Welcome Pratacultural Science,Today is 2025-5-4 Sunday!
DAI X L, WANG P, LIU R R, HAO Y B, JI B M. Effects of extreme drought on community composition of arbuscular mycorrhizal fungi in the typical grasslands in Inner Mongolia during different growing seasons. Pratacultural Science, 2020, 37(8): 1440-1447 . DOI: 10.11829/j.issn.1001-0629.2019-0527
Citation: DAI X L, WANG P, LIU R R, HAO Y B, JI B M. Effects of extreme drought on community composition of arbuscular mycorrhizal fungi in the typical grasslands in Inner Mongolia during different growing seasons. Pratacultural Science, 2020, 37(8): 1440-1447 . DOI: 10.11829/j.issn.1001-0629.2019-0527

Effects of extreme drought on community composition of arbuscular mycorrhizal fungi in the typical grasslands in Inner Mongolia during different growing seasons

More Information
  • Corresponding author:

    JI Baoming E-mail: baomingji@bjfu.edu.cn

  • Received Date: October 23, 2019
  • Accepted Date: April 13, 2020
  • Available Online: July 14, 2020
  • Published Date: August 16, 2020
  • Global climate warming and precipitation variability is expected to increase both the frequency and the intensity of climate extremes, such as severe drought. As a result, the composition of plant community changed and grassland gradually degenerated. Arbuscular mycorrhizal fungi (AMF) can from symbiotic association with the majority of terrestrial plants, which play an important role in plant resistance to environmental stresses. In order to explore the effects of extreme drought on AMF community structure, the experimental platform for simulating extreme drought, Maodeng pasture in Xilin city in Inner Mongolia, was selected as the research area in this study. Based on Illumina sequencing analysis, we measured the composition of AMF community and its relationship with environmental factors in soil ecosystem during different growing seasons under extreme drought. The results showed that: 1) 144 OTUs belonging to 8 genera and 5 families were identified in all samples, among which Glomus was the dominant genus in all treatments. 2) Compared with other extreme drought treatments, the extreme drought at the late growth season significantly reduced AMF colonization and extraradical hyphal length density (P < 0.05). 3) Extreme drought in different periods of the growing season did not significantly change the species richness of AMF, but Shannon-wiener index of AMF community was significantly increased under extreme drought in the late growing season (P = 0.01). Meanwhile, NMDS and PERMANOVA analysis showed that the community structure of AMF changed significantly (P = 0.022). 4) Soil organic carbon, C/N and pH were the main factors contributing to the difference ofchanged AMF community structure.
  • [1]
    Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report: Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014.
    [2]
    闫慧敏, 陈伟娜, 杨方兴, 刘纪远, 胡云锋, 冀咏赞. 过去50年内蒙古极端气候事件时空格局特征. 地理研究, 2014, 33(1): 13-22 . doi: 10.11821/dlyj201401002

    YAN H M, CHEN W N, YANG F X, LIU J Y, HU Y F, JI Y Z. Spatial and temporal patterns of extreme climate events in Inner Mongolia in the past 50 years. Geographical Research, 2014, 33(1): 13-22 . doi: 10.11821/dlyj201401002
    [3]
    康晓明, 崔丽娟, 郝彦宾, 李伟, 崔骁勇, 王艳芬. 极端干旱对内蒙古羊草草原水分平衡的影响. 应用与环境生物学报, 2015, 21(4): 700-709.

    KANG X M, CUI L J, HAO Y B, LI W, CUI X Y, WANG Y F. Effects of extreme drought on the water balance of a <italic>Leymus chinensis</italic> steppe in Inner Mongolia, China. Chinese Journal of Applied Environmental Biology, 2015, 21(4): 700-709.
    [4]
    TIELBORGER K, BILTON M C, METZ J, KIGEL J, HOLZAPFEL C, LEBRIJA-TREJOS E, KONSENS I, PARAG H A, STERNBERG M. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nature Communications, 2014, 5: 5102. doi: 10.1038/ncomms6102
    [5]
    BATES J D, SVEJCAR T, MILLER R F, ANGELL R A. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments, 2006, 64: 670-697. doi: 10.1016/j.jaridenv.2005.06.026
    [6]
    REICHSTEIN M, BAHN M, CIAIS P, FRANK D, MAHECHA M D, SENEVIRATNE S I, ZSCHEISCHLER J, BEER C, BUCHMANN N, FRANK D C, PAPALE D, RAMMIG A, SMITH P, THONICKE K, VELDE M V D, VICCA S, WALZ A, WATTENBACH M. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295. doi: 10.1038/nature12350
    [7]
    KHALVATI M A, HU Y, MOZAFAR A, SCHMIDHALTER U. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 2005, 7(6): 706-712. doi: 10.1055/s-2005-872893
    [8]
    BOWLES T M, JACKSON L E, CAVAGNARO T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 2018, 24(1): e171-e182. doi: 10.1111/gcb.13884
    [9]
    BUCKING H, KAFLE A. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy, 2015, 5(4): 587-612. doi: 10.3390/agronomy5040587
    [10]
    KIM Y C, GAO C, ZHENG Y, HE X H, YANG W, CHEN L, WAN S Q, GUO L D. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza, 2014, 25(4): 267-276.
    [11]
    PHILLIPS J M, HAYMAN D S. Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-160. doi: 10.1016/S0007-1536(70)80110-3
    [12]
    JAKOBSEN I, ABBOTT L K, ROBSON A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with <italic>Trifolium subterraneum</italic> L. New Phytologist, 1992, 120: 4-16.
    [13]
    XIANG D, VERESOGLOU S D, RILLING M C, XU T L, LI H, HAO Z P, CHEN B D. Relative importance of individual climatic drivers shaping arbuscular mycorrhizal fungal communities. Microbial Ecology, 2016, 72(2): 418-427. doi: 10.1007/s00248-016-0773-1
    [14]
    BRUNNER I, HERZOG C, DAWES M A, SPERISEN C. How tree roots respond to drought. Frontiers in Plant Science, 2015, 6: 547 .
    [15]
    STADDON P L, THOMPSON K, JAKOBSEN I, GRIME J P, ASKEW A P, FITTER A H. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology, 2003, 9(2): 186-194. doi: 10.1046/j.1365-2486.2003.00593.x
    [16]
    DEVEAUTOUR C, DONN S, POWER S A, BENNETT A E, POWELL J R. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Molecular Ecology, 2018, 27(8): 2152-2163. doi: 10.1111/mec.14536
    [17]
    ZHANG L H, XIE Z K, ZHAO R F, ZHANG Y B. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 2018, 127: 87-85. doi: 10.1016/j.apsoil.2018.02.005
    [18]
    GUO Y J, DU Q F, LI G, NI Y, ZHANG Z, REN W B, HOU X Y. Soil phosphorus fractions and arbuscular mycorrhizal fungi diversity following long-term grazing exclusion on semi-arid steppes in Inner Mongolia. Geoderma, 2016, 269: 79-90. doi: 10.1016/j.geoderma.2016.01.039
    [19]
    李雪静, 徐天乐, 陈保冬, 徐丽娇, 赵爱花. 荒漠和草原生态系统丛枝菌根真菌多样性和群落结构. 生态学杂志, 2017, 36(10): 2734-2743.

    LI X J, XU T L, CHEN B D, XU L J, ZHAO A H. Diversity and community structure of arbuscular mycorrhizal fungi in desert and steppe ecosystem. Chinese Journal of Ecology, 2017, 36(10): 2734-2743.
    [20]
    DEEPIKA S, KOTHAMASI D. Soil moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza, 2015, 25(1): 67-75. doi: 10.1007/s00572-014-0596-1
    [21]
    LI X L, ZHU T Y, PENG F, CHEN Q, LIN S, CHRISTIE P, ZHANG J L. Inner Mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environmental Microbiology, 2015, 17(8): 3051-3068. doi: 10.1111/1462-2920.12931
    [22]
    李晓亮. 藏东南地区海拔和土地利用方式对丛枝菌根真菌多样性和群落结构的影响. 北京: 中国农业大学博士学位论文, 2015.

    LI X L. Influence of elevation and land use types on diversity and community composition of arbuscular mycorrhizal fungi in southeast Tibet. PhD Thesis. Beijing: China Agricultural University, 2015.
    [23]
    张好强, 唐明, 张海涵. 土壤因子对柠条和沙棘根际AM真菌多样性及侵染状况的影响. 土壤学报, 2009, 46(4): 721-724. doi: 10.3321/j.issn:0564-3929.2009.04.022

    ZHANG H Q, TANG M, ZHANG H H. Influence of soil factors on diversity and colonization of AM fungi in the rhizosphere of <italic>Caragana</italic> and <italic>Hippophae rhamnoides</italic>. Acta Pedologica Sinica, 2009, 46(4): 721-724. doi: 10.3321/j.issn:0564-3929.2009.04.022
    [24]
    汪志琴, 马琨, 王小玲, 李越, 魏常慧. 冬麦免耕覆盖栽培对土壤丛枝菌根真菌多样性的影响. 核农学报, 2019, 33(5): 969-977. doi: 10.11869/j.issn.100-8551.2019.05.0969

    WANG Z Q, MA K, WANG X L, LI Y, WEI C H. Effects of no-tillage mulching of winter wheat on diversity of soil arbuscular mycorrhizal fungi. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 969-977. doi: 10.11869/j.issn.100-8551.2019.05.0969
    [25]
    COTTON T E, FITTER A H, MILLER R M, DUMBRELL A J, HELGASON T. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytologist, 2015, 205(4): 1598-1607. doi: 10.1111/nph.13224
    [26]
    ALGUACIL M M, TORRECILLAS E, GARCIA-ORENES F, ROLDAN A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biology and Biochemistry, 2014, 76: 34-44. doi: 10.1016/j.soilbio.2014.05.002
    [27]
    向丹, 徐天乐, 李欢, 陈保冬. 丛枝菌根真菌的生态分布及其影响因子研究进展. 生态学报, 2017, 37(11): 1-10.

    XIANG D, XU T L, LI H, CHEN B D. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors. Acta Ecologica Sinica, 2017, 37(11): 1-10.
  • Cited by

    Periodical cited type(4)

    1. 李秋桦,尹敏,裴妍,陈秀,任禛,夏体渊,徐胜光. 健康与患黑胫病烟株根内AMF多样性和群落结构差异分析. 云南大学学报(自然科学版). 2023(01): 186-198 .
    2. 苏颖颖,李旭旭,李香君,弓晋超,王文,马骢毓,孙飞达,张新全,周冀琼. 人工修复草地土壤丛枝菌根真菌群落组成对不同放牧年限的响应. 生态学杂志. 2023(11): 2588-2596 .
    3. 李雅男,张峰,赵天启,郑佳华,孙宇,张彬,赵萌莉. 刈割留茬高度对大针茅草原群落组成及物种生态位的影响. 生态环境学报. 2021(07): 1386-1392 .
    4. 刘荣荣,王平,代心灵,陈科宇,李国梁,宛新荣,纪宝明. 不同密度布氏田鼠对内蒙古典型草原菌根真菌群落的影响. 草业学报. 2021(11): 76-86 .

    Other cited types(7)

Catalog

    Article views (4187) PDF downloads (41) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return