Welcome Pratacultural Science,Today is 2025-5-4 Sunday!
Xin-jian Shi, Yan-qin Wang, Zhi-jun Li. Physiological changes during seed germination and seedling development in Karelinia caspia Less. under drought and salinity stress[J]. Pratacultural Science, 2017, 11(9): 1855-1862. DOI: 10.11829/j.issn.1001-0629.2016-0547
Citation: Xin-jian Shi, Yan-qin Wang, Zhi-jun Li. Physiological changes during seed germination and seedling development in Karelinia caspia Less. under drought and salinity stress[J]. Pratacultural Science, 2017, 11(9): 1855-1862. DOI: 10.11829/j.issn.1001-0629.2016-0547

Physiological changes during seed germination and seedling development in Karelinia caspia Less. under drought and salinity stress

More Information
  • Received Date: October 31, 2016
  • Revised Date: March 21, 2017
  • Published Date: September 19, 2017
  • In order to explore the physiological changes in Karelinia caspia during seed germination and seedling development under drought and salt stress, we used different concentrations of PEG-6000 or NaCl to simulate drought and salt stress, respectively. Germination rate, protective enzyme activity, relative conductivity and the Malondialdehyde (MDA)content during seed germination and in the seedling of K. caspia under stress (drought and salinity) were determined. The results show that: 1) With increasing amounts of PEG and NaCl, a gradual decrease in germination was observed, while there were no significant differences between the seeds treated with 15% PEG and 50 mmol·L-1 NaCl when compared to control. However, when PEG was above 20%, or when NaCl concentration was increased above 100 mmol·L-1, we observed significant differences between treated samples and control. 2) In the range of 5%~20% PEG or 200~400 mmol·L-1 NaCl, with a concentration gradient and increasing stress duration, a corresponding increase in MDA content, and elevated enzymatic activities for POD, SOD and CAT were observed. When plants were treated with 25% PEG and 500 mmol·L-1 NaCl, the relative conductivity and MDA content increased significantly with prolonged stress periods. Enzyme activities for POD, SOD and CAT also increased initially with prolonged stress before decreasing to normal levels. These preliminary results reveal that K. caspia Less has huge potential to adapt to adverse environmental conditions. Also, our study revealed that the drought threshold was equivalent to the PEG 25%, while the salinity threshold was the equivalent of 300 mmol·L-1 NaCl.
  • [1]
    国家林业局.第五次中国荒漠化和沙化状况公报.中国绿色时报,2015-12-03(第1版).
    [1]
    He L B,Xu Y Q,Li F L,Yu Z Q,Liu D,Cai Z X,Zhou J,Li F,Hu B Z.Effects of salt stress on seed germination and seedling physiological characteristics of Rumex .Pratacultural Science,2015,32(3):400-405.(in Chinese)
    [2]
    Han Z J,Cheng L,Yang Z P,Zhang L,Shi Q.Response of seed germination to salt and drought stress in Suaeda rigida .Northern Horticulture,2015(4):63-66.(in Chinese)
    [2]
    赫兰保,徐永清,李凤兰,于志强,刘丹,蔡振学,周晶,李飞,胡宝忠.盐胁迫对鲁梅克斯杂交酸模种子萌发及幼苗生理特性的影响.草业科学,2015,32(3):400-405.
    [3]
    Kang K.The research of land desertification environment in our country.Science #x00026; Technology Information,2013(6):79-90.(in Chinese)
    [3]
    韩占江,程龙,杨赵平,张玲,石强.硬枝碱蓬种子萌发对盐旱胁迫的响应.北方园艺,2015(4):63-66.
    [4]
    康锴.我国土地沙漠化环境问题研究.科技信息,2013(6):79-90.
    [4]
    Luo J X,Cheng C P,Ding J S,Shen T Y,Su S Q.The utilization of Karelinia caspia Less research.Chinese Journal of Grassland,1988(2):16-20.(in Chinese)
    [5]
    罗家雄,程昌平,丁金石,申土彦,苏胜强.花花柴利用的研究.中国草地学报,1988(2):16-20.
    [5]
    Tang G L,Li X Y,Lin L S,Li L,Lu J R.Short-term effect of phloem girdling on water potential and photosynthetic characteristics in Karelinia caspia Less.Journal of Desert Research,2014,34(6):1527-1536.(in Chinese)
    [6]
    唐钢梁,李向义,林丽莎,李磊,鲁建荣.表皮环割对花花柴水势及光合参数的短期影响.中国沙漠,2014,34(6):1527-1536.
    [6]
    Buhailiqiemu#x000b7;Abuduregeman,Liu H L,Zhang D Y,Guan K Y.Effects of different temperature and water-heat conditions on the physical dormancy release of three desert legume species.Arid Zone Research,2016,33(3):525-533.(in Chinese)
    [7]
    李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:105-118.
    [7]
    Cheng L,Han Z J,Shi X J,Binuer Abulikemu,Li Z J.Seed germination characteristics and the response to salt and drought stress in Halogeton arachnoideus Bieb.Journal of Arid Land Resources and Environment.2015,29(3):131-136.(in Chinese)
    [8]
    陈建勋,王晓峰.植物生理学实验指导.第2版.广州:华南理工大学出版社,2006:64-66.
    [8]
    Li S J,Han D H,Wang E J,Wu Y.Effects of exogenous betaine on seed germination and antioxidase activities of Lycium ruthenium seedlings under NaCl stress.Pratacultural Scicnce,2016,33(4):674-680.(in Chinese)
    [9]
    Liu K B,Jiang S X.Responses of Apoceynum venetum seed germination to drought and salt stress.Acta Prataculturae Sinica,2016,25(5):214-221.(in Chinese)
    [9]
    布海丽且姆#x000b7;阿卜杜热合曼,刘会良,张道远,管开云.不同温度、水热条件对3种植物种子物理休眠解除的影响.干旱区研究,2016,33(3):525-533.
    [10]
    Yue L J,Cui Y N,Yuan K,Kang J J,Wang S M.The osmotic adjustment in Pugionium cornutum subjected to salt stress.Plant Physiology Journal,2016,52(4):569-574.(in Chinese)
    [10]
    程龙,韩占江,石新建,比努尔#x000b7;阿不力克木,李志军.白茎盐生草种子萌发特性及其对盐旱胁迫的响应.干旱区资源与环境,2015,29(3):131-136.
    [11]
    李善家,韩多红,王恩军,武燕.外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响.草业科学,2016,33(4):674-680.
    [11]
    Zhou L,Gan Y,Ou X B,Wang G X.Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production.Chinese Journal of Eco-Agriculture,2011,19(1):217-225.(in Chinese)
    [12]
    Wang Z C,Yakupujiang #x000b7;Aximu,Wang Y,Zhang F C.Effects of salt and water stresses on seed germination of Karilinia caspica .Journal of Desert Research,2012,32(3):750-755.(in Chinese)
    [12]
    刘克彪,姜生秀.干旱和钠盐胁迫对罗布麻种子萌发的影响.草业学报,2016,25(5):214-221.
    [13]
    岳利军,崔彦农,袁坤,康建军,王锁民.NaCl胁迫下沙芥的渗透调节作用.植物生理学报,2016,52(4):569-574.
    [13]
    Huang C B,Zeng F J,Lei J Q.Comparison of drought resistance among three Calligonum in the southern fringe of the Taklamakan desert.Acta Prataculturae Sinica,2014,23(3):136-143.(in Chinese)
    [14]
    Jiang X W,Li H Q,Wang J H.Physiological response of Scutellaria baicalensis seed germination and seedling to exogenous ascorbic acid under salt stress.Plant Physiology Journal,2015,51(2):166-170.(in Chinese)
    [14]
    周磊,甘毅,欧晓彬,王根轩.作物缺水补偿节水的分子生理机制研究进展.中国生态农业学报,2011,19(1):217-225.
    [15]
    Ni J Z,Wang W,Yu S J,Dai S P.Effects of drought stress on physiological characteristics in Bombax ceiba .Chinese Journal of Tropical Crops,2014,35(10):2020-2024.(in Chinese)
    [15]
    王志才,牙库甫江#x000b7;阿西木,王艳,张富春.水盐胁迫对花花柴种子萌发的影响.中国沙漠,2012,32(3):750-755.
    [16]
    黄彩变,曾凡江,雷加强.塔克拉玛干沙漠南缘3个沙拐枣种的抗旱特性比较.草业学报,2014,23(3):136-143.
    [16]
    Liu M,Li Y,Liang Y,Tian L G.Effect of different concentration of NaCl stress on the growth and physiological characteristics of Tagetes erecta seedlings.Northern Horticulture,2013(24):63-66.(in Chinese)
    [17]
    Lin T B,Liu Y,Zhang W,Lyu Z Q,Lu X M.The response of NaCl stress on physiological characteristics of Morus alba Linn seedlings.Journal of Zhejiang Agricultural Sciences,2013(12):1667-1672.(in Chinese)
    [17]
    江绪文,李贺勤,王建华.盐胁迫下黄芩种子萌发及幼苗对外源抗坏血酸的生理响应.植物生理学报,2015,51(2):166-170.
    [18]
    王忠.植物生理学.北京:中国农业出版社,2010:122-139.
    [19]
    Foyer C H,Norctor G.Oxidant and antioxidant signalling in plants:A revaluation of the concept of oxidative stress in a physiological context.Plant,Cell #x00026; Environment,2005,25(8):1056-1071.
    [20]
    Asada K.The water-water cycle chloroplasts:Scavenging of active oxygents and dissipation of excess photons.Annual Review of Plant Biology,1999,50(1):601-639.
    [21]
    倪建中,王伟,郁书君,代色平.干旱胁迫对木棉叶片若干生理生化指标的影响.热带作物学,2014,35(10):2020-2024.
    [22]
    刘敏,厉悦,梁艳,田立广.不同浓度氯化钠胁迫对万寿菊幼苗生长及生理特性的影响.北方园艺,2013(24):63-66.
    [23]
    林天宝,刘岩,张薇,吕志强,鲁兴萌.NaCl胁迫对桑苗生理生化指标的影响.浙江农业科学,2013(12):1667-1672.

Catalog

    Article views (1287) PDF downloads (327) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return