Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
ZHANG J C, FANG X L, NAN Z B. Types and effects of toxins produced by plant pathogenic fungi . Pratacultural Science, 2021, 38(8): 1513-1524 . DOI: 10.11829/j.issn.1001-0629.2020-0716
Citation: ZHANG J C, FANG X L, NAN Z B. Types and effects of toxins produced by plant pathogenic fungi . Pratacultural Science, 2021, 38(8): 1513-1524 . DOI: 10.11829/j.issn.1001-0629.2020-0716

Types and effects of toxins produced by plant pathogenic fungi Fusarium

More Information
  • Corresponding author:

    FANG Xiangling E-mail: xlf@lzu.edu.cn

  • Received Date: December 29, 2020
  • Accepted Date: April 05, 2021
  • Available Online: July 05, 2021
  • Published Date: August 14, 2021
  • As a pathogen of many important crops, Fusarium spp. can not only cause serious loss of crop yield and quality, but also produce a series of toxic secondary metabolites in vitro and in host plants, which called Fusarium toxins. On the one hand, Fusarium toxins are closely related to the pathogenicity of Fusarium to host plants as virulence factors, on the other hand, Fusarium toxins cause the decline of livestock production performance and the emergence of related diseases, which in turn affects the agricultural ecosystem and poses a threat to human health. In view of the influence of Fusarium toxins on crop production and their toxicity to livestock and human, there has been considerable studies on the types of toxin in cereal crop after infection caused by Fusarium, nevertheless, there are few studies on the types of toxin in legume forage after infection caused by Fusarium and the role of toxins in the pathogenicity of Fusarium to legume forage. This study reviewed the main toxins produced by Fusarium species which commonly cause the diseases of main food and feed crops, and the effects of these toxins on plants, livestock and humans. The prospect and significance of research on Fusarium toxins in legume forage were examined.
  • [1]
    赵娜, 杜秀明, 李令蕊, 杨文香, 闫红飞, 刘大群. 我国小麦赤霉病发生与控制研究进展. 河北农业科学, 2020, 24(2): 54-58.

    ZHAO N, DU X M, LI L R, YANG W X, YAN H F, LIU D Q. Research progress on occurrence and control of wheat scab in China. Journal of Hebei Agricultural Sciences, 2020, 24(2): 54-58.
    [2]
    孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡. 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 植物病理学报, 2018, 48(1): 8-15.

    SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P. Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex. Acta Phytopathologica Sinica, 2018, 48(1): 8-15.
    [3]
    张亚朵, 刘佳, 黄文坤, 彭焕, 房庆, 彭德良, 朱英波, 孔令安. 河北廊坊大豆枯萎病病原镰刀菌的分子鉴定. 植物病理学报, 2018, 48(6): 738-747.

    ZHANG Y D, LIU J, HUANG W K, PENG H, FANG Q, PENG D L, ZHU Y B, KONG L A. Molecular identification of Fusarium species from the wilt soybean lines in Langfang, Hebei Province. Acta Phytopathologica Sinica, 2018, 48(6): 738-747.
    [4]
    方香玲, 张彩霞, 南志标. 紫花苜蓿镰刀菌根腐病研究进展. 草业学报, 2019, 28(12): 169-183. doi: 10.11686/cyxb2019105

    FANG X L, ZHANG C X, NAN Z B. Research advances in Fusarium root rot of alfalfa (Medicago sativa). Acta Prataculturae Sinica, 2019, 28(12): 169-183. doi: 10.11686/cyxb2019105
    [5]
    NESIC K, IVANOVIC S, NESIC V. Fusarial toxins: Secondary metabolites of Fusarium fungi. Reviews of Environmental Contamination and Toxicology, 2014, 228: 101-104.
    [6]
    WIPFLER R, MCCORMICK S P, PROCTOR R, TERESI J, HAO G X, WARD T, ALEXANDER N, VAUGHAN M M. Synergistic phytotoxic effects of culmorin and trichothecene mycotoxins. Toxins, 2019, 11(10): 555. doi: 10.3390/toxins11100555
    [7]
    SHI W, TAN Y, WANG S, GARDINER D M, SAEGER S D, LIAO Y C, WANG C, FAN Y Y, WANG Z P, WU A B. Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling. Toxins, 2017, 9(1): 6.
    [8]
    KVAS M, MARASAS W F O, WINGFIELD B D, WINGFIELD M J, STEENKAMP E T. Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Diversity, 2009, 34(2): 1-21.
    [9]
    LESLIE J F, SUMMERELL B A. The Fusarium Laboratory Manual. Iowa: Blackwell Publishing, 2006: 121-274.
    [10]
    BOTTALICO A. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. Journal of Plant Pathology, 1998, 80(2): 85-103.
    [11]
    BOTTALICO A, PERRONE G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, 2002, 108(7): 611-624. doi: 10.1023/A:1020635214971
    [12]
    STĘPIEŃ Ł, CHEŁKOWSKI J. Fusarium head blight of wheat: Pathogenic species and their mycotoxins. World Mycotoxin Journal, 2010, 3(2): 107-119. doi: 10.3920/WMJ2009.1193
    [13]
    CHRIST D S, MARLANDER B, VARRELMANN M. Characterization and mycotoxigenic potential of Fusarium species in freshly harvested and stored sugar beet in Europe. Phytopathology, 2011, 101(11): 1330-1337. doi: 10.1094/PHYTO-01-11-0002
    [14]
    JESTOI M N, PAAVANEN-HUHTALA S, PARIKKA P, YLI-MATTILA T. In vitro and in vivo mycotoxin production of Fusarium species isolated from Finnish grains. Archives of Phytopathology and Plant Protection, 2008, 41(8): 545-558. doi: 10.1080/03235400600881547
    [15]
    SALAS B, STEFFENSON B J, CASPER H H, PROM L K. Fusarium species pathogenic to barley and their associated toxin. Cereal Research Communications, 1997, 25(3): 483-487. doi: 10.1007/BF03543759
    [16]
    VOGELGSANGS, SULYOK M, HECKER A, JENNY E, KRSKA R, SCHUHMACHER R, FORRER H R. Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. European Journal of Plant Pathology, 2008, 122(2): 265-276. doi: 10.1007/s10658-008-9279-0
    [17]
    NAZARI L, PATTORI E, SOMMA S, MANSTRETTA V, WAALWIJK C, MORETTI A, MECA G, ROSSI V. Infection incidence, kernel colonisation, and mycotoxin accumulation in durum wheat inoculated with Fusarium sporotrichioides, F. langsethiae or F. poae at different growth stages. European Journal of Plant Pathology, 2019, 153(3): 715-729. doi: 10.1007/s10658-018-1558-9
    [18]
    MESTERHAZY A, TOLDINE TOTH E, SZEL S, VARGA M, TOTH B. Resistance of maize hybrids to Fusarium graminearum, F. verticillioides ear rots with toothpick and silk channel inoculation, as well as their toxin production. Agronomy, 2020, 10(9): 1283. doi: 10.3390/agronomy10091283
    [19]
    GOSWAMI R S, DONG Y, PUNJA Z K. Host range and mycotoxin production by Fusarium equiseti isolates originating from ginseng fields1. Canadian Journal of Plant Pathology, 2008, 30(1): 155-160. doi: 10.1080/07060660809507506
    [20]
    SCHAAFSMA A W, MILLER J D, SAVARD M E, EWING R J. Ear rot development and mycotoxin production in corn in relation to inoculation method, corn hybrid, and species of Fusarium. Canadian Journal of Plant Pathology, 1993, 15(3): 185-192. doi: 10.1080/07060669309500821
    [21]
    PASCALE M, VISCONTI A, CHELKOWSKI J. Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. European Journal of Plant Pathology, 2002, 108(7): 645-651. doi: 10.1023/A:1020622812246
    [22]
    ZHOU J, WANG M, SUN Y, GU Z C, WANG R R, SAYDIN A, SHEN Q R, GUO S W. Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution. Toxins, 2017, 9(3): 100. doi: 10.3390/toxins9030100
    [23]
    LI C Y, ZUO C W, DENG G M, KUANG R B, YANG Q S, HU C H, SHENG O, ZHANG S, MA L J, WEI Y R, YANG J, LIU S W, BISWAS M K, VILJOEN A, YI G J. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS One, 2013, 8(7): e70226. doi: 10.1371/journal.pone.0070226
    [24]
    PERKOWSKI J, STACHOWIAK J, KIECANA I, GOLINSKI P, CHELKOWSKI J. Natural occurrence of Fusarium mycotoxins in polish cereals. Cereal Research Communications, 1997, 25(3): 379-380. doi: 10.1007/BF03543735
    [25]
    SCHERM B, BALMAS V, SPANU F, PANI G, DELOGU G, PASQUALI M, MIGHELI Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Molecular Plant Pathology, 2013, 14(4): 323-341. doi: 10.1111/mpp.12011
    [26]
    NAZARI L, PATTORI E, MANSTRETTA V, TERZI V, MORCIA C, SOMMA S, MORETTI A, RITIENI A, ROSSI V. Effect of temperature on growth, wheat head infection, and nivalenol production by Fusarium poae. Food Microbiology, 2018, 76: 83-90. doi: 10.1016/j.fm.2018.04.015
    [27]
    JIMENEZ M, MANEZ M, HERNANDEZ E. Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. International Journal of Food Microbiology, 1996, 29(2-3): 417-421. doi: 10.1016/0168-1605(95)00073-9
    [28]
    李凤琴, 于钏钏, 邵兵, 王伟, 于红霞. 2007−2008年中国谷物中隐蔽型脱氧雪腐镰刀菌烯醇及多组分真菌毒素污染状况. 中华预防医学杂志, 2011, 45(1): 57-63.

    LI F Q, YU C C, SHAO B, WANG W, YU H X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chinese Journal of Preventive Medicine, 2011, 45(1): 57-63.
    [29]
    刘凤芝, 李锋, 王永丽. 2017年上半年我国部分地区饲料及饲料原料中霉菌毒素的污染状况分析. 粮食与饲料工业, 2017(11): 46-50.

    LIU F Z, LI F, WANG Y L. Investigation of mycotoxins contamination in feeds and feed ingredients in the first half of 2017 in some parts of China. Cereal and Feed Industry, 2017(11): 46-50.
    [30]
    FREMY J M, ALASSANE-KPEMBI I, OSWALD I P, COTTRILL B, VAN EGMOND H P. A review on combined effects of moniliformin and co-occurring Fusarium toxins in farm animals. World Mycotoxin Journal, 2019, 12(3): 281-291. doi: 10.3920/WMJ2018.2405
    [31]
    FREEMAN G G, MORRISON R I. Trichothecin: An antifungal metabolic product of Trichothecium roseum Link. Nature, 1948, 162: 30.
    [32]
    WU Q H, DOHNAL V, KUCA K, YUAN Z H. Trichothecenes: Structure-toxic activity relationships. Current Drug Metabolism, 2013, 14(6): 641-660. doi: 10.2174/1389200211314060002
    [33]
    宋佳, 范寰, 闫雪, 王文杰, 赵晨. T-2毒素的危害及脱毒研究进展. 粮油食品科技, 2020, 28(5): 194-199.

    SONG J, FAN H, YAN X, WANG W J, ZHAO C. Research progress on the toxicity and detoxification of T-2 toxin. Science and Technology of Cereals, Oils and Foods, 2020, 28(5): 194-199.
    [34]
    张静, 张琼琼, 计成, 赵丽红. 微生物及生物酶对脱氧雪腐镰刀菌烯醇生物转化研究进展. 动物营养学报, 2020, 32(10): 4807-4820. doi: 10.3969/j.issn.1006-267x.2020.10.032

    ZHANG J, ZHANG Q Q, JI C, ZHAO L H. Research advance on biotransformation of deoxynivalenol by microbes and biological enzymes. Acta Zoonutrimenta Sinica, 2020, 32(10): 4807-4820. doi: 10.3969/j.issn.1006-267x.2020.10.032
    [35]
    韩小敏, 张宏元, 张靖, 徐文静, 刘丹, 江涛, 徐进, 李风琴. 中国94份玉米饲料原料中真菌及其毒素污染状况调查. 中华预防医学杂志, 2016, 50(10): 907-911. doi: 10.3760/cma.j.issn.0253-9624.2016.10.013

    HAN X M, ZHANG H Y, ZHANG J, XU W J, LIU D, JIANG T, XU J, LI F Q. Survey on fungi contamination and natural occurrence of mycotoxins in 94 corn feed ingredients collected from China. Chinese Journal of Preventive Medicine, 2016, 50(10): 907-911. doi: 10.3760/cma.j.issn.0253-9624.2016.10.013
    [36]
    GELDERBLOM W C, JASKIEWICZ K, MARASAS W F, THIEL P G, HORAK R M, VLEGGAAR R, KRIEK N P. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environmental Microbiology, 1988, 54(7): 1806-1811. doi: 10.1128/aem.54.7.1806-1811.1988
    [37]
    CORRÊA J A F, ORSO P B, BORDIN K, HARA R V, LUCIANO F B. Toxicological effects of fumonisin B1 in combination with other Fusarium toxins. Food and Chemical Toxicology, 2018, 121: 483-494. doi: 10.1016/j.fct.2018.09.043
    [38]
    李寒松, 樊海新, 李复辉, 吴金杰, 朱平, 王希春. 伏马菌素B1的毒性、污染及其检测技术. 黑龙江畜牧兽医, 2016(5): 275-278.

    LI H S, FAN H X, LI F H, WU J J, ZHU P, WANG X C. Toxicity, pollution and detection technology of fumonisin B1. Heilongjiang Animal Science and Veterinary Medicine, 2016(5): 275-278.
    [39]
    孙武长, 刘桂华, 黄美子, 康勇强, 张伟民, 刘亦农, 邢立新, 梁玉昌. 串珠镰刀菌及伏马菌素在吉林省主粮中的生态学分布调查. 中国卫生检验杂志, 2003, 13(1): 80. doi: 10.3969/j.issn.1004-8685.2003.01.037

    SUN W C, LIU G H, HUANG M Z, KANG Y Q, ZHANG W M, LIU Y N, XING L X, LIANG Y C. Ecological distribution of Fusarium moniliforme and fumonisin in major grains of Jilin Province. Chinese Journal of Health Laboratory Technology, 2003, 13(1): 80. doi: 10.3969/j.issn.1004-8685.2003.01.037
    [40]
    李顺意, 于秋香, 向腊, 周玉玲, 张桂敏. 真菌毒素玉米赤霉烯酮生物降解的研究进展. 生物工程学报, 2018, 34(4): 489-500.

    LI S Y, YU Q X, XIANG L, ZHOU Y L, ZHANG G M. Progress in bio-degradation of mycotoxin zearalenone. Chinese Journal of Biotechnology, 2018, 34(4): 489-500.
    [41]
    陈丽媛. 2018年1−6月饲料及原料霉菌毒素分析报告. 国外畜牧学(猪与禽), 2018, 38(8): 70-72.

    CHEN L Y. Analysis report of mycotoxins in feed and raw materials from January to June 2018. Animal Science Abroad (Pigs and Poultry), 2018, 38(8): 70-72.
    [42]
    李丹迪, 赵丽, 季静, 刘娜, 秦泽明. 济南部分地区谷物制品中脱氧雪腐镰刀菌烯醇及玉米赤霉烯酮的污染状况. 食品安全质量检测学报, 2019, 10(23): 8081-8086.

    LI D D, ZHAO L, JI J, LIU N, QIN Z M. Contamination status of deoxynivalenol and zearalenone in cereal products in parts of Jinan city. Food Safety and Quality Detection Technology, 2019, 10(23): 8081-8086.
    [43]
    METZLER M, PFEIFFER E, HILDEBRAND A. Zearalenone and its metabolites as endocrine disrupting chemicals. World Mycotoxin Journal, 2010, 3(4): 385-401. doi: 10.3920/WMJ2010.1244
    [44]
    BERTHILLER F, WERNER U, SULYOK M, KRSKA R, HAUSER M T, SCHUHMACHER R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Additives and Contaminants, 2006, 23(11): 1194-1200. doi: 10.1080/02652030600778728
    [45]
    COLE R J, KIRKSEY J W, CUTLER H G, DOUPNIK B L, PECKHAM J C. Toxin from Fusarium moniliforme: Effects on plants and animals. Science, 1973, 179: 1324-1326. doi: 10.1126/science.179.4080.1324
    [46]
    JESTOI M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Critical Reviews in Food Science and Nutrition, 2008, 48(1): 21-49. doi: 10.1080/10408390601062021
    [47]
    赵献军. 串珠镰刀菌素研究进展. 动物医学进展, 2002, 23(4): 19-22. doi: 10.3969/j.issn.1007-5038.2002.04.005

    ZHAO X J. The progress in research of moniliformin. Progress in Veterinary Medicine, 2002, 23(4): 19-22. doi: 10.3969/j.issn.1007-5038.2002.04.005
    [48]
    GRUBER-DORNINGER C, NOVAK B, NAGL V, BERTHILLER F. Emerging mycotoxins: Beyond traditionally determined food contaminants. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7052-7070. doi: 10.1021/acs.jafc.6b03413
    [49]
    AGRIOPOULOU S, STAMATELOPOULOU E, VARZAKAS T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods, 2020, 9(2): 137, 1-48.
    [50]
    KAMYAR M, RAWNDUZI P, STUDENIK C R, KOURI K, LEMMENS-GRUBER R. Investigation of the electrophysiological properties of enniatins. Archives of Biochemistry and Biophysics, 2004, 429(2): 215-223. doi: 10.1016/j.abb.2004.06.013
    [51]
    HAMILL R L, HIGGENS C E, BOAZ H E, GORMAN M. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Letters, 1969, 10(49): 4255-4258. doi: 10.1016/S0040-4039(01)88668-8
    [52]
    LUZ C, SALADINO F, LUCIANO F B, MAÑES J, MECA G. Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food and Chemical Toxicology, 2017, 107: 430-439. doi: 10.1016/j.fct.2017.07.032
    [53]
    WU Q H, PATOCKA J, NEPOVIMOVA E, KUCA K. A review on the synthesis and bioactivity aspects of beauvericin, a Fusarium mycotoxin. Frontiers in Pharmacology, 2018, 9: 1338. doi: 10.3389/fphar.2018.01338
    [54]
    韩小敏, 徐文静, 刘明, 张靖, 王美美, 李风琴. 2017年山东省部分地区玉米及其制品中白僵菌素和恩镰孢菌素污染调查. 中国食品卫生杂志, 2018, 30(6): 622-627.

    HAN X M, XU W J, LIU M, ZHANG J, WANG M M, LI F Q. Survey on natural occurrence of beauvericin and enniatins in corn and corn-based samples collected from Shandong Province of China in 2017. Chinese Journal of Food Hygiene, 2018, 30(6): 622-627.
    [55]
    YABUTA T, KOBE K, HAYASHI T. Biochemistry of the bakanae fungus. I. Fusarinic acid, a new product of the bakanae fungus. Journal of the Chemical Society, 1934, 10: 1059-1068.
    [56]
    DONG X, LING N, WANG M, SHEN Q R, GUO S W. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology and Biochemistry, 2012, 60(1): 171-179.
    [57]
    SELIM M E, EL-GAMMAL N A. Role of fusaric acid mycotoxin in pathogensis process of tomato wilt disease caused by Fusarium oxysporum. Journal of Bioprocessing and Biotechniques, 2015, 5(10): 1-5.
    [58]
    DESIARDINS A E, PROCTOR R H, BAI G H, MCCORMICK S P, SHANER G, BUECHLEY G, HOHN T M. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Molecular Plant Microbe Interactions, 1996, 9(9): 775-781. doi: 10.1094/MPMI-9-0775
    [59]
    PLATTNER R D, NELSEN T C, LESLIE J F. Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Applied and Environmental Microbiology, 1995, 61(1): 79-86. doi: 10.1128/aem.61.1.79-86.1995
    [60]
    LÓPEZ‐DÍAZ C, RAHJOO V, SULYOK M, GHIONNA V, MARTIN-VICENTE A, CAPILLA J, PIETRO A D, LÓPEZ-BERGES M S. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 2018, 19(2): 440-453. doi: 10.1111/mpp.12536
    [61]
    HERRMANN M, ZOCHER R, HAESE A. Effect of disruption of the enniatin synthetase gene on the virulence of Fusarium avenaceum. Molecular Plant Microbe Interactions, 1996, 9(4): 226-232. doi: 10.1094/MPMI-9-0226
    [62]
    BRUINS M B M, KARSAI I, SCHEPERS J, SNIJDERS C H A. Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Science, 1993, 94(1-2): 195-206. doi: 10.1016/0168-9452(93)90020-Z
    [63]
    SHIMADA T, OTANI M. Effects of Fusarium mycotoxins on the growth of shoots and roots at germination in some Japanese wheat cultivars. Cereal Research Communications, 1990, 18(3): 229-232.
    [64]
    WAKULINSKI W. Phytotoxicity of the secondary metabolites of fungi causing wheat head fusariosis (head blight). Acta Physiologiae Plantarum, 1989, 11(4): 301-306.
    [65]
    VAN ASCH M A J, RIJKENBERG F H J, COUTINHO T A. Phytotoxicity of fumonisin B1, moniliformin, and T-2 toxin to corn callus cultures. Phytopathology, 1992, 82(11): 1330-1332. doi: 10.1094/Phyto-82-1330
    [66]
    LAMPRECHT S C, MARASAS W F O, ALBERTS J F, CAWOOD M E, GELDERBLOM W C A, SHEPHARD G S, THIEL P G, CALITZ F J. Phytotoxicity of fumonisins and TA-toxin to corn and tomato. Phytopathology, 1994, 84(4): 383-391. doi: 10.1094/Phyto-84-383
    [67]
    ABBAS H K, BOYETTE C D. Phytotoxicity of fumonisin B1 on weed and crop species. Weed Technology, 1992, 6(3): 548-552. doi: 10.1017/S0890037X00035776
    [68]
    BURMEISTER H R, PLATTNER R D. Enniatin production by Fusarium tricinctum and its effect on germinating wheat seeds. Phytopathology, 1987, 77(10): 1483-1487. doi: 10.1094/Phyto-77-1483
    [69]
    HERRMANN M, ZOCHER R, HAESE A. Enniatin production by Fusarium strains and its effect on potato tuber tissue. Applied and Environmental Microbiology, 1996, 62(2): 393-398. doi: 10.1128/aem.62.2.393-398.1996
    [70]
    DING Z J, YANG L Y, WANG G F, GUO L J, LIU L, WANG J, HUANG J S. Fusaric acid is a virulence factor of Fusarium oxysporum f. sp. cubense on banana plantlets. Tropical Plant Pathology, 2018, 43(4): 297-305. doi: 10.1007/s40858-018-0230-4
    [71]
    STIPANOVIC R D, PUCKHABER L S, LIU J, BELL A A. Phytotoxicity of fusaric acid and analogs to cotton. Toxicon, 2011, 57(1): 176-178. doi: 10.1016/j.toxicon.2010.10.006
    [72]
    WANG M, LING N, DONG X, LIU X K, SHEN Q R, GUO S W. Effect of fusaric acid on the leaf physiology of cucumber seedlings. European Journal of Plant Pathology, 2014, 138(1): 103-112. doi: 10.1007/s10658-013-0306-4
    [73]
    MCLEAN M. The phytotoxicity of selected mycotoxins on mature, germinating Zea mays embryos. Mycopathologia, 1995, 132(3): 173-183. doi: 10.1007/BF01103984
    [74]
    NELSON P E, DESJARDINS A E, PLATTNER R D. Fumonisins, mycotoxins produced by Fusarium species: Biology, chemistry, and significance. Annual Review of Phytopathology, 1993, 31(1): 233-252. doi: 10.1146/annurev.py.31.090193.001313
    [75]
    RICHARD J L. Some major mycotoxins and their mycotoxicoses: An overview. International Journal of Food Microbiology, 2007, 119(1-2): 3-10. doi: 10.1016/j.ijfoodmicro.2007.07.019
    [76]
    FERRERAS M C, BENAVIDES J, GARCÍA-PARIENTE C, DELGADO L, FUERTES M, MUÑOZ M, GARCÍA-MARÍN J F, PÉREZ V. Acute and chronic disease associated with naturally occurring T-2 mycotoxicosis in sheep. Journal of Comparative Pathology, 2013, 148(2-3): 236-242. doi: 10.1016/j.jcpa.2012.05.016
    [77]
    ERIKSEN G S, PETTERSSON H. Toxicological evaluation of trichothecenes in animal feed. Animal Feed Science and Technology, 2004, 114(1-4): 205-239. doi: 10.1016/j.anifeedsci.2003.08.008
    [78]
    YOUNG L G, MCGIRR L, VALLI V E, LUMSDEN J H, LUN A. Vomitoxin in corn fed to young pigs. Journal of Animal Science, 1983, 57(3): 655-664. doi: 10.2527/jas1983.573655x
    [79]
    VOSS K A, SMITH G W, HASCHEK W M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Animal Feed Science and Technology, 2007, 137(3-4): 299-325. doi: 10.1016/j.anifeedsci.2007.06.007
    [80]
    JAVED T, BENNETT G A, RICHARD J L, DOMBRINK-KURTZMAN M A, CÔTÉ L M, BUCK W B. Mortality in broiler chicks on feed amended with Fusarium proliferatum culture material or with purified fumonisin B1 and moniliformin. Mycopathologia, 1993, 123(3): 171-184. doi: 10.1007/BF01111269
    [81]
    ZINEDINE A, SORIANO J M, MOLTÓ J C, MAÑES J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food and Chemical Toxicology, 2007, 45(1): 1-18. doi: 10.1016/j.fct.2006.07.030
    [82]
    LONG G G, DIEKMAN M A. Effect of purified zearalenone on early gestation in gilts. Journal of Animal Science, 1984, 59(6): 1662-1670. doi: 10.2527/jas1984.5961662x
    [83]
    DICOSTANZO A, JOHNSTON L, DELS H W, MURPHY M. A review of the effects of molds and mycotoxins in ruminants. The Professional Animal Scientist, 1996, 12(3): 138-150. doi: 10.15232/S1080-7446(15)32510-9
    [84]
    LI Y C, LEDOUX D R, BERMUDEZ A J, FRITSCHE K L, ROTTINGHAUS G E. The individual and combined effects of fumonisin B1 and moniliformin on performance and selected immune parameters in turkey poults. Poultry Science, 2000, 79(6): 871-878. doi: 10.1093/ps/79.6.871
    [85]
    KUBENA L F, HARVEY R B, BUCKLEY S A, BAILEY R H, ROTTINGHAUS G E. Effects of long-term feeding of diets containing moniliformin, supplied by Fusarium fujikuroi culture material, and fumonisin, supplied by Fusarium moniliforme culture material, to laying hens. Poultry Science, 1999, 78(11): 1499-1505. doi: 10.1093/ps/78.11.1499
    [86]
    SMITH T K, MACDONALD E J. Effect of fusaric acid on brain regional neurochemistry and vomiting behavior in swine. Journal of Animal Science, 1991, 69(5): 2044-2049. doi: 10.2527/1991.6952044x
    [87]
    UENO Y. Trichothecene mycotoxins mycology, chemistry, and toxicology. Advances in Nutritional Research, 1980, 3: 301-353.
    [88]
    ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 2017, 14(6): 632. doi: 10.3390/ijerph14060632
    [89]
    QIU J, XU J, SHI J. Fusarium toxins in Chinese wheat since the 1980s. Toxins, 2019, 11(5): 248. doi: 10.3390/toxins11050248
    [90]
    HAQUE M A, WANG Y H, SHEN Z Q, LI X H, SALEEMI M K, HE C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis, 2020, 142: 104095. doi: 10.1016/j.micpath.2020.104095
  • Cited by

    Periodical cited type(9)

    1. 王燕,章红,段和祥,刘绪平,刘卫德. 14种易霉变饮片微生物污染状况及其表面真菌多样性研究. 中国药学杂志. 2024(07): 571-578 .
    2. 卓梦霞,刘思文,李春雨,胡位荣. 镰刀菌属真菌毒素在植物和病原菌互作中的研究进展. 广东农业科学. 2024(03): 56-69 .
    3. 安强. 镰刀菌毒素检测技术的研究进展. 现代食品. 2024(16): 202-206 .
    4. 刘佳,柴改凤,郭风清,张树武,徐秉良. 枯萎病菌毒素粗提液对美洲南瓜幼苗生长及生理的影响. 中国瓜菜. 2023(04): 81-88 .
    5. 张世浩,蒋利荣,李晓东,马伯虎,曾欣,陈锦禧,韦秋香,覃玥. 一株引起广西桑根腐病的病原真菌分离及初步鉴定. 蚕业科学. 2023(03): 219-224 .
    6. 赵秀英,黄晴雯,曹浩杰,王杰,李瑞姣,聂冬霞,韩铮,赵志辉. 响应面法优化禾谷镰刀菌产脱氧雪腐镰刀菌烯醇及其衍生物的液体培养条件. 中国农业科技导报. 2023(07): 222-233 .
    7. 于鑫洋,陈思奇,王溢洋,杨小萱,隆秀芬,房克凤,徐然,张卿,曹庆芹. 北京西山国家森林公园古油松根际微生物多样性分析. 北京农学院学报. 2023(04): 86-92 .
    8. 李菲,杨玲,王巧贞,许秀松,黄庶识,杨慧欢,覃仙玲. 红树林放线菌抗沃柑病原真菌的研究. 中国抗生素杂志. 2022(07): 638-646 .
    9. 姚晨虓,李小杰,刘畅,邱睿,白静科,徐敏,陈玉国,康业斌,李淑君. 3株拮抗烟草尖孢镰刀菌的木霉菌筛选鉴定及促生防病效果评价. 中国烟草学报. 2022(04): 96-105 .

    Other cited types(26)

Catalog

    Article views (5592) PDF downloads (70) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return