZHANG Y. Wild resource of Carex genus in the Qinling areas and their turf charateristics. Pratacultural Science, 2011, 28(7): 1253-1258.
    [27]
    夏星, 汤寓涵, 陶俊, 赵大球. 观赏植物茎秆强度形成及其调控. 植物生理学报, 2018, 54(3): 347-354. doi: 10.13592/j.cnki.ppj.2018.0037

    XIA X, TANG Y H, TAO J, ZHAO D Q. Formation and regulation of ornamental plant stem strength. Plant Physiology Journal, 2018, 54(3): 347-354. doi: 10.13592/j.cnki.ppj.2018.0037
    [28]
    姚珺. 芒草茎秆切割性能试验研究. 长沙: 湖南农业大学硕士学位论文, 2013.

    YAO J. Experiment study of the performance on the Miscanthus cutting. Master Thesis. Changsha: Hunan Agricultural University, 2013.
    [29]
    段传人, 王伯初, 王凭青. 水稻茎秆的结构及其性能的相关性. 重庆大学学报(自然科学版), 2003(11): 38-40.

    DUAN C R, WANG B C, WANG P Q. The relationship between the structure and the property of rice stem, Journal of Chongqing University (Natural Science Edition), 2003(11): 38-40.
    [30]
    尚莉莉. 毛竹维管束的形态特征及拉伸力学性能研究. 北京: 中国林业科学研究院硕士学位论文, 2011.

    SHANG L L. The research of morphology and tensile mechanical properties of MOSO bamboo vascular bundle. Master Thesis. Beijing. Chinese Academy of Forestry, 2011.
    [31]
    赵琳, 刘爱青, 张嘉, 韩靖, 刘燕. 设施栽培芍药茎秆直立性研究. 浙江农业学报, 2015, 27(5): 769-775. doi: 10.3969/j.issn.1004-1524.2015.05.11

    ZHAO L, LIU A Q, ZHANG J, HAN J, LIU Y. Study on the stem orthostatic performance of Paeonia lactiflora under facility cultivation. Acta Agriculturae Zhejiangensis, 2015, 27(5): 769-775. doi: 10.3969/j.issn.1004-1524.2015.05.11
    [32]
    周爱萍, 黄东升, 车慎思, 张培端. 竹材维管束分布及其抗拉力学性能. 建筑材料学报, 2012, 15(5): 730-734. doi: 10.3969/j.issn.1007-9629.2012.05.028

    ZHOU A P, HUANG D S, CHE S S, ZHANG P D. Distribution of vascular bundles of bamboo and its tensile mechanical performances. Journal of Building Materials, 2012, 15(5): 730-734. doi: 10.3969/j.issn.1007-9629.2012.05.028
    [33]
    张西良, 孙晓佳, 徐云峰, 李萍萍, 郭茜, 张世庆. 黄瓜藤秸秆力学特性与显微结构研究. 农机化研究, 2014, 36(4): 156-159. doi: 10.3969/j.issn.1003-188X.2014.04.037

    ZHANG X L, SUN X J, XU Y F, LI P P, GUO X, ZHANG S Q. Mechanical characteristics and microstructure of cucumber vine straw. Journal of Agricultural Mechanization Research, 2014, 36(4): 156-159. doi: 10.3969/j.issn.1003-188X.2014.04.037
    [34]
    冯国建, 凌祯, 肖桂英. 黄茅根系单根拉伸试验分析. 安徽林业科技, 2019, 45 (3): 15-17, 21.

    FENG G J, LING Z, XIAO G Y, Analysis on the single- root tensiletests of Heteropogon contortus. Anhui Forestry Science and Technology, 2019, 45 (3): 15-17, 21.
    [35]
    栗岳洲, 付江涛, 余冬梅, 胡夏嵩, 朱海丽, 李光莹, 虎啸天. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨. 岩石力学与工程学报, 2015, 34(7): 1370-1383. doi: 10.13722/j.cnki.jrme.2014.1278

    SU Y Z, FU J T, YU D M, HU X S, ZHU H L, LI G Y, HU X T. Mechanical cffects of halophytes roots and optimal root content for slope protection in cold and arid environment. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1370-1383. doi: 10.13722/j.cnki.jrme.2014.1278
    [36]
    侯艳伟, 王迎春, 杨持, 征荣. 绵刺(Potaninia mongolica)劈裂生长的形态发生及内部解剖结构特征的研究. 中国沙漠, 2006(2): 254-258.

    HOU Y W, WANG Y C, YANG T, ZHENG R. Morphogenesis and anato my of fissurate growth of Potaninia mongolica. Journal of Desert Research, 2006(2): 254-258.
    [37]
    BUCKLEY T N, JOHN G P, SCOFFONI C, SACK L. How does leaf anatomy influence water transport outside the xylem. Plant Physiology, 2015, 168(4): 1616-1635. doi: 10.1104/pp.15.00731
    [38]
    MARTIN D, JOHN S, UWE G. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 2017, 59(6): 356-389. doi: 10.1111/jipb.12534
    [39]
    何士敏, 汪建华, 秦家顺. 几种沙棘叶片组织结构特点和抗旱性比较. 林业科技开发, 2009, 23(1): 16-19.

    HE S M, WANG J H, QIN J S. Comparison of tissue structure characteristics and drought-resistant properties in some Hippophae species Leaves. Journal of Forestry Engineering, 2009, 23(1): 16-19.
    [40]
    刘红茹, 冯永忠, 王得祥, 崔宏安. 延安城区10种阔叶园林植物叶片结构及其抗旱性评价. 西北植物学报, 2012, 32(10): 2053-2060. doi: 10.3969/j.issn.1000-4025.2012.10.019

    LIU H R, FENG Y Z, WANG D X, CUI H A. Drought resistance evaluation and leaf structures of ten species of road-leaved ornamental plants in Yan'an urban area. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(10): 2053-2060. doi: 10.3969/j.issn.1000-4025.2012.10.019

Catalog

    Article views (151) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return