Citation: | DAI X L, WANG P, LIU R R, HAO Y B, JI B M. Effects of extreme drought on community composition of arbuscular mycorrhizal fungi in the typical grasslands in Inner Mongolia during different growing seasons. Pratacultural Science, 2020, 37(8): 1440-1447 . DOI: 10.11829/j.issn.1001-0629.2019-0527 |
[1] |
Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report: Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014.
|
[2] |
闫慧敏, 陈伟娜, 杨方兴, 刘纪远, 胡云锋, 冀咏赞. 过去50年内蒙古极端气候事件时空格局特征. 地理研究, 2014, 33(1): 13-22 . doi: 10.11821/dlyj201401002
YAN H M, CHEN W N, YANG F X, LIU J Y, HU Y F, JI Y Z. Spatial and temporal patterns of extreme climate events in Inner Mongolia in the past 50 years. Geographical Research, 2014, 33(1): 13-22 . doi: 10.11821/dlyj201401002
|
[3] |
康晓明, 崔丽娟, 郝彦宾, 李伟, 崔骁勇, 王艳芬. 极端干旱对内蒙古羊草草原水分平衡的影响. 应用与环境生物学报, 2015, 21(4): 700-709.
KANG X M, CUI L J, HAO Y B, LI W, CUI X Y, WANG Y F. Effects of extreme drought on the water balance of a <italic>Leymus chinensis</italic> steppe in Inner Mongolia, China. Chinese Journal of Applied Environmental Biology, 2015, 21(4): 700-709.
|
[4] |
TIELBORGER K, BILTON M C, METZ J, KIGEL J, HOLZAPFEL C, LEBRIJA-TREJOS E, KONSENS I, PARAG H A, STERNBERG M. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nature Communications, 2014, 5: 5102. doi: 10.1038/ncomms6102
|
[5] |
BATES J D, SVEJCAR T, MILLER R F, ANGELL R A. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments, 2006, 64: 670-697. doi: 10.1016/j.jaridenv.2005.06.026
|
[6] |
REICHSTEIN M, BAHN M, CIAIS P, FRANK D, MAHECHA M D, SENEVIRATNE S I, ZSCHEISCHLER J, BEER C, BUCHMANN N, FRANK D C, PAPALE D, RAMMIG A, SMITH P, THONICKE K, VELDE M V D, VICCA S, WALZ A, WATTENBACH M. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295. doi: 10.1038/nature12350
|
[7] |
KHALVATI M A, HU Y, MOZAFAR A, SCHMIDHALTER U. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 2005, 7(6): 706-712. doi: 10.1055/s-2005-872893
|
[8] |
BOWLES T M, JACKSON L E, CAVAGNARO T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 2018, 24(1): e171-e182. doi: 10.1111/gcb.13884
|
[9] |
BUCKING H, KAFLE A. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy, 2015, 5(4): 587-612. doi: 10.3390/agronomy5040587
|
[10] |
KIM Y C, GAO C, ZHENG Y, HE X H, YANG W, CHEN L, WAN S Q, GUO L D. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza, 2014, 25(4): 267-276.
|
[11] |
PHILLIPS J M, HAYMAN D S. Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-160. doi: 10.1016/S0007-1536(70)80110-3
|
[12] |
JAKOBSEN I, ABBOTT L K, ROBSON A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with <italic>Trifolium subterraneum</italic> L. New Phytologist, 1992, 120: 4-16.
|
[13] |
XIANG D, VERESOGLOU S D, RILLING M C, XU T L, LI H, HAO Z P, CHEN B D. Relative importance of individual climatic drivers shaping arbuscular mycorrhizal fungal communities. Microbial Ecology, 2016, 72(2): 418-427. doi: 10.1007/s00248-016-0773-1
|
[14] |
BRUNNER I, HERZOG C, DAWES M A, SPERISEN C. How tree roots respond to drought. Frontiers in Plant Science, 2015, 6: 547 .
|
[15] |
STADDON P L, THOMPSON K, JAKOBSEN I, GRIME J P, ASKEW A P, FITTER A H. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Global Change Biology, 2003, 9(2): 186-194. doi: 10.1046/j.1365-2486.2003.00593.x
|
[16] |
DEVEAUTOUR C, DONN S, POWER S A, BENNETT A E, POWELL J R. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Molecular Ecology, 2018, 27(8): 2152-2163. doi: 10.1111/mec.14536
|
[17] |
ZHANG L H, XIE Z K, ZHAO R F, ZHANG Y B. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 2018, 127: 87-85. doi: 10.1016/j.apsoil.2018.02.005
|
[18] |
GUO Y J, DU Q F, LI G, NI Y, ZHANG Z, REN W B, HOU X Y. Soil phosphorus fractions and arbuscular mycorrhizal fungi diversity following long-term grazing exclusion on semi-arid steppes in Inner Mongolia. Geoderma, 2016, 269: 79-90. doi: 10.1016/j.geoderma.2016.01.039
|
[19] |
李雪静, 徐天乐, 陈保冬, 徐丽娇, 赵爱花. 荒漠和草原生态系统丛枝菌根真菌多样性和群落结构. 生态学杂志, 2017, 36(10): 2734-2743.
LI X J, XU T L, CHEN B D, XU L J, ZHAO A H. Diversity and community structure of arbuscular mycorrhizal fungi in desert and steppe ecosystem. Chinese Journal of Ecology, 2017, 36(10): 2734-2743.
|
[20] |
DEEPIKA S, KOTHAMASI D. Soil moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza, 2015, 25(1): 67-75. doi: 10.1007/s00572-014-0596-1
|
[21] |
LI X L, ZHU T Y, PENG F, CHEN Q, LIN S, CHRISTIE P, ZHANG J L. Inner Mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environmental Microbiology, 2015, 17(8): 3051-3068. doi: 10.1111/1462-2920.12931
|
[22] |
李晓亮. 藏东南地区海拔和土地利用方式对丛枝菌根真菌多样性和群落结构的影响. 北京: 中国农业大学博士学位论文, 2015.
LI X L. Influence of elevation and land use types on diversity and community composition of arbuscular mycorrhizal fungi in southeast Tibet. PhD Thesis. Beijing: China Agricultural University, 2015.
|
[23] |
张好强, 唐明, 张海涵. 土壤因子对柠条和沙棘根际AM真菌多样性及侵染状况的影响. 土壤学报, 2009, 46(4): 721-724. doi: 10.3321/j.issn:0564-3929.2009.04.022
ZHANG H Q, TANG M, ZHANG H H. Influence of soil factors on diversity and colonization of AM fungi in the rhizosphere of <italic>Caragana</italic> and <italic>Hippophae rhamnoides</italic>. Acta Pedologica Sinica, 2009, 46(4): 721-724. doi: 10.3321/j.issn:0564-3929.2009.04.022
|
[24] |
汪志琴, 马琨, 王小玲, 李越, 魏常慧. 冬麦免耕覆盖栽培对土壤丛枝菌根真菌多样性的影响. 核农学报, 2019, 33(5): 969-977. doi: 10.11869/j.issn.100-8551.2019.05.0969
WANG Z Q, MA K, WANG X L, LI Y, WEI C H. Effects of no-tillage mulching of winter wheat on diversity of soil arbuscular mycorrhizal fungi. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 969-977. doi: 10.11869/j.issn.100-8551.2019.05.0969
|
[25] |
COTTON T E, FITTER A H, MILLER R M, DUMBRELL A J, HELGASON T. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytologist, 2015, 205(4): 1598-1607. doi: 10.1111/nph.13224
|
[26] |
ALGUACIL M M, TORRECILLAS E, GARCIA-ORENES F, ROLDAN A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biology and Biochemistry, 2014, 76: 34-44. doi: 10.1016/j.soilbio.2014.05.002
|
[27] |
向丹, 徐天乐, 李欢, 陈保冬. 丛枝菌根真菌的生态分布及其影响因子研究进展. 生态学报, 2017, 37(11): 1-10.
XIANG D, XU T L, LI H, CHEN B D. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors. Acta Ecologica Sinica, 2017, 37(11): 1-10.
|