Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
YANG X X, WEI J K, XIA J Q, FANG Q E, ZHANG B. Histochemical characteristics and differentiation of the belowground buds of during overwintering. Pratacultural Science, 2022, 39(2): 300-308 . DOI: 10.11829/j.issn.1001-0629.2021-0074
Citation: YANG X X, WEI J K, XIA J Q, FANG Q E, ZHANG B. Histochemical characteristics and differentiation of the belowground buds of during overwintering. Pratacultural Science, 2022, 39(2): 300-308 . DOI: 10.11829/j.issn.1001-0629.2021-0074

Histochemical characteristics and differentiation of the belowground buds of Medicago archiducis-nicolai during overwintering

More Information
  • Corresponding author:

    FANG Qiang’en E-mail: fangqgen@163.com

  • Received Date: February 01, 2021
  • Accepted Date: August 08, 2021
  • Available Online: January 07, 2022
  • Published Date: February 14, 2022
  • To determine the mechanisms underlying belowground bud overwintering in Medicago archiducis-nicolai, we examined the histochemical characteristics and differentiation of buds during the period of overwintering, based on the histochemical staining of paraffin sections. Observations revealed that the starch content in overwintering buds is stored primarily in the cortex, pith, the peripheral young leaves and basal tissue of bud tips, and in the basal part of the leaf primordium, whereas protein is mainly stored in the growth cone of bud tips, apical leaf primordia, and cambium of the bud body. At the cold-adaptation stage in late autumn, the bud body was observed to undergo rapid elongation and starch in the buds began to undergo degradation, although total starch contents remained at a high level during this stage. At the beginning of winter, there was a retardation in both bud differentiation and elongation, concomitant with a reduction in temperatures. At the freezing-stress stage in winter, there was a cessation of growth in both the bud cone and bud body, and at this stage, the starch content of buds had been almost completely degraded. Thereafter, in response to gradually increasing temperatures, the bud body slowly began to resume growth, although meristematic growth of the bud cone did not recover fully until the growing stage in spring. In conclusion, our findings indicated that in belowground buds of M. archiducis-nicolai, the transition to a dormant state is characterized by growth stagnation and a reduction in the starch contents of buds, and that dormant buds can withstand cold stress during the period of overwintering on the Qinghai-Tibet Plateau. This cold tolerance can be attributed to the degradation of starch in buds, which, by increasing the concentration of soluble sugars in cells, contributes to reducing their freezing point.
  • [1]
    樊绍刚, 吴胜, 朱明涛, 余俊, 白描, 杨国顺. 葡萄冬芽生理休眠机理研究进展. 东北农业大学学报, 2019, 50(10): 88-96. doi: 10.3969/j.issn.1005-9369.2019.10.011

    FAN S G, WU S, ZHU M T, YU J, BAI M, YANG G S. Progress research on mechanism of grape bud dormancy. Journal of Northeast Agricultural University, 2019, 50(10): 88-96. doi: 10.3969/j.issn.1005-9369.2019.10.011
    [2]
    张立莎, 李永红, 王召元, 常瑞丰, 陈湖, 刘国俭, 韩继成. 桃芽休眠机理研究进展. 中国果树, 2016(6): 63-68.

    ZHANG L S, LI Y H, WANG Z Y, CHANG R F, CHEN H, LIU G J, HAN J C. Research progress on dormancy mechanism of peach bud. China Fruits, 2016(6): 63-68.
    [3]
    杨期和, 杨和生, 李姣清, 尹小娟. 植物芽休眠的类型、影响因素及调控的研究进展. 广东农业科学, 2011, 38(11): 4-9. doi: 10.3969/j.issn.1004-874X.2011.11.002

    YANG Q H, YANG H S, LI J Q, YIN X J. Progress on categories, factors and regulation of bud dormancy in plants. Guangdong Agricultural Sciences, 2011, 38(11): 4-9. doi: 10.3969/j.issn.1004-874X.2011.11.002
    [4]
    丁小余, 施国新, 陈维培, 徐祥生. 茭白冬芽的发育及抗寒性的形态学研究. 武汉植物学研究, 1993, 11(2): 104-110,195-196.

    DIN X Y, SHI G X, CHEN W P, XU X S. Morphological studies on the development and cold resistance of the winter buds of Zizania caduciflora hamd-mazz. Journal of Wuhan Botanical Research, 1993, 11(2): 104-110,195-196.
    [5]
    黄凤兰, 牛红云, 孟凡娟, 薛贵彬, 胡宝忠, 白迎春. 芍药花芽分化过程的显微研究. 东北农业大学学报, 2009, 40(3): 57-61. doi: 10.3969/j.issn.1005-9369.2009.03.013

    HUANG F L, NIU H Y, MENG F J, XUE G B, HU B Z, BAI Y C. Micro-study on flower bud differentiation of Paeonia lactiflora Pall. Journal of Northeast Agricultural University, 2009, 40(3): 57-61. doi: 10.3969/j.issn.1005-9369.2009.03.013
    [6]
    艾云苾. 芍药感受低温的花芽发育状态研究. 北京: 北京林业大学硕士学位论文, 2016.

    AI Y B. Study on the floral bud stage sensitive to the low temperature in Paeonia lactiflora. Master Thesis. Beijing: Beijing Forestry University, 2016.
    [7]
    王桐霖, 吕梦雯, 徐金光, 鲍明月, 刘民民, 孙霞. 芍药鳞芽年发育进程及生理机制的研究. 植物生理学报, 2019, 55(8): 1178-1190.

    WANG T L, LYU M W, XU J G, BAO M Y, LIU M M, SUN X. Study on the developmental process and physiological mechanism of the bulbils of Paeonia lactiflora. Plant Physiology Journal, 2019, 55(8): 1178-1190.
    [8]
    WU X, LIU D, GULZAR K, SHEN Y, WANG H. Population genetic structure and demographic history of Medicago ruthenica (Fabaceae) on the Qinghai-TITS and chloroplast markers. Biochemical Systematics and Ecology, 2016, 69(69): 204-212.
    [9]
    王英芳, 张业猛, 刘德梅, 沈迎芳, 王海庆. 基于转录组测序的青藏扁蓿豆EST-SSR标记开发与验证. 草业科学, 2020, 37(4): 718-727. doi: 10.11829/j.issn.1001-0629.2019-0435

    WANG Y F, ZHANG Y M, LIU D M, SHEN Y F, WANG H Q. Development and verification of EST-SSR markers in Medicago archiducis-nicolai by transcriptome sequencing. Pratacultural Science, 2020, 37(4): 718-727. doi: 10.11829/j.issn.1001-0629.2019-0435
    [10]
    吴小培, 沈迎芳, 王海庆. 基于 trnL-trnF 序列的扁蓿豆和青藏扁蓿豆遗传多样性及其群体遗传结构分析. 草业科学, 2016, 33(6): 1136-1146. doi: 10.11829/j.issn.1001-0629.2015-0529

    WU X P, SHEN Y F, WANG H Q. Analysis of genetic diversity and population genetic structure of Medicago archiducis-nicolai and Medicago ruthenica populations based on cpDNA TrNL-TrNF sequences. Pratacultural Science, 2016, 33(6): 1136-1146. doi: 10.11829/j.issn.1001-0629.2015-0529
    [11]
    李玉玲. 青藏扁蓿豆根瘤菌接种效果试验. 青海畜牧兽医杂志, 2007, 37(4): 5-6. doi: 10.3969/j.issn.1003-7950.2007.04.003

    LI Y L. Effect of rhizobium inocultion on Medicago archiducis-nicolai Sirj. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2007, 37(4): 5-6. doi: 10.3969/j.issn.1003-7950.2007.04.003
    [12]
    李玉玲, 徐成体. 不同处理方法对青藏扁蓿豆种子发芽率的影响. 青海畜牧兽医杂志, 2007, 37(3): 20-21. doi: 10.3969/j.issn.1003-7950.2007.03.009

    LI Y L, XU C T. Effects of different treatment method on germination rate of Melilotoides archiducis-nicolai seeds. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2007, 37(3): 20-21. doi: 10.3969/j.issn.1003-7950.2007.03.009
    [13]
    德科加, 徐成体. 高寒地区天然豆科牧草: 青藏扁蓿豆的引种驯化. 种子, 2009, 28(7): 73-75. doi: 10.3969/j.issn.1001-4705.2009.07.021

    Dekejia, XU C T. Wild Legume Grass-Medicago archiducis-nicolai Sirj planting and domesticating in alpine region. Seed, 2009, 28(7): 73-75. doi: 10.3969/j.issn.1001-4705.2009.07.021
    [14]
    李玉玲. 西宁地区青藏扁蓿豆地上生物量观察研究. 草业与畜牧, 2007(9): 16-17.

    LI Y L. Husbandry observation and study of aboveground biomass of Medicago archiducis-nicolai Sirj in Xining area. Prataculture Animal, 2007(9): 16-17.
    [15]
    PEARCE R S. Extracellular ice and cell shape in froststressed cereal leaves: A low-temperature scanning-electronmicroscopy study. Planta, 1988, 175(3): 313-324. doi: 10.1007/BF00396336
    [16]
    TAYLOR A, SLACK C R, MCPHERSON H G. Plants under climatic stress: VI, chilling and light effects on photosynthetic enzyme of sorghum and maize. Plant Physiology, 1974, 54(5): 696-701. doi: 10.1104/pp.54.5.696
    [17]
    BIAN T T, MA Y, GUO J, WU Y, SHI D M, GUO X F. Herbaceous peony (Paeonia lactiflora Pall) pldella gene negatively regulates dormancy release and plant growth. Plant Science, 2020, 297: 110-539.
    [18]
    CHAO W S, SERPE M D, ANDERSON J V, GESCH R W, HORVATH D P. Sugars, hormones, and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula). Weed Science, 2006, 54(1): 59-68. doi: 10.1614/WS-05-088R.1
    [19]
    SUN C Q, CHEN F D, TENG N J, LIU Z L, FANG W M, HOU X L. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat) kitamura and its wild species. Euphytica, 2010, 171(2): 181-192. doi: 10.1007/s10681-009-0005-6
    [20]
    李和平. 植物显微技术. 北京: 科学出版社, 2009.

    LI H P. Plant Microtechnique. Beijing: Science Press, 2009.
    [21]
    齐海伶, 殷钟意, 郑旭煦. 块根块茎类植物淀粉的研究进展. 重庆工商大学学报(自然科学版), 2015, 32(3): 67-71.

    QI H L, YIN Z Y, ZHENG X X. Study progress on starches of root and tuber plants. Journal of Chongqing Technology and Business University (Natural Science Edition), 2015, 32(3): 67-71.
    [22]
    BENINA M, OBATA T, MEHTEROV N, IVANOV I, PETROV V, TONEVA V, FERNIE A R, GECHEV T S. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science, 2013, 4: 499.
    [23]
    刘芳, 田忠平, 蔡英杰, 张雨, 周蕴薇. 细叶百合低温解除休眠过程中鳞茎细胞淀粉粒及花芽分化的变化. 草业学报, 2015, 24(9): 154-162. doi: 10.11686/cyxb2014428

    LIU F, TIAN Z P, CAI Y J, ZHANG Y, ZHOU Y W. Change in starch grains and flower bud differentiation of Lilium pumilum bulbs during breaking of dormancy under refrigerated conditions. Acta Prataculturae Sinica, 2015, 24(9): 154-162. doi: 10.11686/cyxb2014428
    [24]
    NAGAO M, MINAMI A, ARAKAWA K, FUJIKAWA S, TAKEZAWA D. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. Journal of Plant Physiology, 2005, 162(2): 169-180. doi: 10.1016/j.jplph.2004.06.012
    [25]
    欧阳铖人, 杨焕文, 王戈, 王娜. 温度胁迫对烟叶淀粉降解和抗氧化特性的影响. 云南农业大学学报(自然科学版), 2020, 35(5): 804-809.

    OUYANG C R, YANG H W, WANG G, WANG N. Effect of temperature stress on the starch degradation and antioxidant properties of flue-cured tobacco. Journal of Yunnan Agricultural University (Natural Science Edition), 2020, 35(5): 804-809.
    [26]
    于晶, 张林, 苍晶, 郝再彬, 杨阳, 李卓夫. 不同抗寒性冬小麦品种分蘖节低温诱导蛋白比较. 应用生态学报, 2009, 20(5): 1092-1098.

    YU J, ZHANG L, CANG J, HAO Z B, YANG Y, LI Z F. Comparison of low temperature-induced proteins in tillering node of winter wheat cultivars with different cold resistance. Chinese Journal of Applied Ecology, 2009, 20(5): 1092-1098.
    [27]
    王颖, 陆国权, 王晨静, 赵习武. 彩叶芋2个品种抗寒性的比较. 浙江农林大学学报, 2014, 31(2): 285-290.

    WANG Y, LU G Q, WANG C J, ZHAO X W. Cold-resistance in two Caladium bicolor cultivars. Journal of Zhejiang A & F University, 2014, 31(2): 285-290.
    [28]
    魏娜, 欧小平, 董丽. 10种宿根花卉抗寒性研究初报. 中国农学通报, 2008, 24(7): 314-317.

    WEI N, OU X P, DONG L. A study of the cold resistance of 10 perennial flowers. Chinese Agricultural Science Bulletin, 2008, 24(7): 314-317.
    [29]
    UEMURA M, GILMOUR S J, THOMASHOW M F, STEPONKUS P L. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiology, 1996, 111(1): 313-327. doi: 10.1104/pp.111.1.313
    [30]
    SARI K S, JNANE L, PEKKA L, KARI L. Response of protein and carbohydrate metabolism of scots pine seedlings to low temperature. Plant Physiology, 2002, 159(2): 175-180. doi: 10.1078/0176-1617-00538
    [31]
    张保青. 低温胁迫下甘蔗后期生理特性及差异蛋白质组学研究. 南宁: 广西大学博士学位论文, 2013.

    ZHANG B Q. Study on the physiological and biochemical characteristics and differentially expressed proteome during late growth stage of sugarcane under cold stress. PhD Thesis. Nanning: Guangxi University, 2013.
    [32]
    LANG G A. Dormancy: A new universal terminology. Hortcultural Science, 1987, 22: 817-820.
    [33]
    ROHDE A, BHALERAO R P. Plant dormancy in the perennial context. Trends in Plant Science, 2007, 12(5): 217-223. doi: 10.1016/j.tplants.2007.03.012
    [34]
    陈鹏飞, 张锡亭. 南荻根状茎中可溶性糖、淀粉含量的季节变化. 湘潭师范学院学报(自然科学版), 1994, 15(3): 48-52.

    CHEN P F, ZHANG X T. Seasonal changes in the amont of total sugar and starch in the rhizome of Triarrhna lutarioriparia. Journal of Xiangtan Normal University (Natural Science Edition), 1994, 15(3): 48-52.
    [35]
    龙雯虹, 郭华春, 高星, 金鑫. 3种薯蓣植物珠芽休眠过程中糖类和可溶性蛋白质含量及淀粉酶活性的变化规律. 西部林业科学, 2009, 38(3): 22-27. doi: 10.3969/j.issn.1672-8246.2009.03.004

    LONG W H, GUO H C, GAO X, JIN X. Variation of saccharides soluble proteins and amylase activity in bulbils of three dioscorea specie. Journal of West China Forestry Science, 2009, 38(3): 22-27. doi: 10.3969/j.issn.1672-8246.2009.03.004
    [36]
    赵长山, 史娜, 何付丽, 闫春秀, 李岩, 周欣欣. 苣荬菜芽根休眠过程中碳水化合物变化的研究. 杂草科学, 2008(3): 10-13.

    ZHAO C S, SHI N, HE F L, YAN C X, LI Y, ZHOU X X. Study on carbohydrate change of Sonchus brachyotus sprout roots during dormancy. Weed Science, 2008(3): 10-13.
    [37]
    孙凌俊, 吕春晶, 马丽, 高圣华, 赵海亮, 王柏松. ‘巨峰’葡萄休眠及解除过程糖类物质变化研究. 中国农学通报, 2017, 33(8): 93-98.

    SUN L J, LYU C J, MA L, GAO S H, ZHAO H L, WANG B S. Carbohydrate changes of ‘Kyoho’ grape during dormancy and dormancy-release. Chinese Agricultural Science Bulletin, 2017, 33(8): 93-98.
    [38]
    郑莉, 李梅, 吴学尉, 张达, 李莲莲. 米勒魔芋休眠解除过程中激素及糖类变化. 山西农业科学, 2020, 48(3): 358-363.

    ZHENG L, LI M, WU X W, ZHANG D, LI L L. Changes of hormones and carbohydrate during dormancy to dormancy-release of Amorphophallus muelleri. Journal of Shanxi Agricultural Sciences, 2020, 48(3): 358-363.

Catalog

    Article views (1146) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return