Citation: | LIU X D, ZHANG Z L, DU G Z. Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow. Pratacultural Science, 2021, 38(7): 1240-1249 . DOI: 10.11829/j.issn.1001-0629.2021-0155 |
[1] |
LIETH H. Phenology and seasonality modeling. Ecological Studies, 1974, 120(6): 461.
|
[2] |
WALTHER G R, POST E, CONVEY P, MENZEL A, PARMESAN C, BEEBEE T J C, FROMENTIN J M, GULDBERG O H, BAIRLEIN F. Ecological responses to recent climate change. Nature, 2002, 416: 389-395. doi: 10.1038/416389a
|
[3] |
SCHWARTZ M. Onset of spring starting earlier across the northern hemisphere. Global Change Biology, 2006, 12(2): 343-351. doi: 10.1111/j.1365-2486.2005.01097.x
|
[4] |
孟凡栋, 周阳, 崔树娟, 王奇, 斯确多吉, 汪诗平. 气候变化对高寒区域植物物候的影响. 中国科学院大学学报, 2017, 34(4): 498-507. doi: 10.7523/j.issn.2095-6134.2017.04.012
MENG F D, ZHOU Y, CUI S J, WANG Q, TSECHOE D, WANG S P. Effects of climate changes on plant phenology at high-latitude and alpine regions. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 498-507. doi: 10.7523/j.issn.2095-6134.2017.04.012
|
[5] |
KATHUROJU N, WHITE M A, SYMANZIK J, SCHWARTZ M D, POWELL J A, NEMANI R R. On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecological Modelling, 2007, 201(2): 144-156. doi: 10.1016/j.ecolmodel.2006.09.011
|
[6] |
MURALI K S, SUKUMAR R. Reproductive phenology of a tropical dry forest in Mudumalai, southern India. Journal of Ecology, 1994, 82(4): 759-767. doi: 10.2307/2261441
|
[7] |
RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, RYU Y, SONNENTAG O, TOOMEY M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169(3): 156-173.
|
[8] |
HOLLAND E A, DENTENER F J, BRASWELL B H, SULZMAN J M. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 1999, 46(1): 7-43.
|
[9] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320: 889-892. doi: 10.1126/science.1136674
|
[10] |
周小龙. 高寒草甸植物群落结构组建和生产力对施肥的响应机制. 兰州: 兰州大学博士学位论文, 2016.
ZHOU X L. The effect of fertilization on community assembly and production in alpine meadow community. PhD Thesis. Lanzhou: Lanzhou University, 2016.
|
[11] |
BOWMAN W D, GARTNER J R, HOLLAND K, WIEDERMANN M. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications, 2006, 16(3): 1183-1193. doi: 10.1890/1051-0761(2006)016[1183:NCLFAV]2.0.CO;2
|
[12] |
WOLKOVICH E M, COOK B I, ALLEN J M, CRIMMINS T M, TRAVERS S, PAU S, CLELAND E E. Warming experiments under-predict plant phenological responses to climate change. Nature, 2011, 485: 494-497.
|
[13] |
INOUYE D W, WIELGOLASKI F E. Phenology at High Altitudes. Berlin: Springer Netherlands, 2013.
|
[14] |
SEASTEDT T R, BOWMAN W D, NELSON C T, MCKNIGHT D M, TOWNSEND A, WILLIAMS M W. The landscape continuum: A model for high-elevation ecosystems. Bioscience, 2014, 54(2): 111-121.
|
[15] |
WU Q, REN H Y, WANG Z W, LI Z G, LIU Y H, WANG Z, LI Y H, ZHANG R Y, ZHAO M L, CHANG S X, HAN G D. Additive negative effects of decadal warming and nitrogen addition on grassland community stability. Journal of Ecology, 2020, 108(4): 1442-1452. doi: 10.1111/1365-2745.13363
|
[16] |
符佩斌, 干友民, 张洪轩, 杨平贵, 郭丽娟, 曾华, 陈立坤, 张雪莲, 薛晶月, 刘焘. 施肥对高寒草甸产草量和品质的影响. 草业科学, 2015, 32(7): 1137-1142. doi: 10.11829/j.issn.1001-0629.2014-0490
FU P B, GAN Y M, ZHANG H X, YANG P G, GUO L J, ZENG H, CHEN L K, ZHANG X L, XUE J Y, LIU T. Effects of fertilizing on the forage production and quality of alpine grassland. Pratacultural Science, 2015, 32(7): 1137-1142. doi: 10.11829/j.issn.1001-0629.2014-0490
|
[17] |
NIU K C, LUO Y J, CHOLER P, DU G Z. The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 2008, 9(5): 485-493. doi: 10.1016/j.baae.2007.06.015
|
[18] |
SMITH J G, SCONIERS W, SPASOJEVIC M J, ASHTON I W, SUDING K N. Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arctic Antarctic and Alpine Research, 2012, 44(1): 135-142. doi: 10.1657/1938-4246-44.1.135
|
[19] |
巴雅尔塔, 贾鹏, 杨晓, 杜国祯. 青藏高原高寒草甸组分种花期物候对施肥响应. 草业学报, 2010, 19(3): 233-239. doi: 10.11686/cyxb20100331
BAYAERTA, JIA P, YANG X, DU G Z. Response of dominating species flowering phenology to fertilization in Qinghai-Tibetan alpine meadow. Acta Prataculturae Sinica, 2010, 19(3): 233-239. doi: 10.11686/cyxb20100331
|
[20] |
ZHANG Z L, NIU K C, LIU X D, JIA P, DU G Z. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. Journal of Plant Ecology, 2014, 7(3): 231-239. doi: 10.1093/jpe/rtt030
|
[21] |
ROOT T L, PRICE J T, HALL K R, SCHNEIDER S H, ROSENZWEIG C, POUNDS J A. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421: 57-60. doi: 10.1038/nature01333
|
[22] |
CLELAND E E, ALLEN J M, CRIMMINS T M, DUNNE J A, PAU S, TRAVERS S E, ZAVALETA E S, WOLKOVICH E M. Phenological tracking enables positive species responses to climate change. Ecology, 2012, 93(8): 1765-1771. doi: 10.1890/11-1912.1
|
[23] |
SHERRY R A, ZHOU X H, GU S L, ARNONE J I, SCHIMEL D S, VERBURG P S, WALLACE L L, LUO Y Q. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 198-202. doi: 10.1073/pnas.0605642104
|
[24] |
WANG C, TANG Y J. Responses of plant phenology to nitrogen addition: A Meta-analysis. Oikos, 2019, 128(9): 1243-1253. doi: 10.1111/oik.06099
|
[25] |
ALBERT L P, RESTREPO-COUPE N, SMITH M N, WU J, CHAVANA-BRYANT C, PROHASKA N, JAYLOR T C, MARTINS G A, CIAIS P, MAO J F, ALTAF ARAIN M, LI W, SHI X Y, RICCIUTO D M, HUXMAN T E, MCMAHON S M, SALESKA S R. Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 2019, 25(11): 3591-3608. doi: 10.1111/gcb.14759
|
[26] |
LUO Y J, QIN G L, DU G Z. Importance of assemblage level thinning: A field experiment in an alpine meadow on the Tibet plateau. Journal of Vegetation Science, 2006, 17(4): 417-424.
|
[27] |
PRICE M W, WASER N M. Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 1998, 79(4): 1261-1271. doi: 10.1890/0012-9658(1998)079[1261:EOEWOP]2.0.CO;2
|
[28] |
HOVENDEN M J, WILLS K E, VANDER SCHOOR J K, WILLIAMS A L, NEWTON P C D. Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New Phytologist, 2008, 178(4): 815-822. doi: 10.1111/j.1469-8137.2008.02419.x
|
[29] |
CLELAND E E, CHIARIELLO N R, LOARIE S R, MOONEY H A, FIELD C B. Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37): 13740-13744. doi: 10.1073/pnas.0600815103
|
[30] |
XIA J Y, WAN S Q. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 2013, 111(6): 1207-1217. doi: 10.1093/aob/mct079
|
[31] |
STEVENS C J, DISE N B, MOUNTFORD J O, GOWING D J. Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303: 1876-1879. doi: 10.1126/science.1094678
|
[32] |
VERESOGLOU D S, FITTER A H. Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses. Journal of Ecology, 1984, 72(1): 259-272. doi: 10.2307/2260018
|
[33] |
ANDERSON J T, INOUYE D W, MCKINNEY A M, COLAUTTI R I, MITCHELL-OLDS T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 2012, 279: 3843-3852. doi: 10.1098/rspb.2012.1051
|
[34] |
ASHTON I W, MILLER A E, BOWMAN W D, SUDING K N. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology, 2010, 91(11): 3252-3260. doi: 10.1890/09-1849.1
|
[35] |
LEVIN D A. Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytologist, 2009, 183(3): 661-666. doi: 10.1111/j.1469-8137.2009.02889.x
|
[36] |
FITTER A H, FITTER R S R. Rapid changes in flowering time in British plants. Science, 2002, 296: 1689-1691. doi: 10.1126/science.1071617
|
[37] |
SCHWARTZ M D. Phenology: An Integrative Environmental Science. Dordrecht: Kluwer Academic Publishers, 2003.
|
[38] |
TEPLITSKY C, MILLS J A, ALHO J S, YARRALL J W, MERILA J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13492-13496. doi: 10.1073/pnas.0800999105
|
[39] |
FORREST J, MILLER-RUSHING A J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365: 3101-3112. doi: 10.1098/rstb.2010.0145
|
[40] |
ELZINGA J A, ATLAN A, BIERE A, GIGORD L, WEIS A E, BERNASCONI G. Time after time: Flowering phenology and biotic interactions. Trends in Ecology and Evolution, 2007, 22(8): 432-439. doi: 10.1016/j.tree.2007.05.006
|
[41] |
SMITH M M, KNAPP A K, COLLINS S L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 2009, 90(12): 3279-3289. doi: 10.1890/08-1815.1
|
[42] |
XIA J Y, NIU S L, WAN S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 2009, 15(6): 1544-1556. doi: 10.1111/j.1365-2486.2008.01807.x
|
[43] |
OBESO J R. Costs of reproduction in Ilex aquifolium: Effects at tree, branch and leaf levels. Journal of Ecology, 1997, 85(2): 159-166. doi: 10.2307/2960648
|
[44] |
NIU K C, CHOLAR P, ZHAO B B, DU G Z. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands. Functional Ecology, 2009, 23(2): 274-283. doi: 10.1111/j.1365-2435.2008.01502.x
|
[45] |
TILMAN D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs, 1987, 57: 189-214.
|
[46] |
CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 2008, 451: 712-715. doi: 10.1038/nature06503
|
[47] |
CLELAND E E, CHUINE I, MENZEL A, MOONEY H A. Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 2007, 22(7): 357-365. doi: 10.1016/j.tree.2007.04.003
|
[48] |
SARGENT R D, ACKERLY D D. Plant-pollinator interactions and the assembly of plant communities. Trends in Ecology and Evolution, 2008, 23(3): 123-130. doi: 10.1016/j.tree.2007.11.003
|
[49] |
DUCHENNE F, THÉBAULT E, MICHEZ D, ELIAS M, DRAKE M, PERSSON M, ROUSSEAU-PIOT J S, POLLET M, VANORMELINGEN P, FONTAINE C. Author correction: Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology and Evolution, 2020, 4(1): 115-121. doi: 10.1038/s41559-019-1062-4
|
[50] |
ZAVALETA E S, SHAW M R, CHIARIELLO N R, THOMAS B D, CLELAND E E, FIELD C B, MOONEY H A. Grassland response to three years of elevated temperature, CO2, and precipitation and N depositio. Ecological Monographs, 2003, 73(4): 585-604. doi: 10.1890/02-4053
|