Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
LIU X D, ZHANG Z L, DU G Z. Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow. Pratacultural Science, 2021, 38(7): 1240-1249 . DOI: 10.11829/j.issn.1001-0629.2021-0155
Citation: LIU X D, ZHANG Z L, DU G Z. Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow. Pratacultural Science, 2021, 38(7): 1240-1249 . DOI: 10.11829/j.issn.1001-0629.2021-0155

Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow

More Information
  • Corresponding author:

    DU Guozhen E-mail: guozdu@lzu.edu.cn

  • Received Date: March 20, 2021
  • Accepted Date: April 06, 2021
  • Available Online: July 05, 2021
  • Published Date: July 14, 2021
  • Timely flowering is one of the most important life history strategies for plants species, while global changes, such as nitrogen deposition, increasingly influence the process of flowering phenology. Based on in situ experiments with different concentrations of nitrogen addition, we studied the first flowering date and flowering duration in an alpine meadow of eastern Qinghai-Tibet Plateau, to evaluate effect of nitrogen addition on the flowering phenology. The results showed that: 1) Nitrogen addition significantly delayed the first flowering date for grasses species under the low nitrogen (LN) and high nitrogen (HN) addition level (P < 0.01), and significantly shortened the flowering duration under the high nitrogen addition level (P < 0.05). Nitrogen addition significantly extended flowering duration for all forbs species (LN: P < 0.05; HN: P < 0.01), and high nitrogen addition significantly advanced first flowering date for the forbs species (P < 0.05). 2) We identified a significant negative correlation between the first flowering date and flowering duration for the investigated species (P < 0.05). 3) The richness of flowering species decreased with nitrogen addition; for example, the numbers of flowering species decreased by 29% under low nitrogen level and 49% under high nitrogen level. These findings indicated that nitrogen addition plays an important role in regulating plant flowering phenology in alpine meadow. In summary, our study suggested that nitrogen addition had a species-specific impact on flowering phenology of the plants, which might further influence community composition, structure and function in the alpine meadow.
  • [1]
    LIETH H. Phenology and seasonality modeling. Ecological Studies, 1974, 120(6): 461.
    [2]
    WALTHER G R, POST E, CONVEY P, MENZEL A, PARMESAN C, BEEBEE T J C, FROMENTIN J M, GULDBERG O H, BAIRLEIN F. Ecological responses to recent climate change. Nature, 2002, 416: 389-395. doi: 10.1038/416389a
    [3]
    SCHWARTZ M. Onset of spring starting earlier across the northern hemisphere. Global Change Biology, 2006, 12(2): 343-351. doi: 10.1111/j.1365-2486.2005.01097.x
    [4]
    孟凡栋, 周阳, 崔树娟, 王奇, 斯确多吉, 汪诗平. 气候变化对高寒区域植物物候的影响. 中国科学院大学学报, 2017, 34(4): 498-507. doi: 10.7523/j.issn.2095-6134.2017.04.012

    MENG F D, ZHOU Y, CUI S J, WANG Q, TSECHOE D, WANG S P. Effects of climate changes on plant phenology at high-latitude and alpine regions. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 498-507. doi: 10.7523/j.issn.2095-6134.2017.04.012
    [5]
    KATHUROJU N, WHITE M A, SYMANZIK J, SCHWARTZ M D, POWELL J A, NEMANI R R. On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecological Modelling, 2007, 201(2): 144-156. doi: 10.1016/j.ecolmodel.2006.09.011
    [6]
    MURALI K S, SUKUMAR R. Reproductive phenology of a tropical dry forest in Mudumalai, southern India. Journal of Ecology, 1994, 82(4): 759-767. doi: 10.2307/2261441
    [7]
    RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, RYU Y, SONNENTAG O, TOOMEY M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169(3): 156-173.
    [8]
    HOLLAND E A, DENTENER F J, BRASWELL B H, SULZMAN J M. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 1999, 46(1): 7-43.
    [9]
    GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320: 889-892. doi: 10.1126/science.1136674
    [10]
    周小龙. 高寒草甸植物群落结构组建和生产力对施肥的响应机制. 兰州: 兰州大学博士学位论文, 2016.

    ZHOU X L. The effect of fertilization on community assembly and production in alpine meadow community. PhD Thesis. Lanzhou: Lanzhou University, 2016.
    [11]
    BOWMAN W D, GARTNER J R, HOLLAND K, WIEDERMANN M. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications, 2006, 16(3): 1183-1193. doi: 10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2
    [12]
    WOLKOVICH E M, COOK B I, ALLEN J M, CRIMMINS T M, TRAVERS S, PAU S, CLELAND E E. Warming experiments under-predict plant phenological responses to climate change. Nature, 2011, 485: 494-497.
    [13]
    INOUYE D W, WIELGOLASKI F E. Phenology at High Altitudes. Berlin: Springer Netherlands, 2013.
    [14]
    SEASTEDT T R, BOWMAN W D, NELSON C T, MCKNIGHT D M, TOWNSEND A, WILLIAMS M W. The landscape continuum: A model for high-elevation ecosystems. Bioscience, 2014, 54(2): 111-121.
    [15]
    WU Q, REN H Y, WANG Z W, LI Z G, LIU Y H, WANG Z, LI Y H, ZHANG R Y, ZHAO M L, CHANG S X, HAN G D. Additive negative effects of decadal warming and nitrogen addition on grassland community stability. Journal of Ecology, 2020, 108(4): 1442-1452. doi: 10.1111/1365-2745.13363
    [16]
    符佩斌, 干友民, 张洪轩, 杨平贵, 郭丽娟, 曾华, 陈立坤, 张雪莲, 薛晶月, 刘焘. 施肥对高寒草甸产草量和品质的影响. 草业科学, 2015, 32(7): 1137-1142. doi: 10.11829/j.issn.1001-0629.2014-0490

    FU P B, GAN Y M, ZHANG H X, YANG P G, GUO L J, ZENG H, CHEN L K, ZHANG X L, XUE J Y, LIU T. Effects of fertilizing on the forage production and quality of alpine grassland. Pratacultural Science, 2015, 32(7): 1137-1142. doi: 10.11829/j.issn.1001-0629.2014-0490
    [17]
    NIU K C, LUO Y J, CHOLER P, DU G Z. The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 2008, 9(5): 485-493. doi: 10.1016/j.baae.2007.06.015
    [18]
    SMITH J G, SCONIERS W, SPASOJEVIC M J, ASHTON I W, SUDING K N. Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arctic Antarctic and Alpine Research, 2012, 44(1): 135-142. doi: 10.1657/1938-4246-44.1.135
    [19]
    巴雅尔塔, 贾鹏, 杨晓, 杜国祯. 青藏高原高寒草甸组分种花期物候对施肥响应. 草业学报, 2010, 19(3): 233-239. doi: 10.11686/cyxb20100331

    BAYAERTA, JIA P, YANG X, DU G Z. Response of dominating species flowering phenology to fertilization in Qinghai-Tibetan alpine meadow. Acta Prataculturae Sinica, 2010, 19(3): 233-239. doi: 10.11686/cyxb20100331
    [20]
    ZHANG Z L, NIU K C, LIU X D, JIA P, DU G Z. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. Journal of Plant Ecology, 2014, 7(3): 231-239. doi: 10.1093/jpe/rtt030
    [21]
    ROOT T L, PRICE J T, HALL K R, SCHNEIDER S H, ROSENZWEIG C, POUNDS J A. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421: 57-60. doi: 10.1038/nature01333
    [22]
    CLELAND E E, ALLEN J M, CRIMMINS T M, DUNNE J A, PAU S, TRAVERS S E, ZAVALETA E S, WOLKOVICH E M. Phenological tracking enables positive species responses to climate change. Ecology, 2012, 93(8): 1765-1771. doi: 10.1890/11-1912.1
    [23]
    SHERRY R A, ZHOU X H, GU S L, ARNONE J I, SCHIMEL D S, VERBURG P S, WALLACE L L, LUO Y Q. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 198-202. doi: 10.1073/pnas.0605642104
    [24]
    WANG C, TANG Y J. Responses of plant phenology to nitrogen addition: A Meta-analysis. Oikos, 2019, 128(9): 1243-1253. doi: 10.1111/oik.06099
    [25]
    ALBERT L P, RESTREPO-COUPE N, SMITH M N, WU J, CHAVANA-BRYANT C, PROHASKA N, JAYLOR T C, MARTINS G A, CIAIS P, MAO J F, ALTAF ARAIN M, LI W, SHI X Y, RICCIUTO D M, HUXMAN T E, MCMAHON S M, SALESKA S R. Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 2019, 25(11): 3591-3608. doi: 10.1111/gcb.14759
    [26]
    LUO Y J, QIN G L, DU G Z. Importance of assemblage level thinning: A field experiment in an alpine meadow on the Tibet plateau. Journal of Vegetation Science, 2006, 17(4): 417-424.
    [27]
    PRICE M W, WASER N M. Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 1998, 79(4): 1261-1271. doi: 10.1890/0012-9658(1998)079[1261:EOEWOP]2.0.CO;2
    [28]
    HOVENDEN M J, WILLS K E, VANDER SCHOOR J K, WILLIAMS A L, NEWTON P C D. Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New Phytologist, 2008, 178(4): 815-822. doi: 10.1111/j.1469-8137.2008.02419.x
    [29]
    CLELAND E E, CHIARIELLO N R, LOARIE S R, MOONEY H A, FIELD C B. Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37): 13740-13744. doi: 10.1073/pnas.0600815103
    [30]
    XIA J Y, WAN S Q. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 2013, 111(6): 1207-1217. doi: 10.1093/aob/mct079
    [31]
    STEVENS C J, DISE N B, MOUNTFORD J O, GOWING D J. Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303: 1876-1879. doi: 10.1126/science.1094678
    [32]
    VERESOGLOU D S, FITTER A H. Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses. Journal of Ecology, 1984, 72(1): 259-272. doi: 10.2307/2260018
    [33]
    ANDERSON J T, INOUYE D W, MCKINNEY A M, COLAUTTI R I, MITCHELL-OLDS T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 2012, 279: 3843-3852. doi: 10.1098/rspb.2012.1051
    [34]
    ASHTON I W, MILLER A E, BOWMAN W D, SUDING K N. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology, 2010, 91(11): 3252-3260. doi: 10.1890/09-1849.1
    [35]
    LEVIN D A. Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytologist, 2009, 183(3): 661-666. doi: 10.1111/j.1469-8137.2009.02889.x
    [36]
    FITTER A H, FITTER R S R. Rapid changes in flowering time in British plants. Science, 2002, 296: 1689-1691. doi: 10.1126/science.1071617
    [37]
    SCHWARTZ M D. Phenology: An Integrative Environmental Science. Dordrecht: Kluwer Academic Publishers, 2003.
    [38]
    TEPLITSKY C, MILLS J A, ALHO J S, YARRALL J W, MERILA J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13492-13496. doi: 10.1073/pnas.0800999105
    [39]
    FORREST J, MILLER-RUSHING A J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365: 3101-3112. doi: 10.1098/rstb.2010.0145
    [40]
    ELZINGA J A, ATLAN A, BIERE A, GIGORD L, WEIS A E, BERNASCONI G. Time after time: Flowering phenology and biotic interactions. Trends in Ecology and Evolution, 2007, 22(8): 432-439. doi: 10.1016/j.tree.2007.05.006
    [41]
    SMITH M M, KNAPP A K, COLLINS S L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 2009, 90(12): 3279-3289. doi: 10.1890/08-1815.1
    [42]
    XIA J Y, NIU S L, WAN S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 2009, 15(6): 1544-1556. doi: 10.1111/j.1365-2486.2008.01807.x
    [43]
    OBESO J R. Costs of reproduction in Ilex aquifolium: Effects at tree, branch and leaf levels. Journal of Ecology, 1997, 85(2): 159-166. doi: 10.2307/2960648
    [44]
    NIU K C, CHOLAR P, ZHAO B B, DU G Z. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands. Functional Ecology, 2009, 23(2): 274-283. doi: 10.1111/j.1365-2435.2008.01502.x
    [45]
    TILMAN D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 1987, 57: 189-214.
    [46]
    CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 2008, 451: 712-715. doi: 10.1038/nature06503
    [47]
    CLELAND E E, CHUINE I, MENZEL A, MOONEY H A. Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 2007, 22(7): 357-365. doi: 10.1016/j.tree.2007.04.003
    [48]
    SARGENT R D, ACKERLY D D. Plant-pollinator interactions and the assembly of plant communities. Trends in Ecology and Evolution, 2008, 23(3): 123-130. doi: 10.1016/j.tree.2007.11.003
    [49]
    DUCHENNE F, THÉBAULT E, MICHEZ D, ELIAS M, DRAKE M, PERSSON M, ROUSSEAU-PIOT J S, POLLET M, VANORMELINGEN P, FONTAINE C. Author correction: Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology and Evolution, 2020, 4(1): 115-121. doi: 10.1038/s41559-019-1062-4
    [50]
    ZAVALETA E S, SHAW M R, CHIARIELLO N R, THOMAS B D, CLELAND E E, FIELD C B, MOONEY H A. Grassland response to three years of elevated temperature, CO2, and precipitation and N depositio. Ecological Monographs, 2003, 73(4): 585-604. doi: 10.1890/02-4053

Catalog

    Article views (3397) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return