Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
LIU K Q, JIA Z F, LIANG G L, LIU Y, MA X, LIU W H. Response of chlorophyll synthesis and fluorescence characteristics of oat seedlings to soil drought. Pratacultural Science, 2022, 39(6): 1165-1175 . DOI: 10.11829/j.issn.1001-0629.2021-0366
Citation: LIU K Q, JIA Z F, LIANG G L, LIU Y, MA X, LIU W H. Response of chlorophyll synthesis and fluorescence characteristics of oat seedlings to soil drought. Pratacultural Science, 2022, 39(6): 1165-1175 . DOI: 10.11829/j.issn.1001-0629.2021-0366

Response of chlorophyll synthesis and fluorescence characteristics of oat seedlings to soil drought

More Information
  • Corresponding author:

    LIU Wenhui E-mail: qhliuwenhui@163.com

  • Received Date: June 02, 2021
  • Accepted Date: January 12, 2022
  • Available Online: April 06, 2022
  • Published Date: June 14, 2022
  • Soil drought is one of the important factors that restricts the growth and development of oat (Avena sativa) seedlings in the Qinghai Province of China. To clarify the response mechanism of oats to drought, oat variety ‘Qingyan No. 1’ widely cultivated in Qinghai, China, was selected as a test material using a single factor random block design, with four water treatments and field capacity of 75%, 60%, 45%, and 30%. The purpose of this study was to explore the response characteristics of chlorophyll, precursors, and fluorescence parameters of oat seedlings to drought stress, improve the deficiency of oat variety during drought, and provide a theoretical basis for the evaluation of drought resistance of oats. The results showed that different soil droughts had significant effects on the growth and development of oat seedlings. Compared with the control, the height of seedling decreased by 24.3%~57.4%, the ratio of leaf length to leaf width decreased by 44.0%~68.2%, the ratio of root to shoot increased 90.3%~129.0%. Drought led to metabolic imbalance of chlorophyll and its precursors, mainly characterized by an increase in the content of δ-aminolevulinic acid and a decrease in the contents of PBG, Cop Ⅸ, Proto Ⅸ, Mg-Proto Ⅸ, and Pchl, consequently resulting in a decrease in chlorophyll content. The reduced chlorophyll caused the imbalance in light energy absorption, utilization, and distribution in the photosynthetic system of oats. Excess light energy was lost mainly in the form of heat dissipation, which may be an important strategy for oats in protecting the photosynthetic system from photoinhibition and light damage.
  • [1]
    MARIA C D, SANDRA C, JOÃO S, ARTUR S S, HELENA F, CONCEICÃO S. Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Scientia Horticulturae, 2018, 231: 31-35. doi: 10.1016/j.scienta.2017.12.007
    [2]
    SONGSRI P, JOGLOY S, VORASOOT N, AKKASAENG C, PATANOTHAI A, HOLBROOK C C. Root distribution of drought-resistant peanut genotypes in response to drought. Journal of Agronomy and Crop Science, 2008, 194(2): 92-103. doi: 10.1111/j.1439-037X.2008.00296.x
    [3]
    FRESCHET G T, CORNELISSEN J H C, LOGTESTIJN R S P V, AERTS R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 2010, 98(2): 362-373. doi: 10.1111/j.1365-2745.2009.01615.x
    [4]
    牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制. 兰州: 甘肃农业大学博士学位论文, 2018.

    NIU K J. The role of 5-aminolevulinic acid on regulation mechanism of photosynthesis in Kentucky bluegrass seedlings under drought stress. PhD Thesis. Lanzhou: Gansu Agricultural University, 2018.
    [5]
    刘文文, 崔会婷, 尉春雪, 龙瑞才, 康俊梅, 杨青川, 王珍. 蒺藜苜蓿叶绿素酸酯a加氧酶(MtCAO)基因的克隆与功能分析. 草业学报, 2020, 29(5): 174-184.

    LIU W W, CUI H T, YU C X, LONG R C, KANG J M, YANG Q C, WANG Z. Cloning and functional analysis of chlorophyllide a oxygenase encoding gene MtCAO in Medicago truncatula. Acta Prataculturae Sinica, 2020, 29(5): 174-184.
    [6]
    MIR R A, SOMASUNDARAM R, PANNEERSELVAM R. Changes in antioxidant enzymes activities mitigates deleterious effects of ROS in Panicum miliaceum (L. ) under drought stress. Journal of Stress Physiology & Biochemistry, 2019, 15(3): 81-91.
    [7]
    KADHIMI A A, ZAIN C, ALHASNAWI A N, ISAHAK A, ASHRAF M F, MOHAMAD A, DONI F, YUSOFF W M W. Effect of irradiation and polyethylene glycol on drought tolerance of MR269 genotype rice (Oryza sativa L.). Asian Journal of Crops Science, 2016, 8(2): 52-59. doi: 10.3923/ajcs.2016.52.59
    [8]
    HAFIZ G M D A, YWAEN Z, XIAO M Y, HAFIZ A A, MUHAMMAD Z M, HANIF C M S, KAMRAN I, AZIZ U, SULIMAN M, SULIMAN A. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi Journal of Biological Sciences, 2020, 27(8): 2116-2123. doi: 10.1016/j.sjbs.2020.06.019
    [9]
    NXELE X, KLEIN A, NDIMBA B K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 2017, 108: 261-266. doi: 10.1016/j.sajb.2016.11.003
    [10]
    夏阳. 水分逆境对果树脯氨酸和叶绿素含量变化的影响. 甘肃农业大学学报, 1993, 28(1): 30-35.

    XIA Y. Effects of water stress on the contents of proline and chlorophyll in fruit tree. Journal of Gansu Agricultural University, 1993, 28(1): 30-35.
    [11]
    陈菁, 石伟琦, 孙光明, 冼皑敏. 干旱胁迫对菠萝苗期生长及叶绿素含量的影响. 热带农业科学, 2012, 32(7): 9-11. doi: 10.3969/j.issn.1009-2196.2012.07.003

    CHEN J, SHI W Q, SUN G M, XIAN A M. Effects of drought stress on the growth and chlorophyll content of pineapple seedling. Chinese Journal of Tropical Agriculture, 2012, 32(7): 9-11. doi: 10.3969/j.issn.1009-2196.2012.07.003
    [12]
    张永强, 毛学森, 孙宏勇, 李文杰, 于沪宁. 干旱胁迫对冬小麦叶绿素荧光的影响. 中国生态农业学报, 2002, 10(4): 13-15.

    ZHANG Y Q, MAO X S, SUN H Y, LI W J, YU H N. Effects of drought stress on chlorophyll fluorescence of winter wheat. Chinese Journal of Eco-Agriculture, 2002, 10(4): 13-15.
    [13]
    张翠梅, 师尚礼, 陈建纲. 干旱胁迫对苜蓿幼苗叶绿素荧光特性和膜脂过氧化的影响. 草原与草坪, 2019, 39(1): 18-29.

    ZHANG C M, SHI S L, CHEN J G. Effects of drought stress on chlorophyll fluorescence parameters and lipid peroxodation in alfalfa seedlings. Grassland and Turf, 2019, 39(1): 18-29.
    [14]
    NANKISHORE A, FARRELL A D. The response of contrasting tomato genotypes to combined heat and drought stress. Journal of plant physiology, 2016, 202: 75-82. doi: 10.1016/j.jplph.2016.07.006
    [15]
    王正航, 武仙山, 昌小平, 李润植, 景蕊莲. 小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析. 作物学报, 2010, 36(2): 217-227. doi: 10.3724/SP.J.1006.2010.00217

    WANG Z H, WU X S, CHANG X P, LI R Z, JING R L. Chlorophyll content and chlorophyll fluorescence kinetics parameters of flag leaf and their gray relational grade with yield in wheat. Acta Agronomica Sinica, 2010, 36(2): 217-227. doi: 10.3724/SP.J.1006.2010.00217
    [16]
    徐长林. 高寒牧区不同燕麦品种生长特性比较研究. 草业学报, 2012, 21(2): 280-285. doi: 10.11686/cyxb20120236

    XU C L. A study on growth characteristics of different cultivars of oat (Avena sativa) in alpine region. Acta Prataculturae Sinica, 2012, 21(2): 280-285. doi: 10.11686/cyxb20120236
    [17]
    WELCH R W, BROWN J C W, LEGGETT J M. Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1→3), (1→4)-β- D -glucan in an Avena atlantica genotype. Journal of Cereal Science, 2000, 31(3): 273-279. doi: 10.1006/jcrs.2000.0301
    [18]
    ROJAS G, CATRILEO S, GREZ V. Productive and economic evaluation of the inclusion of whole grain oat (Avena sativa L.) and lupin (Lupinus angustifolius L.) in winter fattening rations for heifers. Agro-Ciencia, 2011, 27(1): 41-48.
    [19]
    刘凯强, 刘文辉, 贾志锋, 魏小星, 梁国玲, 马祥. 不同播量、行距及播种方式对青燕1号燕麦饲草产量的影响. 草地学报, 2019, 27(4): 1060-1067.

    LIU K Q, LIU W H, JIA Z F, WEI X X, LIANG G L, MA X. Effect of different sowing rate, row spacing and sowing methods on forage yield of Avena sativa cv. Qingyan No. 1. Acta Agrestia Sinica, 2019, 27(4): 1060-1067.
    [20]
    WANG X L, WANG H W, LIU S X, FERJANI A, LI J S, YAN J B, YANG X H, QIN F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48(10): 1233-1241. doi: 10.1038/ng.3636
    [21]
    SHARMA P, DBUEY R S. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 2005, 46(3): 209-221. doi: 10.1007/s10725-005-0002-2
    [22]
    WEN X, ZHU X C, YU R Y, XIONG J L, GAO D S, JIANG Y M, YANG C J. Visualization of chlorophyll content distribution in apple leaves based on hyperspectral imaging technology. Agricultural Sciences, 2019, 10(6): 783-795. doi: 10.4236/as.2019.106060
    [23]
    钟小兰. 红苞凤梨金边嵌合体白化细胞叶绿素合成限速基因挖掘. 成都: 四川农业大学硕士学位论文, 2015.

    ZHONG X L. Chlorophyll synthesis rate-limiting gene mining of the albino cells of Ananas bracteatus. Master Thesis. Chengdu: Sichuan Agricultural University, 2015.
    [24]
    BOGORAD L. Methods in Enzymology. New York: Academic Press, 1962.
    [25]
    CZARNECJI O, PETER E, GRIMM B. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis. Chloroplast Research in Arabidopsis, 2011, 75: 357-385.
    [26]
    陈友根, 崔利, 陈劲枫. 甜瓜属正反交杂种叶绿素生物合成与代谢研究. 植物生理学报, 2013, 49(5): 452-456.

    CHEN Y G, CUI L, CHEN J F. Chlorophyll biosynthesis and metabolism analyses of reciprocal interspecific hybrid between Cucumis hystrix and C. sativus. Plant Physiology Communications, 2013, 49(5): 452-456.
    [27]
    LI H, ZHANG G C, XIE H C, LI K, ZHANG S Y. The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L. Photosynthetica, 2015, 53(3): 430-435. doi: 10.1007/s11099-015-0135-0
    [28]
    SCHREIBER U, SCHLIWA U, BILGER W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 1986, 10(1): 51-62.
    [29]
    GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 1989, 990(1): 87-92. doi: 10.1016/S0304-4165(89)80016-9
    [30]
    BRAUN G, MALKIN S. Regulation of the imbalance in light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrane. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1990, 1017(1): 79-90. doi: 10.1016/0005-2728(90)90181-3
    [31]
    DEMMIG-ADAMS B, ADAMS III W W, BARKER D H, LOGAN B A, BOWLING D R, VERHOEVEN A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 1996, 98(2): 253-264.
    [32]
    KATZ J J, JAMES R, NORRIS J R. Chlorophyll and light energy transduction in photosynthesis. Current Topics in Bioenergetics, 1973, 5: 41-75.
    [33]
    宋吉轩, 李金还, 刘美茹, 牛建行, 王冉, 吕俊, 宗学凤, 王三根. 油菜素内酯对干旱胁迫下羊草渗透调节及抗氧化酶的影响研究. 草业学报, 2015, 24(8): 93-102.

    SONG J X, LI J H, LIU M R, NIU J H, WANG R, LYU J, ZONG X F, WANG S G. Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensis under drought stress. Acta Prataculturae Sinica, 2015, 24(8): 93-102.
    [34]
    张咏梅. 黄花草木樨耐NaHCO3盐碱胁迫的解剖学解释. 草业学报, 2016, 25(9): 83-95. doi: 10.11686/cyxb2015447

    ZHANG Y M. Anatomical mechanism of Melilotus officinalis tolerance to NaHCO3 aline-alkaline stress. Acta Prataculturae Sinica, 2016, 25(9): 83-95. doi: 10.11686/cyxb2015447
    [35]
    韩志平, 郭世荣, 冯吉庆, 高新昊. 盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响. 南京农业大学学报, 2008, 31(2): 32-36.

    HAN Z P, GUO S R, FENG J Q, GAO X H. Effect of salinity on plant growth, photosynthetic pigments and proline content in leaves of watermelon seedlings. Journal of Nanjing Agricultural University, 2008, 31(2): 32-36.
    [36]
    DALAL K V, TRIPATHY B C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell & Environment, 2012, 35(9): 1685-1703.
    [37]
    赵艳艳. 外源5-氨基乙酰丙酸缓解番茄幼苗盐胁迫的效果及机理研究. 杨凌: 西北农林科技大学博士学位论文, 2014.

    ZHAO Y Y. Alleviative and its mechanism of exogenous 5-aminolevulinic acid on tomato seedlings subjected to salt stress. PhD Thesis. Yangling: Northwest A & F University, 2014.
    [38]
    姚嘉龙, 郭蓓, 谢皓. 叶绿素合成关键酶基因表达的半定量RT-PCR分析. 基因组学与应用生物学, 2015, 34(3): 593-598.

    YAO J L, GUO B, XIE H. Expression analysis of key enzyme gene involved in chlorophyll biosynthesis by semi-quantitative RT-PCR. Genomics and Applied Biology, 2015, 34(3): 593-598.
    [39]
    VANISRI S, SREEDHAR M, JEEVAN L, PAVANI A, CHATURVEDI A. Evaluation of rice genotypes for chlorophyll content and scavenging enzyme activity under the influence of mannitol stress towards drought tolerance. International Journal of Current Microbiology and Applied Sciences, 2017, 6(12): 2907-2917. doi: 10.20546/ijcmas.2017.612.338
    [40]
    张明生, 谈锋. 水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系. 种子, 2001, 52(4): 23-25. doi: 10.3969/j.issn.1001-4705.2001.04.010

    ZHANG M S, TAN F. Relationship between ratio of chlorophyll a and b under water stress and drought resistance of different sweet potato varieties. Seed, 2001, 52(4): 23-25. doi: 10.3969/j.issn.1001-4705.2001.04.010
    [41]
    梁欢, 韦宝, 陈静, 宫文龙, 马琳, 王学敏, 王赞. 基于叶绿素荧光参数的紫花苜蓿种质苗期抗旱性评价. 草地学报, 2020, 28(1): 48-58.

    LIANG H, WEI B, CHEN J, GONG W L, MA L, WANG X M, WANG Z. Evaluation of the drought resistance in alfalfa germplasm by chlorophyll fluorescence parameters at seedling stage. Acta Agrestia Sinica, 2020, 28(1): 48-58.
    [42]
    孙骏威, 杨勇, 蒋德安. 水分亏缺下水稻的光化学和抗氧化应答. 浙江大学学报(农业与生命科学版), 2004, 30(3): 278-284.

    SUN J W, YANG Y, JIANG D A. Photochemical and antioxidant behavior of rice in response to water deficit. Journal of Zhejiang University (Agriculture & Life Sciences Edition), 2004, 30(3): 278-284.
    [43]
    GIARDI M T, CONA A, GEIKEN B, KUČERA T, MASOÍDEK J, MATTOO A K. Long-term drought stress induces structural and functional reorganization of photosystem II. Planta, 1996, 199(1): 118-125. doi: 10.1007/BF00196888
    [44]
    SEZGIN A, ALTUNTAS C, DEMIRALAY M, CINEMRE S, TERZI R. Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought. Journal of Plant Physiology, 2019, 232: 65-73. doi: 10.1016/j.jplph.2018.11.026
    [45]
    CHEN Y E, LIU W J, SU Y Q, CUI J M, ZHANG Z W, YUAN M, ZHANG H Y, YUAN S. Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 2016, 158(2): 225-235. doi: 10.1111/ppl.12438
    [46]
    NISHIYAMA Y, ALLAKHVERDIEV I, MURATA N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum, 2011, 142(1): 35-46. doi: 10.1111/j.1399-3054.2011.01457.x
    [47]
    TAIZ L, ZEIGER E, MOLLER I M, MURPHY A. Plant physiology and development. Sunderland, Sinauer Associates Incorporated, 2015.
    [48]
    单云鹏, 陈新慧, 万平, 赵波, 杨凯, 李奕松. 小豆种质资源苗期抗旱性评价及抗旱资源筛选. 植物遗传资源学报, 2019, 20(5): 63-71.

    SHAN Y P, CHEN X H, WAN P, ZHAO B, YANG K, LI Y S. Drought resistance evaluation of adzuki bean germplasm at seedling stage and screening of the drought-resistant resources. Journal of Plant Genetic Resources, 2019, 20(5): 63-71.
    [49]
    田梦雨. 干旱胁迫对小麦苗期生长的影响及其生理机制. 南京: 南京农业大学硕士论文, 2009

    TIAN M Y. Effects of drought stresses on seedling growth and its physiological mechanism in wheat. Master Thesis. Nanjing: Nanjing Agricultural University, 2009.
    [50]
    ANJUM S A, ASHRAF U, TANVEER M, KHAN I, HUSSAIN S, SHAHZAD B, ZOHAIB A, ABBAS F, SALEEM M, ALI I, WANG L C. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in plant science, 2017, 8: 1-12.
    [51]
    翟苗苗. 饲草燕麦在辽西半干旱地区的产量与品质效应研究. 沈阳: 辽宁大学硕士学位论文, 2014.

    ZHAI M M. Research on the effect of yield and quality of forage oats in semi-arid areas of Western Liaoning Province. Master Thesis. Shenyang: Liaoning University, 2014.

Catalog

    Article views (808) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return