Welcome Pratacultural Science,Today is 2025-5-3 Saturday!
WU H Y, ZHAO Q, SONG G L, CAO Y H, HU X B, ZHANG L, ZHANG A B. Study on root architecture characteristics of wild in flatland and sloped sites. Pratacultural Science, 2019, 36(7): 1725-1733 . DOI: 10.11829/j.issn.1001-0629.2019-0174
Citation: WU H Y, ZHAO Q, SONG G L, CAO Y H, HU X B, ZHANG L, ZHANG A B. Study on root architecture characteristics of wild in flatland and sloped sites. Pratacultural Science, 2019, 36(7): 1725-1733 . DOI: 10.11829/j.issn.1001-0629.2019-0174

Study on root architecture characteristics of wild Lespedeza bicolor in flatland and sloped sites

More Information
  • Corresponding author:

    SONG Guilong E-mail: syihan@163.com

  • Received Date: April 01, 2019
  • Accepted Date: June 03, 2019
  • Available Online: July 30, 2019
  • Published Date: June 30, 2019
  • Our objective was to study the root differences of Lespedeza bicolor under natural conditions in flatland and sloped sites, and to reveal the root changes and adaptive strategies of plants growing in different sites. The root distribution and fractal characteristics of two years old L. bicolor growing in flatland and sloped conditions (24°, 35°, 45°) in Jiufeng Forest Farm were compared by excavating whole root systems and using a Win-RHIZO root analysis system. 1) There were significant differences in the root distribution range and number of base roots growing in different directions between the four sites (P < 0.05). Root systems tended to occur in the surface layer in flatland sites, while vertical expansion of L. bicolor root systems tended to be enhanced in sloped sites. 2) Sloped sites had more significant effects on root biomass and root-shoot ratio than flatlands, and root biomass was the highest in 35° sloped sites. 3) The root depth-width ratio and root-shoot ratio of L. bicolor tended to increase with increasing slope. 4) Different site conditions had certain effects on the root architecture of L. bicolor. The changes in root length, root fractal dimension, and root abundance were consistent between the four site conditions, which showed as 35° > flatland > 45° > 24°. Root volume and root surface area differed between the sites (35° > 45° > flatland > 24°). The root length, root surface area, root volume, fractal dimension, and root abundance of L. bicolor were the highest in the 35° sloped sites and the root systems were more developed. The results show that different site conditions affect root morphogenesis in varying degrees, and plants form unique root adaptation strategies, which shows the plasticity of plant roots to adapt to heterogeneous environments.
  • [1]
    朱同林, 方素琴, 李志垣, 刘玉涛, 廖红, 严小龙. 基于图像重建的根系三维构型定量分析及其在大豆磷吸收研究中的应用. 科学通报, 2006, 51(16): 1885-1893. doi: 10.3321/j.issn:0023-074X.2006.16.006

    ZHU T L, FANG S Q, LI Z Y, LIU Y T, LIAO H, YAN X L. Roots three-dimensional structure quantitative analysis based on image reconstruction and its application in the study on phosphorous absorption in soybeans. Chinese Science Bulletin, 2006, 51(16): 1885-1893. doi: 10.3321/j.issn:0023-074X.2006.16.006
    [2]
    张兴玲, 胡夏嵩, 毛小青, 梁通, 陈桂琛. 植物根系固土护坡力学机理研究现状与进展. 人民黄河, 2009, 31(6): 88-90. doi: 10.3969/j.issn.1000-1379.2009.06.037

    ZHANG X L, HU X S, MAO X Q, LIANG T, CHEN G C. Research status and progress of mechanics mechanism of plant roots for soil consolidation and slope protection. Yellow River, 2009, 31(6): 88-90. doi: 10.3969/j.issn.1000-1379.2009.06.037
    [3]
    嵇晓雷, 杨平. 夹竹桃根系分枝角度对边坡稳定性影响. 生态环境学报, 2012, 21(12): 1966-1970. doi: 10.3969/j.issn.1674-5906.2012.12.010

    JI X L, YANG P. The effects of roots angles of Nerium indicum on the stability of slopes. Ecology and Environment Sciences, 2012, 21(12): 1966-1970. doi: 10.3969/j.issn.1674-5906.2012.12.010
    [4]
    国振杰, 易津, 张力君, 陈锋, 侯晓东. 海拔高度对羊草生物量和根茎形态可塑性的影响. 干旱区资源与环境, 2008, 22(4): 175-180. doi: 10.3969/j.issn.1003-7578.2008.04.033

    GUO Z J, YI J, ZHANG L J, CHEN F, HOU X D. Effect of different altitude on biomass and rhizomatous morphological plasticity of Leymus chinensis. Journal of Arid Land Resources and Environment, 2008, 22(4): 175-180. doi: 10.3969/j.issn.1003-7578.2008.04.033
    [5]
    STOKES A, ATGER C, BENGOUGH A G, FOURCAUD T, SIDLE R C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 2009, 324(1-2): 1-30. doi: 10.1007/s11104-009-0159-y
    [6]
    张丞, 李绍才, 孙海龙, 龙凤, 罗龙皂, 芦荻秋, 王云翔. 黄荆根系在风化岩石边坡上的锚固研究. 四川建筑, 2011, 31(3): 84-87. doi: 10.3969/j.issn.1007-8983.2011.03.032

    ZHANG C, LI S C, SUN H L, LONG F, LUO L Z, LU D Q, WANG Y X. Root anchorage of Vitex negundo L. on rocky slopes under different weathering degrees. Sichuan Architecture, 2011, 31(3): 84-87. doi: 10.3969/j.issn.1007-8983.2011.03.032
    [7]
    徐洪雨. 坡度对岩石边坡植物根系分布及抗拔力的影响. 北京: 北京林业大学硕士学位论文, 2013.

    XU H Y. Effect of gradient to distribute characteristics and pull-out resistance of plant roots on rock slopes. Master Thesis. Beijing: Beijing Forestry University, 2013.
    [8]
    薛文鹏, 赵忠, 李鹏, 曹扬. 王东沟不同坡向刺槐细根分布特征研究. 西北农林科技大学学报(自然科学版), 2003, 31(6): 27-32. doi: 10.3321/j.issn:1671-9387.2003.06.006

    XUE W P, ZHAO Z, LI P, CAO Y. Researches on root distribution characteristics of Robinia pseudoacacia L. stand in Wangdonggou on different site conditions. Journal of Northwest A & F University(Natural Science Edition), 2003, 31(6): 27-32. doi: 10.3321/j.issn:1671-9387.2003.06.006
    [9]
    CHIATANTE D, SAMATARO M, FUSCO S, IORIO A D, SCIPPA G S. Modification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartium junceum L. growing on slopes. Plant Biosystems, 2003, 137(1): 47-56. doi: 10.1080/11263500312331351321
    [10]
    SCIPPA G S, DI M M, DI I A, COSTA A, LASSERRE B, CHIATANTE D. The response of Spartium junceum roots to slope: anchorage and gene factors. Annals of Botany, 2006, 97(5): 857-866. doi: 10.1093/aob/mcj603
    [11]
    常学礼, 吕世海, 冯朝阳, 叶生星. 地形对草甸草原植被生产力分布格局的影响. 生态学报, 2015, 35(10): 3339-3348.

    CHANG X L, LYU S H, FENG C Y, YE S X. Impact of topography on the spatial distribution pattern of net primary productivity in a meadow. Acta Ecologica Sinica, 2015, 35(10): 3339-3348.
    [12]
    李天文, 刘学军, 汤国安. 地形复杂度对坡度坡向的影响. 山地学报, 2004, 22(3): 272-277. doi: 10.3969/j.issn.1008-2786.2004.03.003

    LI T W, LIU X J, TANG G A. Influence of terrain complexity on slope and aspect. Journal of Mountain Science, 2004, 22(3): 272-277. doi: 10.3969/j.issn.1008-2786.2004.03.003
    [13]
    陈侯鑫, 何芬, 农寿千, 孙衍汤. 不同坡度和不同坡向对金花茶生长量的影响. 现代园艺, 2019(1): 10-13. doi: 10.3969/j.issn.1006-4958.2019.01.004

    CHEN H X, H F, NONG S Q, SUN Y T. Effects of different slope gradients and directions on the growth of Camellia nitidissima. Xiandai Horticulture, 2019(1): 10-13. doi: 10.3969/j.issn.1006-4958.2019.01.004
    [14]
    张飞虎. 长白山西坡高山–亚高山带立地类型与植被型的拟合分析. 长春: 东北师范大学硕士学位论文, 2011.

    ZHANG F H. The fitting analysis of site type and vegetation on the western slope of Changbai Mountain–subalpine. Master Thesis. Chang chun: Northeast Normal University, 2011.
    [15]
    严小龙, 廖红, 戈振扬, 罗锡文. 植物根构型特性与磷吸收效率. 植物学通报, 2000, 17(6): 511-519. doi: 10.3969/j.issn.1674-3466.2000.06.004

    YAN X L, LIAO H, GE Z Y, LUO X W. Root architectural characteristics and phosphorus acquisition efficiency in plants. Chinese Bulletin of Botany, 2000, 17(6): 511-519. doi: 10.3969/j.issn.1674-3466.2000.06.004
    [16]
    王浩, 黄晨璐, 杨方社, 李怀恩. 砒砂岩区沙棘根系的生境适应性. 应用生态学报, 2019, 30(1): 157-164.

    WANG H, HUANG C L, YANG F S, LI H N. Root habitat flexibility of seabuckthorn in the Pisha sandstone area. Chinese Journal of Applied Ecology, 2019, 30(1): 157-164.
    [17]
    宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系. 植物生态学报, 2015, 39(6): 577-585. doi: 10.17521/cjpe.2015.0055

    SONG Q H, ZHAO C Z, SHI Y C, DU J, WANG J W, CHEN J. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes. Chinese Journal of Plant Ecology, 2015, 39(6): 577-585. doi: 10.17521/cjpe.2015.0055
    [18]
    杨福春, 郭炳桥, 孙俊, 范瑞瑞, 孙蒙柯, 陈晓萍, 郭英荣, 袁荣斌, 程林, 钟全林, 程栋梁. 武夷山不同海拔黄山松根系生物量季节变化特征. 应用与环境生物学报, 2017, 23(6): 1117-1121.

    YANG F C, GUO B Q, SUN J, FAN R R, SUN M K, CHEN X P, GUO Y R, YUAN R B, CHENG L, ZHONG Q L, CHENG D L. Seasonal variation in the root biomass of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountain. Chinese Journal of Applied and Environmental Biology, 2017, 23(6): 1117-1121.
    [19]
    孙百生, 钱金平, 赵欢蕊. 西北典型荒漠植物红砂生物量及根系形态特征对降水格局的响应. 生态环境学报, 2018, 27(11): 1993-1999.

    SUN B S, QIAN J P, ZHAO H R. Response of biomass and root morphology of desert plants Reaumuria songarica to precipitation change in northwest China. Ecology and Environmental Sciences, 2018, 27(11): 1993-1999.
    [20]
    张鹏, 王新杰, 凌威, 王勇, 乔永, 卢妮妮, 张艳, 郭倩. 北京鹫峰地区侧柏人工林草本层物种多样性及主要种种间关系研究. 西北农林科技大学学报(自然科学版), 2017, 45(4): 86-93.

    ZHANG P, WANG X J, LING W, WANG Y, QIAO Y, LU N N, ZHANG Y, GUO Q. Plant diversity and interspecific relationship of main herb species in Platycladus orientalis plantation in Jiufeng Mountain, Beijing. Journal of Northwest A & F University(Natural Science Edition), 2017, 45(4): 86-93.
    [21]
    李雪萍, 赵成章, 任悦, 张晶, 雷蕾. 尕海湿地不同密度条件下垂穗披碱草根系分形结构. 生态学报, 2018, 38(4): 1176-1182.

    LI X P, ZHAO C Z, REN Y, ZHANG J, LEI L. Fractal root systems of Elymus nutans under different density conditions in Gahai Wetland. Acta Ecologica Sinica, 2018, 38(4): 1176-1182.
    [22]
    吕爽, 张现慧, 张楠, 夏延国, 井家林, 李景文. 胡杨幼苗根系生长与构型对土壤水分的响应. 西北植物学报, 2015, 35(5): 1005-1012. doi: 10.7606/j.issn.1000-4025.2015.05.1005

    LYU S, ZHANG X H, ZHANG N, XIA Y G, JING J L, LI J W. Response of root growth and architecture of Populus euphratica seedling on soil water. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 1005-1012. doi: 10.7606/j.issn.1000-4025.2015.05.1005
    [23]
    GHESTEM M, VEYLON G, BERNARD A, VANEL Q, STOKES A. Influence of plant root system morphology and architectural traits on soil shear resistance. Plant & Soil, 2014, 377(1-2): 43-61.
    [24]
    王浩. 砒砂岩区不同生境条件下沙棘根系构型特征研究. 西安: 西北大学硕士学位论文, 2018.

    WANG H. Study on the root architecture characteristics of the seabuckthorn under different habitats in the Pisha sandstone area. Master Thesis. Xi'an: Northwest University, 2018.
    [25]
    张宇清, 齐实, 文妙霞. 梯田埂坎植物根系营养空间及伸展模式初步研究. 中国水土保持科学, 2003, 1(3): 31-36. doi: 10.3969/j.issn.1672-3007.2003.03.007

    ZHANG Y Q, QI S, WEN M X. Primary study on root system foraging space and rooting pattern of plants on the terrace embankments. Science of Soil and Water Conservation, 2003, 1(3): 31-36. doi: 10.3969/j.issn.1672-3007.2003.03.007
    [26]
    张楠, 杨雪芹, 曹德昌, 李景文, 井家林, 吕爽, 夏延国. 土壤水肥因子对胡杨幼苗生长权衡和木质化的影响. 西北植物学报, 2013, 33(4): 771-779. doi: 10.3969/j.issn.1000-4025.2013.04.019

    ZHANG N, YANG X Q, CAO D C, LI J W, JING J L, LYU S, XIA Y G. Soil water and fertilizer factors on the trade-off of growth and lignification of Populus euphratica seedling. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(4): 771-779. doi: 10.3969/j.issn.1000-4025.2013.04.019
    [27]
    王鑫皓, 王云琦, 马超, 王玉杰. 根系构型对土壤渗透性能的影响. 中国水土保持科学, 2018, 16(4): 73-82.

    WANG X H, WANG Y Q, MA C, WANG Y J. Effect of root architecture on soil permeability. Science of Soil and Water Conservation, 2018, 16(4): 73-82.
    [28]
    CHIATANTE D, SCIPPA S G, IORIO A D, SARNATARO M. The influence of steep slopes on root system development. Journal of Plant Growth Regulation, 2003, 21(4): 247-260.
    [29]
    徐洪雨, 王英宇, 宋桂龙, 韩烈保. 华北土石山区公路边坡常见植物根系地下分布特征. 中国水土保持科学, 2013, 11(2): 51-58. doi: 10.3969/j.issn.1672-3007.2013.02.009

    XU H Y, WANG Y Y, SONG G L, HAN L B. Characteristics of root system distribution of common plants on freeway slopes in earthy-rocky mountain area of North China. Science of Soil and Water Conservation, 2013, 11(2): 51-58. doi: 10.3969/j.issn.1672-3007.2013.02.009
    [30]
    赵鹏宇, 徐学选. 黄土丘陵区多次降雨补充下草灌地土壤水分空间变化规律. 干旱地区农业研究, 2012, 30(4): 9-13. doi: 10.3969/j.issn.1000-7601.2012.04.002

    ZHAO P Y, XU X X. Spatial variation of soil moisture on the grass and shrub land under multiple rainfall's supplement in Loess hilly area. Agricultural Research in the Arid Areas, 2012, 30(4): 9-13. doi: 10.3969/j.issn.1000-7601.2012.04.002
    [31]
    杨振亚, 周本智, 陈庆标, 葛晓改, 王小明, 曹永慧, 童冉, 石洋. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响. 生态学报, 2018, 38(18): 6729-6740.

    YANG Z Y, ZHOU B Z, CHEN Q B, GE X G, WANG X M, CAO Y H, TONG R, SHI Y. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata. Acta Ecologica Sinica, 2018, 38(18): 6729-6740.
    [32]
    杨培岭, 任树梅, 罗远培. 分形曲线度量与根系形态的分形表征. 中国农业科学, 1999, 32(1): 89-92. doi: 10.3321/j.issn:0578-1752.1999.01.016

    YANG P L, REN S M, LUO Y P. Measurement of fractal curve and express of root morphology. Scientia Agricultura Sinica, 1999, 32(1): 89-92. doi: 10.3321/j.issn:0578-1752.1999.01.016
    [33]
    李成俊, 孙琦, 陈璋, 庞亮, 胡兴, 龙凤. 道路边坡坡度对植被恢复中物种多样性的影响研究. 植物研究, 2013, 33(4): 477-483. doi: 10.7525/j.issn.1673-5102.2013.04.015

    LI C J, SUN Q, CHEN Z, PANG L, HU X, LONG F. Effects of roadside slope gradient on plant diversity during revegetation. Bulletin of Botanical Research, 2013, 33(4): 477-483. doi: 10.7525/j.issn.1673-5102.2013.04.015
  • Cited by

    Periodical cited type(6)

    1. 林阳,荆烁,于欣,朱虹. 育苗基质对胡枝子、荆条幼苗根系生长的影响. 辽宁林业科技. 2024(02): 25-28 .
    2. 楼科尔,曲文杰,王磊,王兴,郜永贵,杨新国. 腾格里沙漠东南缘猪毛菜(Salsola collina)根系构型特征比较. 中国沙漠. 2024(04): 193-201 .
    3. 郭月峰,张志强,祁伟. 砒砂岩区不同灌木根系构型及根系抗拉对比. 水土保持学报. 2023(03): 273-280 .
    4. 牛家永,周永毅,张建经,段达,陈克朋. 基于新型拉伸装置的根-土复合体抗拉强度. 西南交通大学学报. 2022(01): 191-199 .
    5. 张扬,李程远,韩少杰,陈祥伟. 典型黑土区主要树种根系构型特征及其对固土能力的影响. 应用生态学报. 2021(05): 1726-1734 .
    6. 李义强,伍红燕,赵斌,李一为,夏宇,孙盛年,梁燕宁,王玉. 岩石边坡坡度对紫花苜蓿根系生长特征及拉拔力的影响. 草原与草坪. 2020(03): 9-14 .

    Other cited types(8)

Catalog

    Article views (1618) PDF downloads (41) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return