Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
ZHAO X X, WANG G X, YANG K, RAN F, YANG Y, YANG Y. Research on seed germination, seedling survival, and establishment of alpine plants in response to climate change: A review. Pratacultural Science, 2020, 37(2): 213-225. . DOI: 10.11829/j.issn.1001-0629.2019-0187
Citation: ZHAO X X, WANG G X, YANG K, RAN F, YANG Y, YANG Y. Research on seed germination, seedling survival, and establishment of alpine plants in response to climate change: A review. Pratacultural Science, 2020, 37(2): 213-225. . DOI: 10.11829/j.issn.1001-0629.2019-0187

Research on seed germination, seedling survival, and establishment of alpine plants in response to climate change: A review

More Information
  • Corresponding author:

    YANG Yan  E-mail: yyang@imde.ac.cn

  • Received Date: April 09, 2019
  • Available Online: November 13, 2019
  • Published Date: January 31, 2020
  • The natural regeneration of alpine plants is an important prerequisite for the maintenance of plant community diversity and the productivity of the community in alpine regions. Investigation of the characteristic response to climate change can provide data to support the accurate assessment of the evolution direction and pattern of alpine ecosystem response to climate change, and provide a theoretical basis for exploring the mechanisms of internal evolution. This research starts with the three key regeneration stages of seed germination, seedling survival, and establishment of alpine plants, and summarizes how biological factors (such as plant factors, plant interactions, animal disturbances, and insect pollination) and abiotic factors (such as temperature, moisture, and soil properties) affect these key regeneration stages. During the seed germination stage, extreme drought and alpine snow melt in advance have changed the relationship of plant and pollination insect and nutrient structure network. Increased temperature and precipitation increase the seed germination of plants. This warming can break the dormancy of seeds and change their physiological status. An increase in soil moisture can provide an adequate water supply for seed germination. Excessive temperature and moisture hinder seed germination, which is attributable to high-temperature stress, caused by temperature above the germination threshold, and the production of pathogens by excessive soil moisture. Seedling survival and establishment stage, plant animal disturbance, and plant interspecific competition are both advantageous and disadvantageous for seedling survival and settlement. Appropriate animal disturbance increases seedling growth space, and plant interspecific competition in resource-poor mountainous areas promotes seedlings to coordinate with each other and promote survival and establishment. High-intensity feeding by animals and disturbance of seedlings and inter-species competition among resource-rich regions hinder the acquisition of plant resources and inhibit the survival and settlement of seedlings. At present, the impact of warming on the survival of alpine plant seedlings is still unconfirmed (it may promote survival or have no effect), but the conclusion that warming and increased precipitation can promote seedling growth is well accepted, showing that warmer and more moist soil allows better seedling growth. Good environmental conditions are conducive to the absorption and utilization of nutrients. This research clarifies the effects of biotic and abiotic factors on the three stages of early regeneration of alpine plants, and indicates the deficiency of research not accounting for multiple effects of biotic and abiotic factors, and proposes scientific issues that require further investigation. Thus, this study has provided a reference on the impact of climate change on alpine ecosystems for future studies.
  • [1]
    STOCKER T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014.
    [2]
    THOMAS C D, CAMERON A, GREEN R E, BAKKENES M, BEAUMONT L J, COLLINGHAM Y C, ERASMUS B F N, DE SIQUIRA M F, GRAINGER A, HANNAH L, HUGHES L, HUNTLEY B, VAN JAARSVELD A S, MIDGLEY G F, MILES L, ORTEGA-HUERTA M A, PETERSON A T, PHILLIPS O L, WILLIAMS S E . Extinction risk from climate change. Nature, 2004, 427: 145-148. doi: 10.1038/nature02121
    [3]
    MONDONI A, ROSSI G, ORSENIGO S, PROBERT R J. Climate warming could shift the timing of seed germination in alpine plants. Annals of Botany, 2012, 110(1): 155-164. doi: 10.1093/aob/mcs097
    [4]
    LOPEZ-MORENO J I. Recent variations of snowpack depth in the central Spanish Pyrenees. Arctic, Antarctic, and Alpine Research, 2005, 37(2): 253-260. doi: 10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2
    [5]
    MENG F D, JIANG L L, ZHANG Z H, CUI S J, DUAN J C, WANG S P, LUO C Y, WANGG Q, ZHOU Y, LI X E, ZHANG L R, LI B W, DORJI T, LI Y N, DU M Y. Changes in flowering functional group affect responses of-community phenological sequences to temperature change. Ecology, 2017, 98(3): 734-740. doi: 10.1002/ecy.1685
    [6]
    BARNETT T P, ADAM J C, LETTENMAIER D P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438: 303-309. doi: 10.1038/nature04141
    [7]
    CHRISTENSEN J H, CHRISTENSEN O B. Climate modelling: Severe summertime flooding in Europe. Nature, 2003, 421: 805-806. doi: 10.1038/421805a
    [8]
    MOKTAN M R, GRATZER G, RICHARDS W H, BAHADURRAI T, DUKPA D, TENZIN K. Regeneration of mixed conifer forests under group tree selection harvest management in western Bhutan Himalayas. Forest Ecology and Management, 2009, 257(10): 2121-2132. doi: 10.1016/j.foreco.2009.02.022
    [9]
    马姜明, 刘世荣, 史作民, 张远东, 缪宁. 川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子. 植物生态学报, 2009, 33(4): 646-657. doi: 10.3773/j.issn.1005-264x.2009.04.003

    MA J M, LIU S R, SHI Z M, ZHANG Y D, MIU N. Natural regeneration of Abies faxoninana long restoration gradients of subalpine dark coniferous Sichuan, China. Chinese Journal of Plant Ecology, 2009, 33(4): 646-657. doi: 10.3773/j.issn.1005-264x.2009.04.003
    [10]
    FENNER M. Seeds: The ecology of regeneration in plant communities. Journal of Ecology, 2000, 2(81): 1-17.
    [11]
    SVEINBJ RNSSON B, KAUHANEN H, NORDELL O. Treeline ecology of mountain birch in the torneträsk area. Ecological Bulletins, 1996, 45: 65-70.
    [12]
    丛毓, 贺红士, 谷晓楠, 徐文茹, 刘凯, 宗盛伟, 杜海波. 高山林线形成机理研究进展. 应用生态学报, 2016, 27(9): 3035-3041.

    CONG Y, HE H S, GU X N, XU W R, LIU K, ZONG S W, DU H B. Progresses of alpine treeline formation mechanism. Chinese Journal of Applied Ecology, 2016, 27(9): 3035-3041.
    [13]
    MORENO J M, ZUAZUA E, PEREZ B. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences, 2011, 8(12): 3721-3732. doi: 10.5194/bg-8-3721-2011
    [14]
    MEYER S E, PENDLETON B K. Factors affecting seed germination and seedling establishment of a long-lived desert shrub (Coleogyne ramosissima: Rosaceae). Plant Ecology, 2005, 178(2): 171-187. doi: 10.1007/s11258-004-3038-x
    [15]
    BOULANGER-LAPOINTE N, LEVESQUE E, BOUDREAU S, HENRY H R G, N M SCHMIDT. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. Journal of Biogeography, 2014, 41(10): 1967-78. doi: 10.1111/jbi.12350
    [16]
    CLARK C J, POULSEN J R, LEVEY D J, OSENBERG C W. Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. The American Naturalist, 2007, 170(1): 128-142. doi: 10.1086/518565
    [17]
    DULLINGER S, HULBER K. Experimental evaluation of seed limitation in alpine snowbed plants. PLoS One, 2011, 6(6): e21537. doi: 10.1371/journal.pone.0021537
    [18]
    FUNES G, BASCONCELO S, DIAZ S, CABIDO M. Edaphic patchiness influences grassland regeneration from the soil seed-bank in mountain grasslands of central Argentina. Austral Ecology, 2001, 26(2): 205-212. doi: 10.1046/j.1442-9993.2001.01102.x
    [19]
    PLUESS A R, SCH TZ W, ST CKLIN J. Seed weight increases with altitude in the swiss alps between related species but not among populations of individual species. Oecologia, 2005, 144(1): 55-61. doi: 10.1007/s00442-005-0047-y
    [20]
    MOLES A T, FALSTER D S, LEISHMAN M R, WESTOBY M. Small-seeded species produce more seeds per square metre of canopy per year, but not individual per lifetime. Journal of Ecology, 2004, 92(3): 384-396. doi: 10.1111/j.0022-0477.2004.00880.x
    [21]
    WESTOBY M, JURADO E, LEISHMAN M. Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution, 1992, 7(11): 368-372.
    [22]
    WANG G Y, BASKIN C C, BASKIN J M, YANG X J, LIU G F, X S ZHANG, YE X H, Z Y HUANG. Timing of seed germination in two alpine herbs on the southeastern Tibetan Plateau: The role of seed dormancy and annual dormancy cycling in soil. Plant and Soil, 2017, 421(1/2): 465-476. doi: 10.1007/s11104-017-3400-0
    [23]
    SOMMERVILLE K D, MARTYN A J, OFFORD C A. Can seed characteristics or species distribution be used to predict the stratification requirements of herbs in the Australian Alps? Botanical Journal of the Linnean Society, 2013, 172(2): 187-204. doi: 10.1111/boj.12021
    [24]
    JAGANATHAN G K, DALRYMPLE S E, LIU B. Towards an understanding of factors controlling seed bank composition and longevity in the alpine environment. Botanical Review, 2015, 81(1): 70-103. doi: 10.1007/s12229-014-9150-2
    [25]
    SCHWIENBACHER E, NAVARRO-CANO J A, NEUNER G, ERSCHBAMER B. Seed dormancy in alpine species. Flora, 2011, 206(10): 845-856.
    [26]
    MARCANTE S, SIERRA-ALMEIDA A, SPINDELB CK J P, ERECHBAMER B, NEUNER G. Frost as a limiting factor for recruitment and establishment of early development stages in an alpine glacier foreland? Journal of Vegetation Science, 2012, 23(5): 858-868. doi: 10.1111/j.1654-1103.2012.01411.x
    [27]
    ORSENIGO S, ABELI T, ROSSI G, BONASONI P, C PASQUARETTA, GANDINI M, MONDONI A. Effects of autumn and spring heat waves on seed germination of high mountain plants. PLoS One, 2015, 10(7): e0133626. doi: 10.1371/journal.pone.0133626
    [28]
    SHIMONO Y, KUDO G. Comparisons of germination traits of alpine plants between fellfield and snowbed habitats. Ecological Research, 2005, 20(2): 189-197. doi: 10.1007/s11284-004-0031-8
    [29]
    HOYLE G L, STEADMAN K J, GOOD R B, MCITOSH E J, LUCY M E, NICOTRA A B. Seed germination strategies: An evolutionary trajectory independent of vegetative functional traits. Frontiers in Plant Science, 2015, 6: 731.
    [30]
    BASKIN J M, BASKIN C C. Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. Seed Science Research, 2000, 10(4): 409-413. doi: 10.1017/S0960258500000453
    [31]
    TOBIAS T B, FARRER E C, ROSALES A, SINSABAUGHC R L, SUDINGDK N, A PORRAS-ALFAROA. Seed-associated fungi in the alpine tundra: Both mutualists and pathogens could impact plant recruitment. Fungal Ecology, 2017, 30: 10-18. doi: 10.1016/j.funeco.2017.08.001
    [32]
    HOISS B, KRAUSS J, STEFFAN-DEWENTER I. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Global Change Biology, 2015, 21(11): 4086-4097. doi: 10.1111/gcb.12968
    [33]
    WALTHER G R, POST E, CONVEY P, MENZEL A, PARMESAN C, BEEBEE T J C, FROMENTIN J M, HOEGH-GULDBERG O, BAIRLEIN F. Ecological responses to recent climate change. Nature, 2002, 416: 389-395. doi: 10.1038/416389a
    [34]
    PARMESAN C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 2007, 13(9): 1860-1872. doi: 10.1111/j.1365-2486.2007.01404.x
    [35]
    JOHNSON D M, BUNTGEN U, FRANK D C, KAUSRUD K, HAYNES K J, LIEBHOLD A M, ESPER J, STENSENTH N C. Climatic warming disrupts recurrent alpine insect outbreaks. Proceedings of the National Academy of Sciences, 2010, 107(47): 20576-20581. doi: 10.1073/pnas.1010270107
    [36]
    KUDO G, IDA T Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 2013, 94(10): 2311-2320. doi: 10.1890/12-2003.1
    [37]
    HEGLAND S J, NIELSEN A, AMPARO L, BJERKNES A L, TTOLAND Ø. How does climate warming affect plant-pollinator interactions? Ecology Letters, 2009, 12(2): 184-195. doi: 10.1111/j.1461-0248.2008.01269.x
    [38]
    MUNOZ A A, CAVIERES L A. The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. Journal of Ecology, 2008, 96(3): 459-467. doi: 10.1111/j.1365-2745.2008.01361.x
    [39]
    STRAKA J R, STARZOMSKI B M. Fruitful factors: what limits seed production of flowering plants in the alpine? Oecologia, 2015, 178(1): 249-260. doi: 10.1007/s00442-014-3169-2
    [40]
    THAPA R, KEMP D R, MICHALK D L, BADGERY W B, SIMMONSI A T. Seedling recruitment of native perennial grasses within existing swards. Crop and Pasture Science, 2011, 62(7): 591-602. doi: 10.1071/CP10212
    [41]
    HU X W, FAN Y, BASKIN C C, BASKIN J M, WANG Y R. Comparison of the effects of temperature and water potential on seed germination of fabaceae species from desert and subalpine grassland. American Journal of Botany, 2015, 102(5): 649-660. doi: 10.3732/ajb.1400507
    [42]
    BASKIN C C, MILBERG P, ANDERSSON L, BASKIN J M. Germination studies of three dwarf shrubs (Vaccinium, Ericaceae) of Northern Hemisphere coniferous forests. Canadian Journal of Botany, 2000, 78(12): 1552-1560. doi: 10.1139/b00-129
    [43]
    BASKIN C C, ZACKRISSON O, BASKIN J M. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany, 2002, 89(3): 486-493. doi: 10.3732/ajb.89.3.486
    [44]
    GRAAE B J, ALSOS I G, EJRNAES R. The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecology, 2008, 198(2): 275-284. doi: 10.1007/s11258-008-9403-4
    [45]
    MEINERI E, SPINDELBOCK J, VANDVIK V. Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecology, 2013, 214(4): 607-619. doi: 10.1007/s11258-013-0193-y
    [46]
    SHEN W, ZHANG L, GUO Y, LUO T X. Causes for treeline stability under climate warming: Evidence from seed and seedling transplant experiments in southeast Tibet. Forest Ecology and Management, 2018, 408: 45-53. doi: 10.1016/j.foreco.2017.10.025
    [47]
    HOBBIE S E, CHAPIN F S. An experimental test of limits to tree establishment in Arctic tundra. Journal of Ecology, 1998, 86(3): 449-461. doi: 10.1046/j.1365-2745.1998.00278.x
    [48]
    IBANEZ I, CLARK J S, LADEAU S, RIS LAMBERS J H. Exploiting temporal variability to understand tree recruitment response to climate change. Ecological Monographs, 2007, 77(2): 163-177. doi: 10.1890/06-1097
    [49]
    SHEVTSOVA A, GRAAE B J, JOCHUM T, A MILBAU, KOCKELBERGH F, BEYENS L, NIJS I. Critical periods for impact of climate warming on early seedling establishment in subarctic tundra. Global Change Biology, 2009, 15(11): 2662-2680. doi: 10.1111/j.1365-2486.2009.01947.x
    [50]
    RAWAT B S, KHANDURI V P, SHARMA C M. Beneficial effects of cold-moist stratification on seed germination behaviors of Abies pindrow and Picea smithiana. Journal of Forestry Research, 2008, 19(2): 125-130. doi: 10.1007/s11676-008-0021-8
    [51]
    KUEPPERS L M, FAIST A, FERRENBERG S, CASTANHA C, CONLISK E, WOLF J. Lab and field warming similarly advance germination date and limit germination rate for high and low elevation provenances of two widespread subalpine conifers. Forests, 2017, 8(11): 433. doi: 10.3390/f8110433
    [52]
    LETT S, DORREPAAL E. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Functional Ecology, 2018, 32(7): 1666-1680. doi: 10.1111/1365-2435.13137
    [53]
    VANDVIK V, VANGE V. Germination ecology of the clonal herb Knautia arvensis: Regeneration strategy and geographic variation. Journal of Vegetation Science, 2003, 14(4): 591-600.
    [54]
    WALCK J L, HIDAYATI S N, DIXON K W, THOMPSON K, POSCHLOD P. Climate change and plant regeneration from seed. Global Change Biology, 2011, 17(6): 2145-2161. doi: 10.1111/j.1365-2486.2010.02368.x
    [55]
    FORBIS T A. Seedling demography in an alpine ecosystem. American Journal of Botany, 2003, 90(8): 1197-1206. doi: 10.3732/ajb.90.8.1197
    [56]
    TINGSTAD L, OLSEN S L, KLANDERUD K, VANDVIK V, OHLSON M. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone. Oecologia, 2015, 179(2): 599-608. doi: 10.1007/s00442-015-3360-0
    [57]
    WESCHE K, CIERJACKS A, ASSEFA Y, WANGER S, FETENE M, HENSEN I. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecology & Diversity, 2008, 1(1): 35-46.
    [58]
    CONLISK E, CASTANHA C, GERMINO M J, VEBLEN T T, SMITH J M, MOYES A B, KUEPPERS L M. Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts. Global Change Biology, 2018, 24(1): 197-211. doi: 10.1111/gcb.13840
    [59]
    URBIETA I R, P REZ-RAMOS I M, ZAVALA M A, MARANON T, KOBE R K. Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean oak species. Canadian Journal of Forest Research, 2008, 38(9): 2382-2393. doi: 10.1139/X08-089
    [60]
    BLANEY C S, KOTANEN P M. Effects of fungal pathogens on seeds of native and exotic plants: A test using congeneric pairs. Journal of Applied Ecology, 2001, 38(5): 1104-1113.
    [61]
    WAGNER M, MITSCHUNAS N. Fungal effects on seed bank persistence and potential applications in weed biocontrol: A review. Basic & Applied Ecology, 2008, 9(3): 191-203.
    [62]
    DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165-173. doi: 10.1038/nature04514
    [63]
    SULLIVAN P F, SVEINBJORNSSON B. Microtopographic control of treeline advance in Noatak National Preserve, Northwest Alaska. Ecosystems, 2010, 13(2): 275-285. doi: 10.1007/s10021-010-9318-5
    [64]
    RODHE H, DENTENER F, SCHULZ M. The global distribution of acidifying wet deposition. Environment Science & Technology, 2002, 36(20): 4382-4388.
    [65]
    MA M J, DALLING J W, MA Z, ZHOU X H. Soil environmental factors drive seed density across vegetation types on the Tibetan Plateau. Plant and Soil, 2017, 419(1/2): 349-361. doi: 10.1007/s11104-017-3348-0
    [66]
    PAKEMAN R J, SMALL J L, TORVELL L. Edaphic factors influence the longevity of seeds in the soil. Plant Ecology, 2012, 213(1): 57-65. doi: 10.1007/s11258-011-0006-0
    [67]
    ERIKSSON A, ERIKSSON O. Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank. Nordic Journal of Botany, 1997, 17(5): 469-482. doi: 10.1111/j.1756-1051.1997.tb00344.x
    [68]
    NYSTUEN K O, EVJU M, RUSCH G M, GRAAE B J, EIDE N E. Rodent population dynamics affect seedling recruitment in alpine habitats. Journal of Vegetation Science, 2014, 25(4): 1004-1014. doi: 10.1111/jvs.12163
    [69]
    CAMAC J S, WILLIAMS R J, WAHREN C H, HOFFMANN A A, VESK P A. Climatic warming strengthens a positive feedback between alpine shrubs and fire. Global Change Biology, 2017, 23(8): 3249-3258. doi: 10.1111/gcb.13614
    [70]
    CIERJACKS A, RUHR N K, WESCHE K, HENSEN I. Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecology, 2008, 194(2): 207-221.
    [71]
    CIERJACKS A, WESCHE K, HENSEN I. Potential lateral expansion of Polylepis forest fragments in central Ecuador. Forest Ecology and Management, 2007, 242(2/3): 477-486. doi: 10.1016/j.foreco.2007.01.082
    [72]
    KLANDERUD K. Species recruitment in alpine plant communities: The role of species interactions and productivity. Journal of Ecology, 2010, 98(5): 1128-1133. doi: 10.1111/j.1365-2745.2010.01703.x
    [73]
    REBOLLO S, MILCHUNAS D G, STAPP P, AUGUSTINE D J, DERNER J D. Disproportionate effects of non-colonial small herbivores on structure and diversity of grassland dominated by large herbivores. Oikos, 2013, 122(12): 1757-1767. doi: 10.1111/j.1600-0706.2013.00403.x
    [74]
    KLANDERUD K, MEINERI E, TOPPER J, MICHEL P, VANDVIK V. Biotic interaction effects on seedling recruitment along bioclimatic gradients: Testing the stress-gradient hypothesis. Journal of Vegetation Science, 2017, 28(2): 347-356. doi: 10.1111/jvs.12495
    [75]
    COOP J D, GIVNISH T J. Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico. Ecology, 2008, 89(4): 1101-1111. doi: 10.1890/06-1333.1
    [76]
    HESSL A E, GRAUMLICH L J. Interactive effects of human activities, herbivory and fire on quaking aspen (Populus tremuloides) age structures in western Wyoming. Journal of Biogeography, 2002, 29(7): 889-902. doi: 10.1046/j.1365-2699.2002.00703.x
    [77]
    CAIRNS D M, MOEN J. Herbivory influences tree lines. Journal of Ecology, 2004, 92(6): 1019-1024. doi: 10.1111/j.1365-2745.2004.00945.x
    [78]
    BOGNOUNOU F, HULME P E, OKSANEN L, SUOMINEN O, OOLGFSSON J. Role of climate and herbivory on native and alien conifer seedling recruitment at above the Fennoscandian tree line. Journal Vegetation Science, 2018, 29(4): 573-584. doi: 10.1111/jvs.12637
    [79]
    CAIRNS D M, LAFON C, MOEN J, YOUNG A. Influences of animal activity on treeline position and pattern: Implications for treeline responses to climate change. Physical Geograpgy, 2007, 28(5): 419-433. doi: 10.2747/0272-3646.28.5.419
    [80]
    PARIDA M, HOFFMANN A A, HILL M P. Climate change expected to drive habitat loss for two key herbivore species in an alpine environment. Journal of Biogeography, 2015, 42(7): 1210-1221. doi: 10.1111/jbi.12490
    [81]
    PARMESAN C, YOHE G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421: 37-42. doi: 10.1038/nature01286
    [82]
    LASKURAIN N A, ALDEZABAL A, OLANO J M, LOIDI J, ESCUDERO A. Intensification of domestic ungulate grazing delays secondary forest succession: Evidence from exclosure plots. Journal of Vegetation Science, 2013, 24(2): 320-331. doi: 10.1111/j.1654-1103.2012.01469.x
    [83]
    DALGLEISH H J, KOONS D N, ADLER P B. Can life-history traits predict the response of forb populations to changes in climate variability? Journal of Ecology, 2010, 98(1): 209-217. doi: 10.1111/j.1365-2745.2009.01585.x
    [84]
    SENFELDR M, TREML V, MADERA P, VOLARIK D. Effects of prostrate dwarf pine on Norway Spruce clonal groups in the treeline ecotone of the Hruby Jesenik Mountains, Czech Republic. Arctic, Antarctic, and Alpine Research, 2014, 46(2): 430-440. doi: 10.1657/1938-4246-46.2.430
    [85]
    LIANG E Y, WANG Y F, PIAO S L, LU X M, CAMARERO J J, ZHU H F, ZHU L P, ELLISON A M, CIAIS P, PENUELAS J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2016, 113(16): 4380-4385. doi: 10.1073/pnas.1520582113
    [86]
    CALLAWAY R M, BROOKER R W, CHOLER P, KIKVIDZE Z, LOTIEORTIE C J, MICHALETICHALET R, PAOLIN L, PUGNAIRE F I, NEWINGHAM B, ASCHEHOUG E T, ARMAS C, KIKODZE D, COOK B J. Positive interactions among alpine plants increase with stress. Nature, 2002, 417: 844-848. doi: 10.1038/nature00812
    [87]
    BURZLE B, SCHICKHOFF U, SCHWAB N, WERNICKE L M, MULLER Y K, BOHNER J, CHAUDHARY R P, SCHOLTEN T, OOLDELAND J. Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone. Plant Ecology, 2018, 219(2): 115-132. doi: 10.1007/s11258-017-0782-2
    [88]
    AKHALKATSI M, ABDALADZE O, NAKHUTSRISHVILI G, SMITH W K. Facilitation of seedling microsites by rhododendron Caucasicum extends the Betula Litwinowii alpine treeline, Caucasus mountains, Republic of Georgia. Arctic Antarctic & Alpine Research, 2006, 38(4): 481-488.
    [89]
    GRAU O, NINOT J M, BLANCO-MORENO J M, VAN LOGTESTIGN R S P, CORNELISSEN J H C, CALLGAHAN T V. Shrub-tree interactions and environmental changes drive treeline dynamics in the Subarctic. Oikos, 2012, 121(10): 1680-1690. doi: 10.1111/j.1600-0706.2011.20032.x
    [90]
    GELDERMAN M S, MACDONALD S E, GOULD A J. Regeneration niche of whitebark pine in the Canadian Rocky Mountains: The basis to restoring an endangered species. Arctic Antarctic & Alpine Research, 2016, 48(2): 279-292.
    [91]
    PARKER T C, SUBKE J A, WOOKEY P A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Global Change Biology, 2015, 21(5): 2070-2081. doi: 10.1111/gcb.12793
    [92]
    GERMINO M J, SMITH W K, RESOR A C. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology, 2002, 162(2): 157-168. doi: 10.1023/A:1020385320738
    [93]
    BATLLORI E, CAMARERO J J, NINOT J M, GUTIERREZ E. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology Biogeography, 2009, 18(4): 460-472. doi: 10.1111/j.1466-8238.2009.00464.x
    [94]
    LIU X S, LUO T X. Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, Southeast Tibet. Arctic Antarctic & Alpine Research, 2011, 43(2): 229-238.
    [95]
    AWADA T, RADOGLOU K, FOTELLI M N, CONSTANTINIDOU H I A. Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 2003, 23(1): 33-41. doi: 10.1093/treephys/23.1.33
    [96]
    REHM E M, FEELEY K J. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology, 2015, 96(7): 1856-1865. doi: 10.1890/14-1992.1
    [97]
    CHOLER P, MICHALET R, CALLAWAY R M. Facilitation and competition on gradients in alpine plant communities. Ecology, 2001, 82(12): 3295-3308. doi: 10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2
    [98]
    KLANDERUD K, VANDVIK V, GOLDBERG D. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One, 2015, 10(6): e0130205.
    [99]
    LU X, LIANG E, WANG Y, BABST F, LEAVITT S W, CAMARERO J J. Past the climate optimum: Recruitment is declining at the world's highest juniper shrublines on the Tibetan Plateau. Ecology, 2019, 100(2): e02557. doi: 10.1002/ecy.2557
    [100]
    TOTLAND O, ALATALO J M. Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia, 2002, 133(2): 168-175. doi: 10.1007/s00442-002-1028-z
    [101]
    SHIMONO Y, KUDO G. Intraspecific variations in seedling emergence and survival of Potentilla matsumurae (Rosaceae) between alpine fellfield and snowbed habitats. Annals of Botany, 2003, 91(1): 21-29. doi: 10.1093/aob/mcg002
    [102]
    GILL R A, CAMPBELL C S, KARLINSEY S M. Soil moisture controls engelmann spruce (Picea engelmannii) seedling carbon balance and survivorship at timberline in Utah, USA. Canadian Journal of Forest Research, 2015, 45(12): 1845-1852. doi: 10.1139/cjfr-2015-0239
    [103]
    MOYES A B, CASTANHA C, GERMINO M J, KUEPPERS L M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia, 2013, 171(1): 271-282. doi: 10.1007/s00442-012-2410-0
    [104]
    JOHNSON D M, GERMINO M J, SMITH W K. Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiology, 2004, 24(4): 377-386. doi: 10.1093/treephys/24.4.377
    [105]
    KIM E, DONOHUE K. Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change. Journal of Ecology, 2013, 101(3): 796-805. doi: 10.1111/1365-2745.12077
    [106]
    GIMENEZ-BENAVIDES L, ESCUDERO A, IRIONDO J M. Local adaptation enhances seedling recruitment along an altitudinal gradient in a high mountain Mediterranean plant. Annals of Botany, 2007, 99(4): 723-734.
    [107]
    MOSER B, WALTHERT L, METSLAID M, WASEM U, WOHLGEMUTH T. Spring water deficit and soil conditions matter more than seed origin and summer drought for the establishment of temperate conifers. Oecologia, 2017, 183(2): 519-530. doi: 10.1007/s00442-016-3766-3
    [108]
    LORANGER H, ZOTZ G, BADER M Y. Early establishment of trees at the alpine treeline: Idiosyncratic species responses to temperature-moisture interactions. AoB Plants, 2016, 8: 1-14.
    [109]
    MAHER E L, GERMINO M J, HASSELQUIST N J. Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine tree-line ecotone. Canadian Journal of Forest Research, 2005, 35(3): 567-574. doi: 10.1139/x04-201
    [110]
    MAHER E L, GERMINO M J. Microsite differentiation among conifer species during seedling establishment at alpine treeline. Ecoscience, 2006, 13(3): 334-341. doi: 10.2980/i1195-6860-13-3-334.1
    [111]
    DAVIS E L, HAGER H A, GEDALOF Z. Soil properties as constraints to seedling regeneration beyond alpine treelines in the Canadian Rocky Mountains. Arctic, Antarctic, and Alpine Research, 2018, 50(1): e415625.
    [112]
    ATKIN O K. Reassessing the nitrogen relations of Arctic plants: A mini-review. Plant Cell Environ, 1996, 19(6): 695-704. doi: 10.1111/j.1365-3040.1996.tb00404.x
    [113]
    GORDON C, WYNN J M, WOODIN S J. Impacts of increased nitrogen supply on high Arctic heath: The importance of bryophytes and phosphorus availability. New Phytologist, 2001, 149(3): 461-471.
    [114]
    VAN DE WEG M J, MEIR P, GRACE J, ATKIN O K. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology Diversity, 2009, 2(3): 243-247. doi: 10.1080/17550870903518045
    [115]
    NAGY L, PROCTOR J. Plant growth and reproduction on a toxic alpine ultramafic soil: Adaptation to nutrient limitation. New Phytologist, 1997, 137(2): 267-274. doi: 10.1046/j.1469-8137.1997.00799.x
    [116]
    SCOTTON M. Mountain grassland restoration: Effects of sowing rate, climate and soil on plant density and cover. Science of Total Environment, 2019, 651: 3090-3098. doi: 10.1016/j.scitotenv.2018.10.192
    [117]
    WEIH M, KARLSSON P S. The nitrogen economy of mountain birch seedlings: Implications for winter survival. Journal of Ecology, 1999, 87(2): 211-219. doi: 10.1046/j.1365-2745.1999.00340.x
    [118]
    DAVIS E L, HAGER H A, GEDALOF Z. Soil properties as constraints to seedling regeneration beyond alpine treelines in the Canadian Rocky Mountains. Arctic, Antarctic, and Alpine Research, 2018, 50(1): e1415625. doi: 10.1080/15230430.2017.1415625
    [119]
    MOSCATELLI M C, BONIFACIO E, CHITI T, CUDLIN P, DINCA L, GOMORYOV E, GREGO S, PORTA N L, KARLINSKI L, PELLISL G, RRUDAWSK M, SQUARTINI A, ZHIYANSKI M, BROLL G. Soil properties as indicators of treeline dynamics in relation to anthropogenic pressure and climate change. Climate Research, 2017, 73(1/2): 73-84. doi: 10.3354/cr01478
  • Related Articles

    [1]YUAN Huijun, SU Zhaozhong, WANG Chunmei, ZHANG Ruiyan, GUAN Yuchen, LI Xueyong, BAO Jingting. Cloning and expression analysis of transcription factor gene LbWIN1 in response to abiotic stress in Lycium barbarum ssp. Bianguo[J]. Pratacultural Science, 2023, 40(6): 1449-1460. DOI: 10.11829/j.issn.1001-0629.2022-0190
    [2]SHI Yuchen, SONG Yike, ZHOU Jun, GAI Aihong, SHI Ning, SUN Jian, WANG Jinniu, WU Yan. Characteristics and influencing factors of soil inorganic phosphorus across the interfaces of sub-alpine forest–alpine meadow ecosystems at Minjiang headwaters[J]. Pratacultural Science, 2023, 40(3): 603-615. DOI: 10.11829/j.issn.1001-0629.2021-0769
    [3]LUO Ling, XU Xiaoheng, YANG Kang, LI Zhou, ZHANG Xinquan. Senescence and heat shock protein in plants in response to abiotic stress[J]. Pratacultural Science, 2020, 37(11): 2320-2333. DOI: 10.11829/j.issn.1001-0629.2020-0097
    [4]YANG Shimei, ZHANG Tao, ZHAO Qiumei, GAO Xiaoye, WANG Zhiwei, HE Tengbing. Factors influencing ecosystem respiration in different cultivated grassland ecosystems in Guiyang[J]. Pratacultural Science, 2020, 37(11): 2211-2222. DOI: 10.11829/j.issn.1001-0629.2020-0251
    [5]CHEN Zhiyong, XIE Yingxin, LIU Miao. Responses of aboveground biomass and species richness to environmental factors in a fenced alpine grassland[J]. Pratacultural Science, 2019, 36(4): 1000-1009. DOI: 10.11829/j.issn.1001-0629.2019-0032
    [6]Kai Zeng, Lin Liu, Yi-min Cai, You-jun Chen, Dong-ming Chen, Fei-da <br/>Sun, Shu-ting Pei, Chun-mei Zhou, Xu-dong Shen. The nitrogen cycle and factors affecting it in the belowground ecosystem[J]. Pratacultural Science, 2017, 11(3): 502-514. DOI: 10.11829/j.issn.1001-0629.2016-0342
    [7]Cheng Zheng, Liang Xiao, Zhi-yong Chen, Zi-li Yi. Effects of four environmental factors on the seed germination and seedling growth of Miscanthus sinensis[J]. Pratacultural Science, 2016, 10(11): 2254-2258. DOI: 10.11829/j.issn.1001-0629.2016-0028
    [8]Zhulong CHAN, Haitao SHI, Yanping WANG. Response of bermuda grass to abiotic stress[J]. Pratacultural Science, 2013, 7(8): 1182-1187.
    [9]Zhennan WANG, Huimin YANG. Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors[J]. Pratacultural Science, 2013, 7(6): 927-934.
    [10]Effect of biotic and abiotic factors on symbiotic nitrogen fixation[J]. Pratacultural Science, 2010, 4(6): 64-70.
  • Cited by

    Periodical cited type(11)

    1. 周睿,陆婷,刘爱民. 全缘铁线莲种子休眠特性及破眠方法研究. 中国野生植物资源. 2024(06): 44-50 .
    2. 高悦,秦启娟,严佳玥,崔静怡,魏岩. 萹蓄两种异型种子萌发及幼苗的生长特性. 草业科学. 2024(07): 1660-1667 . 本站查看
    3. 师生波,周党卫,李天才,德科加,杲秀珍,马家麟,张雯. 夜间低温对青藏高原高寒草甸小嵩草光合活性的影响. 植物生理学报. 2023(03): 663-672 .
    4. 师生波,师瑞,周党卫,李天才,张雯. 低温逆境对青藏高原小嵩草叶片PSⅡ光化学效率的影响. 甘肃农业大学学报. 2023(04): 201-211 .
    5. 李蕊,陈文莉,孙泽元,陈瑞鑫,张艺,古锐,蒋桂华. 光照、温度和干旱胁迫对藏药川西小黄菊种子萌发的影响. 中草药. 2023(19): 6443-6451 .
    6. 王小雪,王恒,张俊飞,冯泽军,安利伟,郭明明. 塞罕坝林区华北落叶松径向生长对气候变化的响应. 林业与生态科学. 2022(02): 192-197 .
    7. 王佳豪,何克燕,鲍根生,张永超,秦燕,吴浩,魏小星. 模拟干旱胁迫下45份早熟禾种质资源种子萌发特性比较. 中国草地学报. 2022(06): 67-76 .
    8. 杨黔越,叶兴状,徐毅枫,覃名扬,刘宝,黄秋良,张国防. 山白树潜在适生区对气候变化的响应. 福建农林大学学报(自然科学版). 2022(05): 629-635 .
    9. 彭钟通,郭明明,张远东,顾峰雪,邵辉,刘世荣. 升温突变对川西道孚林线川西云杉和鳞皮冷杉生长的影响. 生态学报. 2021(20): 8202-8211 .
    10. 阮易柔,吴智华,吴士筠,钟祖昌,覃瑞,刘虹. 中华金腰种子萌发特性研究. 中南民族大学学报(自然科学版). 2020(06): 586-590 .
    11. 吴星慧,苏宝玲,齐麟,王炎,马玥,周莉. 生物炭对白桦种子出苗率与幼苗生长的影响. 林业资源管理. 2020(06): 128-134 .

    Other cited types(11)

Catalog

    Article views (2604) PDF downloads (62) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return