欢迎访问 草业科学,今天是2025年4月7日 星期一!

镉污染下丛枝菌根真菌和纳米二氧化钛对萱草光合生理和镉吸收的影响

刘振羽, 郝建朝, 张杰西, 郝婷婷, 陈晖, 刘家宁, 苑红丹

刘振羽,郝建朝,张杰西,郝婷婷,陈晖,刘家宁,苑红丹. 镉污染下丛枝菌根真菌和纳米二氧化钛对萱草光合生理和镉吸收的影响. 草业科学, 2025, 42(3): 638-650. DOI: 10.11829/j.issn.1001-0629.2024-0270
引用本文: 刘振羽,郝建朝,张杰西,郝婷婷,陈晖,刘家宁,苑红丹. 镉污染下丛枝菌根真菌和纳米二氧化钛对萱草光合生理和镉吸收的影响. 草业科学, 2025, 42(3): 638-650. DOI: 10.11829/j.issn.1001-0629.2024-0270
LIU Z Y, HAO J C, ZHANG J X, HAO T T, CHEN H, LIU J N, YUAN H D. Effects of arbuscular mycorrhizal fungi and TiO2 nanoparticles on the photosynthetic physiology and cadmium uptake of Hemerocallis fulva under cadmium pollution. Pratacultural Science, 2025, 42(3): 638-650. DOI: 10.11829/j.issn.1001-0629.2024-0270
Citation: LIU Z Y, HAO J C, ZHANG J X, HAO T T, CHEN H, LIU J N, YUAN H D. Effects of arbuscular mycorrhizal fungi and TiO2 nanoparticles on the photosynthetic physiology and cadmium uptake of Hemerocallis fulva under cadmium pollution. Pratacultural Science, 2025, 42(3): 638-650. DOI: 10.11829/j.issn.1001-0629.2024-0270

镉污染下丛枝菌根真菌和纳米二氧化钛对萱草光合生理和镉吸收的影响

基金项目: 国家重点研发计划项目(2023YFC3709105)
摘要:

研究微生物和纳米材料共同对重金属污染土壤的修复效应对重金属污染防治具有重要意义,以萱草(Hemerocallis fulva) ‘Golden Doll’为试材,采用室内盆栽试验,探究50 mg·kg−1镉(Cd)污染下接种丛枝菌根真菌 (AMF) 与根施T1 (100 mg·L−1)、T2 (200 mg·L−1)、T3 (400 mg·L−1) 浓度纳米二氧化钛 (TiO2 NPs) 及其复合处理对萱草生长、叶绿素和叶绿素荧光参数、气体交换参数、Cd吸收及抗氧化系统的影响,以探明两者在Cd污染下提高萱草光合生理以及促进Cd吸收的作用。结果发现:Cd污染土壤种植萱草的株高、叶片数、地上部和根系生物量均显著下降,根施不同浓度TiO2 NPs和TiO2 NPs + AMF处理均可以缓解萱草生长受到的抑制。与Cd处理相比,Cd + T2 + AMF处理的萱草叶绿素a、叶绿素b、叶绿素a + b、叶绿素a/b以及类胡萝卜含量分别增加了53.8%、29.7%、48.6%、18.4%和25.8%,叶绿素荧光参数中PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)和光化学猝灭系数(qP)分别增加14.6%、60.7%和67.6%,而非光化学猝灭系数(NPQ)呈下降趋势。Cd污染抑制了萱草净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)的增长,Cd + T2 + AMF处理能显著提高Pn。同时,根施不同浓度TiO2 NPs和TiO2 NPs + AMF处理能够降低萱草地上部和根系Cd含量,提高萱草Cd转运系数并降低富集系数,激活植物叶片过氧化物酶(APX)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)活性,并增加非酶抗氧化剂抗坏血酸(AsA)、谷胱甘肽(GSH)以及总黄酮(TF)含量来缓解萱草受到的氧化胁迫。总体上,Cd + T2 + AMF处理增强萱草抗Cd污染胁迫的效果最好。

 

English

  • 镉(Cd)是重金属污染中危害性最大的元素之一,被联合国环境规划署列为全球性危害化学物质第一位[1]。Cd污染不仅会造成土壤肥力减弱,还会对植物的生长发育和物质代谢造成一定的影响[2-3]。此外,土壤环境中的Cd难降解、易富集,通过植物吸收以及食物链效应进入高等动物乃至人体中,最终危害人类的生命和健康[4]。因此,如何高效修复Cd污染土壤是一项亟需解决的问题。有研究发现,利用微生物和植物修复重金属污染具有安全方便无毒、不产生二次污染、修复效果好等优势[5-6],因而受到广泛关注。

    丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是一类能与80%以上的陆生高等植物形成共生体的微生物[7]。宿主植物为AMF提供碳水化合物,作为交换,AMF则提高植物吸收养分和水分的能力,保持植物生态的多样性和稳定性[8]。研究发现,AMF具有促进植物根系发育、改善宿主植物营养状况、改善土壤理化性质等直接或间接作用,从而调控植物的生理代谢活动[9-10]。而在重金属污染土壤中AMF菌丝体表面能够形成螯合物以及真菌细胞壁组分(几丁质、多糖)等对重金属具有钝化固定作用,从而有效降低重金属对宿主植物的毒害性[11],同时显著增加寄主植物地上部分对重金属元素的吸收或在根系中的积累,对生物修复重金属污染起到促进作用[12]。Gao等[13]研究发现,Cd胁迫下AMF能够促进谷类植物生长,并显著增加植物光合色素含量,促进植物对N、P等养分吸收利用,从而降低植株中的Cd浓度。同时,AMF还可以通过提高渗透调节物质含量、积累次生代谢产物(总酚、类黄酮、类胡萝卜素)和激素、减少膜脂过氧化产物等来减轻重金属对植物的伤害[14]。纳米二氧化钛(TiO2 NPs)是一种具有较高吸附性且无毒的金属氧化物,能促进植物早期生长,增强植物品质和抵抗力,影响养分运输与分配[15-16]。另有研究证实,TiO2 NPs能够应用于重金属污染土壤的修复,Singh和Lee [17]发现其能够与PSⅡ光系统反应中心结合,提高电子传输和叶绿体光适应能力,从而促进大豆(Glycine max)对土壤重金属Cd的吸收。郑泽其等[18]也证实,Cd污染下TiO2 NPs可提高玉米(Zea mays)幼苗叶绿素含量以及抗氧化酶(SOD、POD、CAT)活性,显著增加Cd转运系数和Cd提取量。以上研究证实了AMF或TiO2 NPs具有修复重金属污染土壤、促进植物生长的作用。

    目前,针对植物[19]、纳米材料[20]、微生物[21]等修复重金属Cd土壤的研究已有相关报道,且多数研究证实联合修复的效果优于单一修复,但针对AMF-园林植物-纳米材料三者联合修复Cd污染土壤的研究还未见报道。随着生态园林城市的建设与植物造景的需要,将城市土壤重金属污染修复与园林绿化相结合[22],选择具有较强重金属抗性和富集性的园林植物,既能够满足城市绿化的景观需求,还可以减轻重金属对环境的污染,为修复城市重金属污染土壤开辟了新的发展领域,近年来备受研究者关注。萱草(Hemerocallis fulva)是百合科萱草属多年生草本植物,具有生长快、价格低廉、耐粗放管理、生物量积累迅速等特点,在植物修复工程方面具有极大的应用潜力[23]。基于此,本研究以萱草为研究对象,探究Cd污染土壤下接种AM真菌并配施不同浓度TiO2 NPs对萱草生长、土壤酶活性以及微生物群落的影响,为今后应用AMF-园林植物-纳米材料三重复合技术修复重金属Cd污染土壤提供参考依据。

    选取‘Golden Doll’萱草种子为试材,购自保定市顺平县常青萱草花卉基地。供试土壤采自天津市生态环境监测中心附近绿地的原土,土壤类型为棕壤,待土样自然风干后,去除土壤中的石块等杂质,过2 mm筛。土壤的基本理化性质:pH为7.18,有机质含量为2.12%,总氮含量为1.6 mg·kg−1,有效磷含量为84.5 mg·kg−1,有效钾含量为263.6 mg·kg−1,Cd含量为0.09 mg·kg−1。供试AMF菌种为异形根孢囊霉(Rhizophagus irregularis),由亚热带丛枝菌根真菌资源保藏中心提供,并通过玉米和三叶草(Trifolium)扩繁而来。接种物为保存于其根系及基质中的孢子、菌丝和菌根根段。经检测,每20 g接种物中孢子密度为260个,菌丝侵染率为60%。TiO2 NPs (锐钛型)由北京建工环境修复股份有限公司提供,其型号为JR05,平均粒径 < 5 nm,比表面积150~300 m2·g−1,纯度99.9%。Hoagland营养液购自上海泽叶生物科技有限公司。

    试验于2023年4月-8月在天津市生态环境监测中心内进行,采用完全随机设计,共设置8个处理:对照(CK)、Cd污染处理(添加50 mg·kg−1 Cd)、Cd污染下根施100 mg·L−1 TiO2 NPs (Cd + T1)、Cd污染下根施200 mg·L−1 TiO2 NPs (Cd + T2)、Cd污染下根施400 mg·L−1 TiO2 NPs (Cd + T3)、Cd污染下根施100 mg·L−1 TiO2 NPs,并接种异形根孢囊霉(Cd + T1 + AMF)、Cd污染下根施200 mg·L−1 TiO2 NPs,并接种异形根孢囊霉(Cd + T2 + AMF)、Cd污染下根施400 mg·L−1 TiO2 NPs,并接种异形根孢囊霉(Cd + T3 + AMF),每个处理重复6次。种植前首先将萱草种子用0.1%多菌灵溶液消毒25 min,后用蒸馏水冲洗干净并放置在阴凉处干燥,随后播种至50孔穴盘内。待萱草生长至10 cm时,选择高度一致、生长健壮的植株进行试验,其中50 mg·kg−1 Cd以CdCl2·2.5H2O溶液形式拌入3 kg土壤后装盆,浓度参考李凝玉等[24]的研究,平衡4周后用于盆栽试验。TiO2 NPs的根施浓度为100、200、400 mg·L−1,参照高梦迪等[25]的试验结果,每隔30 d 喷施一次,连喷3次,生长期间根据植株生长需要补充30%的Hoagland营养液,于90 d后观测供试植株的各项指标。

    用皮尺测量萱草基部到最高点的距离记为株高;随机对每株萱草叶片进行计数,后将萱草全株洗净后晾干,分离出地上部和根系,于105 ℃烘箱中杀青0.5 h,随后在85 ℃下烘干至恒重,分别计数地上部和根系干质量。

    选择萱草健康叶片,采用丙酮法测定叶绿素(a、b)、类胡萝卜素含量[26]。先将萱草叶片暗处理30 min,用PS-1000型多功能叶绿素荧光仪测定叶片的叶绿素荧光参数,根据最小荧光值(Fo)、最大荧光值(Fm)、可变荧光值(Fv)计算PSⅡ的最大光化学量子效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo);然后在自然光下活化1 h后,测定500 μmol·(m2·s)−1光强作用下的初始荧光(Fo′)、最大荧光(Fm′)、稳态荧光(Fs)。光化学猝灭系数(qP)和非光化学猝灭系数(NPQ)的计算公式如下:

    $$ \mathit{qP} = ( \mathit{F} _{ \mathrm{m}}' - \mathit{F} _{ \mathrm{s}} )/( \mathit{F} _{ \mathrm{m}}' - \mathit{F} _{ \mathrm{v}}' \mathrm{)\text{;}} $$ (1)
    $$ \mathit{NPQ} =( \mathit{F} _{ \mathrm{m}} - \mathit{F} _{ \mathrm{m}}' )/ \mathit{F} _{ \mathrm{m}}' \mathrm{。} $$ (2)

    于晴天09:00-12:00,每个处理随机选取8株萱草,选择健康叶片用TP-3051D便携式光合仪进行测量[参数设置:光照强度1000 μmol·(m2·s)−1,叶室温度25 ℃,湿度70%,CO2浓度400 μmol·mol−1]。待数值稳定后分别记录净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、细胞间隙CO2浓度(Ci)等参数。

    采用石墨炉原子吸收光谱法(GFAAS)测量植物的地上部以及根系Cd含量,并计算转运系数(translocation factor,TF)和富集系数(bioconcentration factor,BCF)。计算公式如下:

    $$ \mathit{TF=Cd} _{ \mathrm{S}} \mathit{/Cd} _{ \mathrm{R}} \mathrm{;} $$
    $$ \mathit{BCF=} \mathrm{(} \mathit{Cd} _{ \mathrm{S}} \mathit{ + Cd} _{ \mathrm{R}} \mathrm{)/} \mathit{Cd} _{ \mathrm{T}} \mathrm{。} $$

    式中:CdSCdR分别为萱草地上部和根部的Cd含量,CdT为土壤中Cd含量。

    采用紫外吸收法测定抗坏血酸过氧化物酶(ascorbate peroxidase, APX)活性;采用Al (NO3)3-NaNO2-NaOH比色法测定总黄酮(total flavonoids‌, TF)含量;采用高锰酸钾滴定法测定过氧化氢酶(catalase,CAT)活性;谷胱甘肽还原酶(glutathione reductase, GR)活性、抗坏血酸(ascorbic acid, AsA)和谷胱甘肽(glutathione, GSH)含量的测定均采用李合生[27]提供的方法。

    采用SPSS 22.0进行单因素方差分析以及差异显著性检验(LSR法,α = 0.05),表中数据为平均值 ± 标准误,采用Excel 2003软件作图。

    表1所列,Cd污染下,萱草株高、叶片数、地上部和根系干质量均显著下降(P < 0.05),添加不同浓度TiO2 NPs或TiO2 NPs + AMF可增加萱草株高、叶片数、地上部和根系干质量。各处理中,添加AMF处理对萱草株高和叶片数的促进效果高于其他处理;Cd + T2 + AMF处理和Cd + T3 + AMF处理均能显著提高萱草地上部和根系干质量,与Cd处理相比,Cd + T2 + AMF处理的地上部和根系干质量分别增加了49.7%和53.4%,Cd + T3 + AMF处理的地上部和根系干质量分别增加了43.9%和43.8%。综上,Cd胁迫下Cd + T2 + AMF处理对萱草生长的促进效果高于其他处理。

    表  1  Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草生长的影响
    Table  1.  Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the growth of Hemerocallis fulva under cadmium pollution
    处理
    Treatment
    株高
    Plant height/cm
    叶片数
    Leaf number/piece
    地上干质量
    Aboveground dry mass/g
    根系干质量
    Root dry mass/g
    CK 37.8 ± 3.0a 16.3 ± 0.3a 2.74 ± 0.05a 2.48 ± 0.04a
    Cd 20.3 ± 1.6d 9.7 ± 0.3e 1.73 ± 0.06f 1.46 ± 0.04g
    Cd + T1 23.0 ± 0.3cd 11.7 ± 0.3d 2.01 ± 0.03e 1.61 ± 0.05fg
    Cd + T2 25.1 ± 1.6c 13.0 ± 0.6cd 2.18 ± 0.03d 1.85 ± 0.05de
    Cd + T3 24.0 ± 1.4cd 13.0 ± 0.6cd 1.98 ± 0.03e 1.73 ± 0.06ef
    Cd + T1 + AMF 34.0 ± 3.7ab 15.0 ± 0.6ab 2.40 ± 0.02c 1.97 ± 0.07cd
    Cd + T2 + AMF 35.0 ± 3.9a 15.3 ± 0.3ab 2.59 ± 0.04b 2.24 ± 0.04b
    Cd + T3 + AMF 30.2 ± 2.3b 14.3 ± 1.2bc 2.49 ± 0.03bc 2.10 ± 0.02bc
     CK、Cd、Cd + T1、Cd + T2、Cd + T3、Cd + T1 + AMF、Cd + T2 + AMF、Cd + T3 + AMF分别表示对照、添加50 mg·kg−1 Cd、Cd污染下根施100 mg·L−1 TiO2 NPs、Cd污染下根施200 mg·L−1 TiO2 NPs、Cd污染下根施400 mg·L−1 TiO2 NPs、Cd污染下根施100 mg·L−1 TiO2 NPs并接种异形根孢囊霉、Cd污染下添加200 mg·L−1 TiO2 NPs并接种异形根孢囊霉、Cd污染下根施400 mg·L−1 TiO2 NPs并接种异形根孢囊霉。不同小写字母表示不同处理间差异显著(P < 0.05)。下同。
     CK, control; Cd, added 50 mg·kg−1 Cd; Cd + T1, added 100 mg·L−1 TiO2 NPs under Cd pollution; Cd + T2, added 200 mg·L−1 TiO2 NPs under Cd pollution; Cd + T3, added 400 mg·L−1 TiO2 NPs under Cd pollution; Cd + T1 + AMF, added 100 mg·L−1 TiO2 NPs and inoculated Rhizophagus irregularis under Cd pollution; Cd + T2 + AMF, added 200 mg·L−1 TiO2 NPs and inoculated R. irregularis under Cd pollution; Cd + T3 + AMF, added 400 mg·L−1 TiO2 NPs and inoculated R. irregularis under Cd pollution. Different lowercase letters within the same column indicate significant differences between the different treatments at the 0.05 level. This is applicable for the following figures and tables as well.
    下载: 导出CSV 
    | 显示表格

    表2所列,Cd污染下,萱草叶绿素a、叶绿素b、叶绿素a + b、叶绿素a/b和类胡萝卜素含量均显著下降趋势(P < 0.05),添加不同浓度TiO2 NPs或TiO2 NPs + AMF可增加萱草光合色素含量。各处理中,Cd + T2 + AMF处理对叶绿素a、叶绿素b、叶绿素a + b、叶绿素a/b的促进效果最高,较Cd处理分别增加了53.8%、29.7%、48.6%和18.4%。Cd + T2 + AMF处理和Cd + T3 + AMF处理对萱草类胡萝卜含量的促进效果高于其他处理,相较于Cd处理分别增加了25.8%和23.9%。综合分析可知,Cd污染下Cd + T2 + AMF处理对萱草光合色素含量的提升效果较好。

    表  2  纳米二氧化钛和丛枝菌根真菌对Cd污染下萱草光合色素含量的影响
    Table  2.  Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the photosynthetic pigment contents of Hemerocallis fulva under cadmium pollution
    处理
    Treatment
    叶绿素a
    Chl a/(mg·g−1)
    叶绿素b
    Chl b/(mg·g−1)
    叶绿素a + b
    Chl a + b/(mg·g−1)
    叶绿素a/b
    Chl a/b
    类胡萝卜素
    Carotenoids/(mg·g−1)
    CK 1.078 ± 0.028a 0.252 ± 0.002a 1.331 ± 0.026a 4.268 ± 0.147a 0.209 ± 0.003a
    Cd 0.641 ± 0.012g 0.182 ± 0.004f 0.823 ± 0.013g 3.518 ± 0.097bc 0.155 ± 0.001g
    Cd + T1 0.724 ± 0.005f 0.208 ± 0.003e 0.932 ± 0.007f 3.477 ± 0.039c 0.167 ± 0.002f
    Cd + T2 0.825 ± 0.005cd 0.224 ± 0.002cd 1.050 ± 0.005cd 3.674 ± 0.049bc 0.184 ± 0.001d
    Cd + T3 0.767 ± 0.006ef 0.217 ± 0.001d 0.985 ± 0.007e 3.527 ± 0.031bc 0.176 ± 0.002e
    Cd + T1 + AMF 0.854 ± 0.015c 0.228 ± 0.001c 1.083 ± 0.015c 3.737 ± 0.072b 0.189 ± 0.002cd
    Cd + T2 + AMF 0.986 ± 0.019b 0.236 ± 0.003b 1.223 ± 0.021b 4.166 ± 0.071a 0.195 ± 0.002b
    Cd + T3 + AMF 0.803 ± 0.005de 0.221 ± 0.002cd 1.025 ± 0.005de 3.626 ± 0.040bc 0.192 ± 0.001bc
    下载: 导出CSV 
    | 显示表格

    图1所示,Cd污染下,萱草PSⅡ下的Fv/Fm、PSⅡ的Fv/Fo和qP较其他处理下降,而NPQ则较高。Cd污染下添加不同浓度TiO2 NPs或TiO2 NPs + AMF均可增加萱草Fv/Fm、Fv/Fo和qP,但降低了NPQ。各处理中,Cd + T1 + AMF处理和Cd + T2 + AMF处理对萱草Fv/Fm的提升效果高于其他处理,比Cd处理提高了14.2%和14.6%;Cd + T2 + AMF处理对萱草Fv/Fo和qP的提升效果显著,分别提高了60.7%和67.6%。Cd + T1 + AMF处理和Cd + T2 + AMF处理对萱草NPQ的抑制效果优于其他处理。综上,Cd污染抑制了萱草Fv/Fm、Fv/Fo和qP的增长,Cd + T2 + AMF处理能够促进萱草Fv/Fm、Fv/Fo和qP的增加。

    图  1  Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草叶绿素荧光参数的影响
    Figure  1.  Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the chlorophyll fluorescence parameters of Hemerocallis fulva under cadmium pollution

    图2所示,Cd污染下,萱草Pn、Tr和Gs较其他处理均表现为下降趋势,而Ci则表现相反,呈现上升趋势。Cd污染下添加不同浓度TiO2 NPs或TiO2 NPs + AMF均可增加萱草Pn、Tr和Gs,而降低Ci。各处理中,Cd + T2 + AMF处理较Cd处理对萱草Pn的提升效果显著(P < 0.05),比Cd处理提高了67.2%;Tr、Gs和Ci,Cd + T1 + AMF处理、Cd + T2 + AMF处理和Cd + T3 + AMF处理间均无显著差异(P > 0.05)。综上,Cd污染抑制了萱草Pn、Tr和Gs的增长,Cd + T2 + AMF处理能促进Pn的增加。

    图  2  Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草气体交换参数的影响
    Figure  2.  Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the gas exchange parameters of Hemerocallis fulva under cadmium pollution

    图3所示,Cd污染下,添加不同浓度TiO2 NPs或TiO2 NPs + AMF均可降低萱草地上部和根系Cd含量,增加转运系数,降低富集系数。各处理中,Cd + T2 + AMF处理对萱草地上部Cd含量的降低效果显著,相比于Cd处理显著下降了33.8%;Cd + T1 + AMF处理和Cd + T2 + AMF处理对根系Cd含量的降低效果明显,显著好于其余处理,二者间无显著差异;Cd + T1 + AMF处理、Cd + T2 + AMF处理和Cd + T3 + AMF处理对Cd的转运系数提升效果显著优于其他处理,Cd + T2 + AMF处理下,比Cd处理提高了47.6%,其Cd的富集系数最低,为0.22。综上,Cd污染下Cd + T2 + AMF处理可通过提高萱草转运系数并降低富集系数进而减少对根系的伤害。

    图  3  Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草吸收和转运Cd的影响
    Figure  3.  Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the cadmium uptake and transport of Hemerocallis fulva under cadmium pollution

    图4所示,Cd污染下,萱草APX、CAT和GR活性下降,AsA、GSH以及TF含量也呈下降趋势,添加不同浓度TiO2 NPs或TiO2 NPs + AMF均可增加萱草抗氧化酶活性及非酶抗氧化剂含量。Cd + T2 + AMF处理对APX活性、CAT活性、GR活性的提升效果明显,相较于Cd处理分别显著增加了142.7%、132.3%和169.4%。Cd + T2 + AMF处理对非酶抗氧化剂AsA、GSH和TF含量增加幅度的影响最大,分别比Cd处理增加了103.9%和72.2%,而Cd + T1 + AMF处理和Cd + T2 + AMF处理的GSH含量间无显著差异。综上,Cd污染下Cd + T2 + AMF处理提高抗氧化酶活性及非酶抗氧化剂含量的效果最好。

    图  4  Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草抗氧化酶活性和非酶抗氧化剂含量的影响
    Figure  4.  Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the antioxidant enzyme activity and non-enzymatic antioxidant content of Hemerocallis fulva under cadmium pollution
    APX, ascorbate peroxidase; GR, glutathione reductase; GSH, glutathione; CAT, catalase; AsA, ascorbic acid; TF, total flavonoids.

    土壤污染是多发性的全球环境问题,对人类社会的可持续发展造成一定危害。研究发现,利用植物以及微生物技术是去除土壤中重金属的一种绿色、生态方式。但是植物修复效率仍受制于多种因素,如生长速率慢,长势弱,对重金属吸收、转运效率低等问题,造成单一修复技术存在一定局限性[28]。研究发现,应用菌根真菌或纳米材料能在重金属污染土壤中通过溶解、固定、吸附重金属等方式提高植物修复效率,并产生次生代谢物质、植物激素等促进植物生长[29]。Wang等[30]发现,AMF与植物能够协同作用于重金属污染修复,对矿质元素在植物与土壤中的迁移转化有重要影响。Leung等[31]也发现砷(As)胁迫下AMF可提高蜈蚣草(Pteris vittata)生长发育及营养元素积累,增强植物对As胁迫的抗性。而纳米材料的发展与应用也给土壤重金属污染带来了新的修复思路,得益于其超多活性位点、吸附活性强等优势,纳米材料在修复土壤重金属污染中的技术越来越重要。秦香[32]发现铅胁迫下低浓度纳米零价铁能够促进黑麦草(Lolium perenne)生长,提高植物生物量和株高,为吸收和转运铅提供了优势条件。本研究发现Cd污染下TiO2 NPs能与AMF协同促进萱草生长,增强其光合作用,增加抗氧化酶活性以及抗氧剂含量来缓解Cd带来的伤害,这在高梦迪等[25]的研究中证实,TiO2 NPs对黑麦草和高羊茅(Festuca elata)种子萌发和根系的生长具有低促高抑的现象。因此,选择合适浓度TiO2 NPs和AMF对植物-纳米材料-微生物三重修复重金属污染技术具有重要意义。

    植物与重金属产生作用时,植物根系最先损伤,从而导致植物生长不良。本研究发现,Cd污染下萱草株高、叶片数、地上部和根系干质量呈显著下降趋势,添加不同浓度TiO2 NPs或TiO2 NPs + AMF可增加萱草株高、叶片数、地上部和根系干质量。研究发现,植物细胞通过内吞作用和转运蛋白吸收纳米粒子,在植物根系中,纳米粒子借助质外体或同质体运输途径被运送至整株植物并在体内积累,进而促进植物生长[33]。多数研究也证实重金属污染下接种AMF能够提高植物的生物量,如Jiang等[34]证实接种AMF增加了Cd胁迫下忍冬(Lonicera japonica)的生物量;Wang等[35]也证实Cd污染下AMF能增加龙葵(Solanum nigrum)的生物量,且菌根效应随Cd浓度增加而不断提高。这可能是因为AMF与植物形成的菌根能促进植物对矿质养分(如P、N和S)的吸收,进而促进植物生长[36]。本研究结果与上述结果一致,添加不同浓度TiO2 NPs或TiO2 NPs + AMF可增加萱草叶绿素a、叶绿素b、叶绿素a + b、叶绿素a/b和类胡萝卜素含量,维持叶绿素荧光参数的平衡,提高光合作用。这可能是因为TiO2 NPs参与了植物叶片中叶绿素合成的关键代谢过程,这在Deng等[37]的研究中得到证实,其发现低浓度的纳米氧化铁显著增加了麻类作物的叶绿素含量,并上调了叶绿素代谢相关的代谢物。而AMF通过平衡植物体内源激素的含量变化,特别是增加细胞分裂素的浓度,来影响植物细胞的气孔开度,进而促进光合作用的提高。另有研究证实,镁是合成叶绿素的必需元素,AMF与植物根系形成的菌根共生体提高了植物体镁元素的含量,对植物的光合作用有促进作用[38]。而本研究下AMF是否促进萱草体内镁含量的增加还需进一步研究证实。

    大多数研究发现,AMF能够将重金属固定在植物根系内,并减小重金属向地上部的转移系数[39-41]。但是AMF对不同植物吸收、转运重金属的作用却不尽相同[42]。如Li等[43]证实Cd胁迫下接种AMF能够提高龙葵根系Cd浓度,而减少了地上部Cd浓度,但Trotta等[44]的研究则证实接种AMF对蜈蚣草地上部As浓度没有影响,但减少了根系As浓度。本研究发现,添加不同浓度TiO2 NPs或TiO2 NPs + AMF降低了萱草地上部和根系Cd含量,这种降低效应可能与AMF通过调节植物根系低分子有机酸的分泌以及植物根系的Cd形态来产生的[45]。而牟玉梅等[46]则发现Cd污染下接种AMF的辣椒(Capsicum annuum)根系富集系数增加,地上部富集系数和转运系数降低。本研究发现添加不同浓度TiO2 NPs或TiO2 NPs + AMF后萱草转运系数增加,而富集系数降低。杨聪等[47]的研究也证实Cd污染土壤中施加纳米氢氧化镁、套种黑麦草和接种AMF后均不同程度降低了萝卜(Raphanus sativus)根和地上部Cd含量,且有利于增加土壤的pH和阳离子交换量,纳米氢氧化镁 + AMF + 黑麦草处理的萝卜产量最高,萝卜根中的Cd含量最低,比单一或两者联合修复技术效果更好。以上研究也说明植物和AMF对重金属吸收转运的作用不同,这可能与植物种类、AMF种类、重金属类型、重金属浓度、土壤理化性质以及环境条件等多种因素有关。

    重金属通过诱导植物产生并积累大量的活性氧自由基,细胞膜质严重过氧化,细胞膜结构和功能被破坏,植物正常生理代谢功能受到损伤[48]。抗氧化系统作为植物自身抵抗重金属污染的防御系统,可以通过消除活性氧自由基来保护植物免受重金属带来的伤害,包括SOD、CAT、APX和GR等抗氧化酶,以及非酶抗氧化剂如AsA、GSH以及多酚、类黄酮等[49-50]。谢翔宇等[51]发现Cd胁迫下接种AMF的秋茄(Kandelia obovata) SOD、POD、CAT活性显著增加,从而能够更快清除活性氧,减轻Cd胁迫下秋茄的膜脂过氧化程度。本研究也证实了这一点,添加不同浓度TiO2 NPs或TiO2 NPs + AMF均可增加萱草APX、CAT、GR活性以及非酶抗氧化剂AsA、GSH、总黄酮的含量。但王诗琪等[52]的研究与本研究结论不一致,其发现低浓度下CuONPs可以促进Cd胁迫下小油菜(Brassica chinensis)生长,抑制小油菜对Cd吸收,但会增加植物氧化损伤,CAT、POD、GR活性总体上受到抑制。这可能与植物种类以及纳米材料种类等有关,具体还需进一步研究证实。

    综上,Cd污染下萱草株高、叶片数、地上部和根系干质量均呈显著下降趋势,光合作用以及叶绿素荧光参数等受到抑制,抗氧化系统被打破。添加不同浓度的TiO2 NPs或TiO2 NPs + AMF可通过增加萱草叶绿素a、b、类胡萝卜素含量以及改善叶绿素荧光参数等条件,进一步提高光合作用,同时提高APX、CAT、GR活性以及非酶抗氧化剂AsA、GSH、总黄酮含量来增加植物株高、叶片数以及地上部和地下部生物量,并通过降低萱草地上部、根系Cd含量以及富集系数来缓解Cd污染带来的伤害。200 mg·L−1 TiO2 NPs + AMF处理可作为修复重金属Cd污染的有效途径。

    [1]

    DANIEL S, APEH M C, OKWUTE E S, ALOWAKENNU M, FESOMADE K. Industrial activities and heavy metal pollution: Assessment of concentration of Zn, Cu, Cd Cr and, Pb in soil samples around dangote cement factory Kogi State, Nigeria. Asian Journal of Chemical Sciences, 2020, 8(4): 75-86.

    [2] 张敏, 李燕, 宁朋, 程小毛, 黄晓霞. 镉胁迫对八角金盘生长及生理特性的影响. 分子植物育种, 2023, 21(3): 978-987.

    ZHANG M, LI Y, NING P, CHENG X M, HUANG X X. Effects of cadmium stress on growth and physiological characteristics of Fatsia japonica. Molecular Plant Breeding, 2023, 21(3): 978-987.

    [3]

    WANG G, SU M Y, CHEN Y H, LIN F F, LUO D, GAO S F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 2006, 144(1): 127-135. doi: 10.1016/j.envpol.2005.12.023

    [4]

    SAVIC R, ONDRASEK G, DUNDJERSKI J J. Heavy metals in agricultural landscapes as hazards to human and ecosystem health: A case study on zinc and cadmium in drainage channel sediments. Journal of the Science of Food and Agriculture, 2015, 95(3): 466-470. doi: 10.1002/jsfa.6515

    [5] 林小兵, 何绍浪, 吴多基, 周利军, 武琳, 彭君, 黄尚书, 王斌强, 黄欠如, 吴建富. 不同程度镉污染农田中粉葛镉富集转运特征. 环境科学, 2023, 44(10): 5769-5778.

    LIN X B, HE S L, WU D J, ZHOU L J, WU L, PENG J, HUANG S S, WANG B Q, HUANG Q R, WU J F. Characteristics of cadmium concentration and transport of Pueraria thornsonii in farmland with different cadmium pollution degrees. Environmental Science, 2023, 44(10): 5769-5778.

    [6] 李伟, 郭绍霞, 邢丽君, 翟彦霖, 李文彬, 李敏, 刘润进. 丛枝菌根真菌与高羊茅协同修复镉污染土壤. 菌物学报, 2021, 40(10): 2785-2799.

    LI W, GUO S X, XING L J, ZHAI Y L, LI W B, LI M, LIU R J. Synergistic utilization of arbuscular mycorrhizal fungi and Festuca elata for remediating cadmium-contaminated soils. Mycosystema, 2021, 40(10): 2785-2799.

    [7]

    BORREGO M M, METSIS M, LANDA B B. Arbuscular mycorhizal fungi associated with the olive crop across the andalusian landscape: Factors driving community differentiation. PLoS One, 2014, 9(5): e96397. doi: 10.1371/journal.pone.0096397

    [8]

    KONG L J, CHEN X, YERGER E H, LI Q, CHEN F X, XU H Y, ZHANG F J. Arbuscular mycorrhizal fungi enhance the growth of the exotic species Ambrosia artemisiifolia. Journal of Plant Ecology, 2022, 15(3): 581-595. doi: 10.1093/jpe/rtab087

    [9] 王邵军, 李霁航, 陆梅, 张哲, 李少辉, 陈闽昆, 曹润. “AM真菌-根系-土壤”耦合作用机制研究进展. 中南林业科技大学学报, 2019, 39(12): 1-9.

    WANG S J, LI J H, LU M, ZHANG Z, LI S H, CHEN M K, CAO R. Advance on the mechanism of coupling interactions among AM fungi, roots and soils. Journal of Central South University of Forestry and Technology, 2019, 39(12): 1-9.

    [10]

    KOZIOL L, MCKENNA T P, CREWS T E, BEVER J D. Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restoration Ecology, 2023, 31(4): e13772.

    [11]

    PAN J, CAO S, XU G F, REHMAN M, LI X, LUO D J, WANG C J, FANG W Q, XIAO H P, LIAO C J, CHEN P. Comprehensive analysis reveals the underlying mechanism of arbuscular mycorrhi-zal fungi in kenaf cadmium stress alleviation. Chemosphere, 2023, 314: 137566. doi: 10.1016/j.chemosphere.2022.137566

    [12]

    ASLAM U, AHMAD I, HUSSAIN M, KHAN A. Effect of heavy metal pollution on mineral absorption in sunflower (Helianthus annuus L.) hybrids. Acta Physiologiae Plantarum, 2014, 36(1): 101-108. doi: 10.1007/s11738-013-1390-y

    [13]

    GAO Y, AN T, KUANG Q. The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A Multilevel Meta-analysis. The Science of the Total Environment, 2023, 902: 166091. doi: 10.1016/j.scitotenv.2023.166091

    [14]

    HRISTOZKOVA M, GENEVA M P, STANCHEVA I, BOYCHINOVA M. Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 2016, 101: 57-63. doi: 10.1016/j.apsoil.2016.01.008

    [15] 刘晓宇, 张雪薇, 戴昊鸣, 陈斯琳, 王梦华, 张凯悦, 王纪元, 成喜雨, 晏琼. 纳米二氧化钛对生菜的生长效应分析. 热带亚热带植物学报, 2023, 31(5): 679-685.

    LIU X Y, ZHANG X W, DAI H M, CHEN S L, WANG M H, ZHANG K Y, WANG J Y, CHENG X Y, YAN Q. Analysis on the growth effect of nano titanium dioxide on Lactuca sativa. Journal of Tropical and Subtropical Botany, 2023, 31(5): 679-685.

    [16]

    GOHARI G, MOHAMMADI A, AKBARI A, PANAHIRAD S, DADPOUR M R, FOTOPOULOS V, KIMURA S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 2020, 10(1): 57794.

    [17]

    SINGH J, LEE B K. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 2016, 170: 88-96.

    [18] 郑泽其, 李剑涛, 吴佳妮, 连加攀, 史瑞滢, 刘维涛. 二氧化钛纳米颗粒对玉米幼苗吸收镉及其植物毒性的影响. 农业资源与环境学报, 2022, 39(6): 1217-1224.

    ZHENG Z Q, LI J T, WU J N, LIAN J P, SHI R Y, LIU W T. Impact of titanium dioxide nanoparticles on cadmium uptake in maize seedlings and its phytotoxicity. Journal of Agricultural Resources and Environment, 2022, 39(6): 1217-1224.

    [19] 张杨杨, 李希铭, 高鹏, 宋桂龙. 不同浓度镉胁迫下6种草本植物的耐性及富集特征的比较. 草地学报, 2021, 29(6): 1265-1276.

    ZHANG Y Y, LI X M, GAO P, SONG G L. Comparison of tolerance and enrichment characteristic for six herbaceous plant under different levels Cd stress. Acta Agrestia Sinica, 2021, 29(6): 1265-1276.

    [20] 张金洋, 王定勇, 李楚娴, 张成, 梁丽, 周雄. 纳米TiO2对土壤重金属释放及形态变化的影响. 环境科学, 2016, 37(5): 1946-1952.

    ZHANG J Y, WANG D Y, LIU C X, ZHANG C, LIANG L, ZHOU X. Effects of Nano-TiO2 on Release and speciation changes of aluminum, iron and manganese in soil. Journal of Soil and Water Conservation, 2016, 37(5): 1946-1952.

    [21]

    GUNATHILAKA D N M, YAPA P N, HETTIARACHCHI R P. Arbuscular mycorrhizal fungi assisted cadmium removal by water hyacinth (Eichhornia crassipes (Mart.) Solms) in polluted soil and water. Proceedings of International Forestry and Environment Symposium, 2018, 22: 3461.

    [22] 杨丹, 刘燕, 刘勇. 4种园林植物修复河道疏浚底泥中重金属污染的试验研究. 江苏农业科学, 2018, 46(4): 224-227.

    YANG D, LIU Y, LIU Y. Experimental study on phytoremediation of heavy metal pollution in dredged sewage river sediment by four ornamental species. Jiangsu Agricultural Sciences, 2018, 46(4): 224-227.

    [23] 关梦茜, 周旭丹, 董然. Cu-Cd复合胁迫对2种萱草生长与抗氧化酶活性的影响. 西北农林科技大学学报(自然科学版), 2015, 43(4): 128-134.

    GUAN M X, ZHOU X D, DONG R. Effects of Cu-Cd combined pollution on growth and antioxidant enzyme activity of 2 Hemerocallis fulva varieties. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(4): 128-134.

    [24] 李凝玉, 卢焕萍, 李志安, 庄萍, 丘静. 籽粒苋对土壤中镉的耐性和积累特征. 应用与环境生物学报, 2010, 16(1): 28-32. doi: 10.3724/SP.J.1145.2010.00028

    LI N Y, LU H P, LI Z A, ZHUANG P, QIU J. Tolerance and accumulation of cadmium in soil by Amaranthus hypochondriacus L. Chinese Journal of Applied and Environmental Biology, 2010, 16(1): 28-32. doi: 10.3724/SP.J.1145.2010.00028

    [25] 高梦迪, 盛茂银. 纳米TiO2对2种草本植物种子萌发与幼苗生长的影响. 贵州师范大学学报(自然科学版), 2020, 38(4): 69-74.

    GAO M D, SHENG M Y. Effects of Nano-TiO2 on seed of germination and growth physiology of the two herbs. Journal of Guizhou Normal University (Natural Sciences), 2020, 38(4): 69-74.

    [26] 王文杰, 贺海升, 关宇, 李文馨, 张衷华, 祖元刚. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较. 植物研究, 2009, 29(2): 224-229.

    WANG W J, HE H S, GUAN Y, LI W X, ZHANG Z H, ZU Y G. Methodological comparison of chlorophyll and carotenoids contents of plant species measured by dmso and acetone-extraction methods. Bulletin of Botanical Research, 2009, 29(2): 224-229.

    [27] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.

    LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000.

    [28]

    LIU H, YUAN M, TAN S Y, YANG X P, LAN Z, JIANG Q Y, YE Z H, JING Y X. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecologyis, 2015, 89: 44-49. doi: 10.1016/j.apsoil.2015.01.006

    [29]

    XIE Y, BU S H, FENG Q J, WASSIE M, AMEE M, JIANG Y, BI Y F, HU L X, CHEN L. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research, 2021, 200: 111730. doi: 10.1016/j.envres.2021.111730

    [30]

    WANG G, WANG L, MA F, YOU Y, WANG Y, YANG D. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Journal of Hazardous Materials, 2020, 389: 121873. doi: 10.1016/j.jhazmat.2019.121873

    [31]

    LEUNG H M, LEUNG AO, YE Z H, CHEUNG K C, YUNG K K L. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere, 2013, 92(10): 1367-1374. doi: 10.1016/j.chemosphere.2013.04.093

    [32] 秦香. 纳米零价铁强化黑麦草修复铅污染底泥的效果及其影响研究. 长沙: 湖南大学硕士学位论文, 2018.

    QIN X. Effects ofnanoscale zero-valent iron assisted phytoremediation of Pb by Lolium perenne in sediment. Master Thesis. Changsha: Hunan University, 2018.

    [33]

    WANG J, WU H, WANG Y, YE W, KONG X, YIN Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. Journal of Integrative Plant Biology, 2024, https://doi.org/10.1111/jipb.13652.

    [34]

    JIANG Q Y, ZHUO F, LONG S H, ZHAO H D, YANG D J, YE Z H, LI S S, JING Y X. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils. Scientific Reports, 2016, 6: 21805. doi: 10.1038/srep21805

    [35]

    WANG G, WANG L, MA F, YANG D G, YOU Y Q. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 2021, 272: 115980. doi: 10.1016/j.envpol.2020.115980

    [36] 赵斌, 陈秀华. 接种AM真菌对Cu污染土壤中紫云英吸收N P K的影响. 农业环境科学学报, 2005, 24(3): 438-441.

    ZHAO B, CHEN X H. Effect of arbuseular mycorrhizal fungi on uptake of N, P and K by Astragalus sinicus L. in copper polluted soil. Journal of Agro-Environment Science, 2005, 24(3): 438-441.

    [37]

    DENG C H, TANG Q, YANG Z M, DAI Z G, CHENG C H, XU Y, CHEN X J, ZHANG X Y, SU J G. Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones (Cannabis sativa L.). Frontiers of Environmental Science & Engineering, 2022, 16(10): 134.

    [38] 王倡宪, 秦岭, 冯固, 李晓林. 三种丛枝菌根真菌对黄瓜幼苗生长的影响. 农业环境科学学报, 2003, 22(3): 301-303.

    WANG C X, QIN L, FENG G, LI X L, Effects of three arbuscular mycorrhizal fungi on growth of cucumber seedlings. Journal of Agro-Environment Science, 2003, 22(3): 301-303.

    [39]

    TAN S Y, JIANG Q Y, ZHUO F, LIU H, WANG Y T, LI S S, YE Z H, JING Y X. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS One, 2015, 10(7): e0132347. doi: 10.1371/journal.pone.0132347

    [40] 孔凡美, 史衍玺, 冯固, 李晓林, 许鹏亮. AM菌对三叶草吸收、累积重金属的影响. 中国生态农业学报, 2007, 15(3): 92-96.

    KONG F M, SHI Y X, FENG G, LI X L, XU P L. Effects of arbuscular mycorrhizal fungi on heavy metal tolerance of clover in contaminated soil. Chinese Journal of Eco-Agriculture, 2007, 15(3): 92-96.

    [41] 刘琛, 郭彬, 林义成, 傅庆林, 李凝玉. 丛枝菌根真菌对金叶六道木镉吸收及根际真菌群落结构的影响. 土壤学报, 2021, 58(2): 495-504.

    LIU C, GUO B, LIN Y C, FU Q L, LI N Y. Impacts of arbuscular mycorrhizal fungus enhancing Abelia grandiflora ‘Francis Mason’ Cd uptake on rhizospheric fungal communities. Acta Pedologica Sinica, 2021, 58(2): 495-504.

    [42] 黄炜, 黄仁华, 陈珂, 陆云梅, 杨会玲. AMF对宿根高粱抗氧化特性及铯富集能力的影响. 环境科学与技术, 2014, 37(3): 12-17.

    HUANG W, HUANG R H, CHEN K, LU Y M, YANG H L. Effects of arbuscular mycorrhizal fungi on antioxidant properties and accumulation capability for Cs of Sorghum halepense. Environmental Science & Technology, 2014, 37(3): 12-17.

    [43]

    LI H, LI X, XIANG L, ZHAO H M, WONG M H. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Science of the Total Environment, 2018, 613/614: 447-455. doi: 10.1016/j.scitotenv.2017.09.066

    [44]

    TROTTA A, FALASCHI P, CORNARA L, MINGANTI V, FUSCONI A, DRAVA G, BERTA G. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere, 2006, 65(1): 74-81. doi: 10.1016/j.chemosphere.2006.02.048

    [45] 陈嘉欣, 颜洁, 游义红, 李博, 和成忠, 涂春霖, 湛方栋. AMF对玉米生长、根系低分子有机酸分泌与Cd累积的影响. 农业资源与环境学报, 2023, 40(6): 1329-1338.

    CHEN J X, YAN J, YOU Y H, LI B, HE C Z, TU C L, ZHAN F D. Effects of AMF on growth, low-molecular-weight organic acids secreted by roots, and Cd uptake in maize. Journal of Agricultural Resources and Environment, 2023, 40(6): 1329-1338.

    [46] 牟玉梅, 邢丹, 周鹏, 宋拉拉, 吴康云, 胡明文, 盖霞普. 接种丛枝菌根真菌对辣椒积累转运镉的影响. 南方农业学报, 2021, 52(1): 172-179.

    MOU Y M, XING D, ZHOU P, SONG L L, WU K Y, HU M W, GAI X P. Effects of the arbuscular mycorrhizal fungi on cadmium accumulation and transport in Capsicum annum L. Journal of Southern Agriculture, 2021, 52(1): 172-179.

    [47] 杨聪, 陈胜伦, 刘豫, 金卓君, 张春来, 徐卫红. 纳米氢氧化镁, 黑麦草套种和丛枝菌根对萝卜Cd含量和土壤Cd化学形态及微生物数量的影响. 农学学报, 2019, 9(7): 37-43.

    YANG C, CHEN S L, LIU Y, JIN Z J, ZHANG C L, XU W H. Effects of nano-magnesium hydroxide, ryegrass and arbuscular mycorrhiza on radish cd concentration and soil cd chemical forms and microbial populations. Journal of Agriculture, 2019, 9(7): 37-43.

    [48] 孙珂珂, 胡亚, 邓文彬, 刘宇称, 唐婷. 植物响应高锰胁迫的研究进展. 植物学研究, 2019, 8(6): 445-453. doi: 10.12677/BR.2019.86056

    SUN K K, HU Y, DENG W B, LIU Y C, TANG T. Advances in research on the response of plants to high manganese stress. Botanical Research, 2019, 8(6): 445-453. doi: 10.12677/BR.2019.86056

    [49] 刘振国, 王天慧, 王伟. 纳米氧化铜(CuO NPs)对紫花苜蓿幼苗根系活性氧(ROS)、抗氧化酶活性和根系活力的影响. 生态毒理学报, 2016, 11(5): 117-124.

    LIU Z G, WANG T H, WANG W. Effects of CuO NPs on ROS, antioxidant enzyme activity and root activity of the alfalfa seedlings. AsianJournal of Ecotoxicology, 2016, 11(5): 117-124.

    [50] 屈雁朋, 房玉林, 刘延琳, 宋士仁, 张昂, 周光荣. 镉胁迫下接种AM真菌对葡萄次生代谢酶活性的影响. 西北林学院学报, 2009, 24(5): 101-105.

    QU Y P, FANG Y L, LIU Y L, SONG S R, ZHANG A, ZHOU G R. Effects of AM fungal on the secondary metabolites of grape under cadmium stress. Journal of Northwest Forestry University, 2009, 24(5): 101-105.

    [51] 谢翔宇, 翁铂森, 赵素贞, 严重玲. Cd胁迫下接种丛枝菌根真菌对秋茄幼苗生长与抗氧化酶系统的影响. 厦门大学学报(自然科学版), 2013, 52(2): 244-253.

    XIE X Y, WONG B S, ZHAO S Z, YAN Z Q. Effects of arbuscular mycorrhizal inoculation and Cd stress on the growth and antioxidant enzyme system of Kandelia obovata. Journal of Xiamen University (Natural Science), 2013, 52(2): 244-253.

    [52] 王诗琪, 孙约兵, 黄青青, 徐应明, 董如茵, 孟庆尧. 纳米氧化铜对镉胁迫下小油菜生理生化和重金属累积的影响. 环境科学, 2023, 44(9): 5204-5213.

    WANG S Q, SUN Y B, HUANG Q Q, XU Y M, DONG R Y, MENG Q Y. Effects of nano-copper oxide on physiobiochemical properties of Brassica chinensis L. and its heavy metal accumulation under cadmium stress. Environmental Science, 2023, 44(9): 5204-5213.

  • 图  1   Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草叶绿素荧光参数的影响

    Figure  1.   Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the chlorophyll fluorescence parameters of Hemerocallis fulva under cadmium pollution

    图  2   Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草气体交换参数的影响

    Figure  2.   Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the gas exchange parameters of Hemerocallis fulva under cadmium pollution

    图  3   Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草吸收和转运Cd的影响

    Figure  3.   Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the cadmium uptake and transport of Hemerocallis fulva under cadmium pollution

    图  4   Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草抗氧化酶活性和非酶抗氧化剂含量的影响

    Figure  4.   Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the antioxidant enzyme activity and non-enzymatic antioxidant content of Hemerocallis fulva under cadmium pollution

    APX, ascorbate peroxidase; GR, glutathione reductase; GSH, glutathione; CAT, catalase; AsA, ascorbic acid; TF, total flavonoids.

    表  1   Cd污染下纳米二氧化钛和丛枝菌根真菌对萱草生长的影响

    Table  1   Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the growth of Hemerocallis fulva under cadmium pollution

    处理
    Treatment
    株高
    Plant height/cm
    叶片数
    Leaf number/piece
    地上干质量
    Aboveground dry mass/g
    根系干质量
    Root dry mass/g
    CK 37.8 ± 3.0a 16.3 ± 0.3a 2.74 ± 0.05a 2.48 ± 0.04a
    Cd 20.3 ± 1.6d 9.7 ± 0.3e 1.73 ± 0.06f 1.46 ± 0.04g
    Cd + T1 23.0 ± 0.3cd 11.7 ± 0.3d 2.01 ± 0.03e 1.61 ± 0.05fg
    Cd + T2 25.1 ± 1.6c 13.0 ± 0.6cd 2.18 ± 0.03d 1.85 ± 0.05de
    Cd + T3 24.0 ± 1.4cd 13.0 ± 0.6cd 1.98 ± 0.03e 1.73 ± 0.06ef
    Cd + T1 + AMF 34.0 ± 3.7ab 15.0 ± 0.6ab 2.40 ± 0.02c 1.97 ± 0.07cd
    Cd + T2 + AMF 35.0 ± 3.9a 15.3 ± 0.3ab 2.59 ± 0.04b 2.24 ± 0.04b
    Cd + T3 + AMF 30.2 ± 2.3b 14.3 ± 1.2bc 2.49 ± 0.03bc 2.10 ± 0.02bc
     CK、Cd、Cd + T1、Cd + T2、Cd + T3、Cd + T1 + AMF、Cd + T2 + AMF、Cd + T3 + AMF分别表示对照、添加50 mg·kg−1 Cd、Cd污染下根施100 mg·L−1 TiO2 NPs、Cd污染下根施200 mg·L−1 TiO2 NPs、Cd污染下根施400 mg·L−1 TiO2 NPs、Cd污染下根施100 mg·L−1 TiO2 NPs并接种异形根孢囊霉、Cd污染下添加200 mg·L−1 TiO2 NPs并接种异形根孢囊霉、Cd污染下根施400 mg·L−1 TiO2 NPs并接种异形根孢囊霉。不同小写字母表示不同处理间差异显著(P < 0.05)。下同。
     CK, control; Cd, added 50 mg·kg−1 Cd; Cd + T1, added 100 mg·L−1 TiO2 NPs under Cd pollution; Cd + T2, added 200 mg·L−1 TiO2 NPs under Cd pollution; Cd + T3, added 400 mg·L−1 TiO2 NPs under Cd pollution; Cd + T1 + AMF, added 100 mg·L−1 TiO2 NPs and inoculated Rhizophagus irregularis under Cd pollution; Cd + T2 + AMF, added 200 mg·L−1 TiO2 NPs and inoculated R. irregularis under Cd pollution; Cd + T3 + AMF, added 400 mg·L−1 TiO2 NPs and inoculated R. irregularis under Cd pollution. Different lowercase letters within the same column indicate significant differences between the different treatments at the 0.05 level. This is applicable for the following figures and tables as well.
    下载: 导出CSV

    表  2   纳米二氧化钛和丛枝菌根真菌对Cd污染下萱草光合色素含量的影响

    Table  2   Effects of TiO2 nanoparticles and arbuscular mycorrhizal fungi on the photosynthetic pigment contents of Hemerocallis fulva under cadmium pollution

    处理
    Treatment
    叶绿素a
    Chl a/(mg·g−1)
    叶绿素b
    Chl b/(mg·g−1)
    叶绿素a + b
    Chl a + b/(mg·g−1)
    叶绿素a/b
    Chl a/b
    类胡萝卜素
    Carotenoids/(mg·g−1)
    CK 1.078 ± 0.028a 0.252 ± 0.002a 1.331 ± 0.026a 4.268 ± 0.147a 0.209 ± 0.003a
    Cd 0.641 ± 0.012g 0.182 ± 0.004f 0.823 ± 0.013g 3.518 ± 0.097bc 0.155 ± 0.001g
    Cd + T1 0.724 ± 0.005f 0.208 ± 0.003e 0.932 ± 0.007f 3.477 ± 0.039c 0.167 ± 0.002f
    Cd + T2 0.825 ± 0.005cd 0.224 ± 0.002cd 1.050 ± 0.005cd 3.674 ± 0.049bc 0.184 ± 0.001d
    Cd + T3 0.767 ± 0.006ef 0.217 ± 0.001d 0.985 ± 0.007e 3.527 ± 0.031bc 0.176 ± 0.002e
    Cd + T1 + AMF 0.854 ± 0.015c 0.228 ± 0.001c 1.083 ± 0.015c 3.737 ± 0.072b 0.189 ± 0.002cd
    Cd + T2 + AMF 0.986 ± 0.019b 0.236 ± 0.003b 1.223 ± 0.021b 4.166 ± 0.071a 0.195 ± 0.002b
    Cd + T3 + AMF 0.803 ± 0.005de 0.221 ± 0.002cd 1.025 ± 0.005de 3.626 ± 0.040bc 0.192 ± 0.001bc
    下载: 导出CSV
  • [1]

    DANIEL S, APEH M C, OKWUTE E S, ALOWAKENNU M, FESOMADE K. Industrial activities and heavy metal pollution: Assessment of concentration of Zn, Cu, Cd Cr and, Pb in soil samples around dangote cement factory Kogi State, Nigeria. Asian Journal of Chemical Sciences, 2020, 8(4): 75-86.

    [2] 张敏, 李燕, 宁朋, 程小毛, 黄晓霞. 镉胁迫对八角金盘生长及生理特性的影响. 分子植物育种, 2023, 21(3): 978-987.

    ZHANG M, LI Y, NING P, CHENG X M, HUANG X X. Effects of cadmium stress on growth and physiological characteristics of Fatsia japonica. Molecular Plant Breeding, 2023, 21(3): 978-987.

    [3]

    WANG G, SU M Y, CHEN Y H, LIN F F, LUO D, GAO S F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 2006, 144(1): 127-135. doi: 10.1016/j.envpol.2005.12.023

    [4]

    SAVIC R, ONDRASEK G, DUNDJERSKI J J. Heavy metals in agricultural landscapes as hazards to human and ecosystem health: A case study on zinc and cadmium in drainage channel sediments. Journal of the Science of Food and Agriculture, 2015, 95(3): 466-470. doi: 10.1002/jsfa.6515

    [5] 林小兵, 何绍浪, 吴多基, 周利军, 武琳, 彭君, 黄尚书, 王斌强, 黄欠如, 吴建富. 不同程度镉污染农田中粉葛镉富集转运特征. 环境科学, 2023, 44(10): 5769-5778.

    LIN X B, HE S L, WU D J, ZHOU L J, WU L, PENG J, HUANG S S, WANG B Q, HUANG Q R, WU J F. Characteristics of cadmium concentration and transport of Pueraria thornsonii in farmland with different cadmium pollution degrees. Environmental Science, 2023, 44(10): 5769-5778.

    [6] 李伟, 郭绍霞, 邢丽君, 翟彦霖, 李文彬, 李敏, 刘润进. 丛枝菌根真菌与高羊茅协同修复镉污染土壤. 菌物学报, 2021, 40(10): 2785-2799.

    LI W, GUO S X, XING L J, ZHAI Y L, LI W B, LI M, LIU R J. Synergistic utilization of arbuscular mycorrhizal fungi and Festuca elata for remediating cadmium-contaminated soils. Mycosystema, 2021, 40(10): 2785-2799.

    [7]

    BORREGO M M, METSIS M, LANDA B B. Arbuscular mycorhizal fungi associated with the olive crop across the andalusian landscape: Factors driving community differentiation. PLoS One, 2014, 9(5): e96397. doi: 10.1371/journal.pone.0096397

    [8]

    KONG L J, CHEN X, YERGER E H, LI Q, CHEN F X, XU H Y, ZHANG F J. Arbuscular mycorrhizal fungi enhance the growth of the exotic species Ambrosia artemisiifolia. Journal of Plant Ecology, 2022, 15(3): 581-595. doi: 10.1093/jpe/rtab087

    [9] 王邵军, 李霁航, 陆梅, 张哲, 李少辉, 陈闽昆, 曹润. “AM真菌-根系-土壤”耦合作用机制研究进展. 中南林业科技大学学报, 2019, 39(12): 1-9.

    WANG S J, LI J H, LU M, ZHANG Z, LI S H, CHEN M K, CAO R. Advance on the mechanism of coupling interactions among AM fungi, roots and soils. Journal of Central South University of Forestry and Technology, 2019, 39(12): 1-9.

    [10]

    KOZIOL L, MCKENNA T P, CREWS T E, BEVER J D. Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restoration Ecology, 2023, 31(4): e13772.

    [11]

    PAN J, CAO S, XU G F, REHMAN M, LI X, LUO D J, WANG C J, FANG W Q, XIAO H P, LIAO C J, CHEN P. Comprehensive analysis reveals the underlying mechanism of arbuscular mycorrhi-zal fungi in kenaf cadmium stress alleviation. Chemosphere, 2023, 314: 137566. doi: 10.1016/j.chemosphere.2022.137566

    [12]

    ASLAM U, AHMAD I, HUSSAIN M, KHAN A. Effect of heavy metal pollution on mineral absorption in sunflower (Helianthus annuus L.) hybrids. Acta Physiologiae Plantarum, 2014, 36(1): 101-108. doi: 10.1007/s11738-013-1390-y

    [13]

    GAO Y, AN T, KUANG Q. The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A Multilevel Meta-analysis. The Science of the Total Environment, 2023, 902: 166091. doi: 10.1016/j.scitotenv.2023.166091

    [14]

    HRISTOZKOVA M, GENEVA M P, STANCHEVA I, BOYCHINOVA M. Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 2016, 101: 57-63. doi: 10.1016/j.apsoil.2016.01.008

    [15] 刘晓宇, 张雪薇, 戴昊鸣, 陈斯琳, 王梦华, 张凯悦, 王纪元, 成喜雨, 晏琼. 纳米二氧化钛对生菜的生长效应分析. 热带亚热带植物学报, 2023, 31(5): 679-685.

    LIU X Y, ZHANG X W, DAI H M, CHEN S L, WANG M H, ZHANG K Y, WANG J Y, CHENG X Y, YAN Q. Analysis on the growth effect of nano titanium dioxide on Lactuca sativa. Journal of Tropical and Subtropical Botany, 2023, 31(5): 679-685.

    [16]

    GOHARI G, MOHAMMADI A, AKBARI A, PANAHIRAD S, DADPOUR M R, FOTOPOULOS V, KIMURA S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 2020, 10(1): 57794.

    [17]

    SINGH J, LEE B K. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 2016, 170: 88-96.

    [18] 郑泽其, 李剑涛, 吴佳妮, 连加攀, 史瑞滢, 刘维涛. 二氧化钛纳米颗粒对玉米幼苗吸收镉及其植物毒性的影响. 农业资源与环境学报, 2022, 39(6): 1217-1224.

    ZHENG Z Q, LI J T, WU J N, LIAN J P, SHI R Y, LIU W T. Impact of titanium dioxide nanoparticles on cadmium uptake in maize seedlings and its phytotoxicity. Journal of Agricultural Resources and Environment, 2022, 39(6): 1217-1224.

    [19] 张杨杨, 李希铭, 高鹏, 宋桂龙. 不同浓度镉胁迫下6种草本植物的耐性及富集特征的比较. 草地学报, 2021, 29(6): 1265-1276.

    ZHANG Y Y, LI X M, GAO P, SONG G L. Comparison of tolerance and enrichment characteristic for six herbaceous plant under different levels Cd stress. Acta Agrestia Sinica, 2021, 29(6): 1265-1276.

    [20] 张金洋, 王定勇, 李楚娴, 张成, 梁丽, 周雄. 纳米TiO2对土壤重金属释放及形态变化的影响. 环境科学, 2016, 37(5): 1946-1952.

    ZHANG J Y, WANG D Y, LIU C X, ZHANG C, LIANG L, ZHOU X. Effects of Nano-TiO2 on Release and speciation changes of aluminum, iron and manganese in soil. Journal of Soil and Water Conservation, 2016, 37(5): 1946-1952.

    [21]

    GUNATHILAKA D N M, YAPA P N, HETTIARACHCHI R P. Arbuscular mycorrhizal fungi assisted cadmium removal by water hyacinth (Eichhornia crassipes (Mart.) Solms) in polluted soil and water. Proceedings of International Forestry and Environment Symposium, 2018, 22: 3461.

    [22] 杨丹, 刘燕, 刘勇. 4种园林植物修复河道疏浚底泥中重金属污染的试验研究. 江苏农业科学, 2018, 46(4): 224-227.

    YANG D, LIU Y, LIU Y. Experimental study on phytoremediation of heavy metal pollution in dredged sewage river sediment by four ornamental species. Jiangsu Agricultural Sciences, 2018, 46(4): 224-227.

    [23] 关梦茜, 周旭丹, 董然. Cu-Cd复合胁迫对2种萱草生长与抗氧化酶活性的影响. 西北农林科技大学学报(自然科学版), 2015, 43(4): 128-134.

    GUAN M X, ZHOU X D, DONG R. Effects of Cu-Cd combined pollution on growth and antioxidant enzyme activity of 2 Hemerocallis fulva varieties. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(4): 128-134.

    [24] 李凝玉, 卢焕萍, 李志安, 庄萍, 丘静. 籽粒苋对土壤中镉的耐性和积累特征. 应用与环境生物学报, 2010, 16(1): 28-32. doi: 10.3724/SP.J.1145.2010.00028

    LI N Y, LU H P, LI Z A, ZHUANG P, QIU J. Tolerance and accumulation of cadmium in soil by Amaranthus hypochondriacus L. Chinese Journal of Applied and Environmental Biology, 2010, 16(1): 28-32. doi: 10.3724/SP.J.1145.2010.00028

    [25] 高梦迪, 盛茂银. 纳米TiO2对2种草本植物种子萌发与幼苗生长的影响. 贵州师范大学学报(自然科学版), 2020, 38(4): 69-74.

    GAO M D, SHENG M Y. Effects of Nano-TiO2 on seed of germination and growth physiology of the two herbs. Journal of Guizhou Normal University (Natural Sciences), 2020, 38(4): 69-74.

    [26] 王文杰, 贺海升, 关宇, 李文馨, 张衷华, 祖元刚. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较. 植物研究, 2009, 29(2): 224-229.

    WANG W J, HE H S, GUAN Y, LI W X, ZHANG Z H, ZU Y G. Methodological comparison of chlorophyll and carotenoids contents of plant species measured by dmso and acetone-extraction methods. Bulletin of Botanical Research, 2009, 29(2): 224-229.

    [27] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.

    LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000.

    [28]

    LIU H, YUAN M, TAN S Y, YANG X P, LAN Z, JIANG Q Y, YE Z H, JING Y X. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecologyis, 2015, 89: 44-49. doi: 10.1016/j.apsoil.2015.01.006

    [29]

    XIE Y, BU S H, FENG Q J, WASSIE M, AMEE M, JIANG Y, BI Y F, HU L X, CHEN L. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research, 2021, 200: 111730. doi: 10.1016/j.envres.2021.111730

    [30]

    WANG G, WANG L, MA F, YOU Y, WANG Y, YANG D. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. Journal of Hazardous Materials, 2020, 389: 121873. doi: 10.1016/j.jhazmat.2019.121873

    [31]

    LEUNG H M, LEUNG AO, YE Z H, CHEUNG K C, YUNG K K L. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere, 2013, 92(10): 1367-1374. doi: 10.1016/j.chemosphere.2013.04.093

    [32] 秦香. 纳米零价铁强化黑麦草修复铅污染底泥的效果及其影响研究. 长沙: 湖南大学硕士学位论文, 2018.

    QIN X. Effects ofnanoscale zero-valent iron assisted phytoremediation of Pb by Lolium perenne in sediment. Master Thesis. Changsha: Hunan University, 2018.

    [33]

    WANG J, WU H, WANG Y, YE W, KONG X, YIN Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. Journal of Integrative Plant Biology, 2024, https://doi.org/10.1111/jipb.13652.

    [34]

    JIANG Q Y, ZHUO F, LONG S H, ZHAO H D, YANG D J, YE Z H, LI S S, JING Y X. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils. Scientific Reports, 2016, 6: 21805. doi: 10.1038/srep21805

    [35]

    WANG G, WANG L, MA F, YANG D G, YOU Y Q. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 2021, 272: 115980. doi: 10.1016/j.envpol.2020.115980

    [36] 赵斌, 陈秀华. 接种AM真菌对Cu污染土壤中紫云英吸收N P K的影响. 农业环境科学学报, 2005, 24(3): 438-441.

    ZHAO B, CHEN X H. Effect of arbuseular mycorrhizal fungi on uptake of N, P and K by Astragalus sinicus L. in copper polluted soil. Journal of Agro-Environment Science, 2005, 24(3): 438-441.

    [37]

    DENG C H, TANG Q, YANG Z M, DAI Z G, CHENG C H, XU Y, CHEN X J, ZHANG X Y, SU J G. Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones (Cannabis sativa L.). Frontiers of Environmental Science & Engineering, 2022, 16(10): 134.

    [38] 王倡宪, 秦岭, 冯固, 李晓林. 三种丛枝菌根真菌对黄瓜幼苗生长的影响. 农业环境科学学报, 2003, 22(3): 301-303.

    WANG C X, QIN L, FENG G, LI X L, Effects of three arbuscular mycorrhizal fungi on growth of cucumber seedlings. Journal of Agro-Environment Science, 2003, 22(3): 301-303.

    [39]

    TAN S Y, JIANG Q Y, ZHUO F, LIU H, WANG Y T, LI S S, YE Z H, JING Y X. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS One, 2015, 10(7): e0132347. doi: 10.1371/journal.pone.0132347

    [40] 孔凡美, 史衍玺, 冯固, 李晓林, 许鹏亮. AM菌对三叶草吸收、累积重金属的影响. 中国生态农业学报, 2007, 15(3): 92-96.

    KONG F M, SHI Y X, FENG G, LI X L, XU P L. Effects of arbuscular mycorrhizal fungi on heavy metal tolerance of clover in contaminated soil. Chinese Journal of Eco-Agriculture, 2007, 15(3): 92-96.

    [41] 刘琛, 郭彬, 林义成, 傅庆林, 李凝玉. 丛枝菌根真菌对金叶六道木镉吸收及根际真菌群落结构的影响. 土壤学报, 2021, 58(2): 495-504.

    LIU C, GUO B, LIN Y C, FU Q L, LI N Y. Impacts of arbuscular mycorrhizal fungus enhancing Abelia grandiflora ‘Francis Mason’ Cd uptake on rhizospheric fungal communities. Acta Pedologica Sinica, 2021, 58(2): 495-504.

    [42] 黄炜, 黄仁华, 陈珂, 陆云梅, 杨会玲. AMF对宿根高粱抗氧化特性及铯富集能力的影响. 环境科学与技术, 2014, 37(3): 12-17.

    HUANG W, HUANG R H, CHEN K, LU Y M, YANG H L. Effects of arbuscular mycorrhizal fungi on antioxidant properties and accumulation capability for Cs of Sorghum halepense. Environmental Science & Technology, 2014, 37(3): 12-17.

    [43]

    LI H, LI X, XIANG L, ZHAO H M, WONG M H. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Science of the Total Environment, 2018, 613/614: 447-455. doi: 10.1016/j.scitotenv.2017.09.066

    [44]

    TROTTA A, FALASCHI P, CORNARA L, MINGANTI V, FUSCONI A, DRAVA G, BERTA G. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere, 2006, 65(1): 74-81. doi: 10.1016/j.chemosphere.2006.02.048

    [45] 陈嘉欣, 颜洁, 游义红, 李博, 和成忠, 涂春霖, 湛方栋. AMF对玉米生长、根系低分子有机酸分泌与Cd累积的影响. 农业资源与环境学报, 2023, 40(6): 1329-1338.

    CHEN J X, YAN J, YOU Y H, LI B, HE C Z, TU C L, ZHAN F D. Effects of AMF on growth, low-molecular-weight organic acids secreted by roots, and Cd uptake in maize. Journal of Agricultural Resources and Environment, 2023, 40(6): 1329-1338.

    [46] 牟玉梅, 邢丹, 周鹏, 宋拉拉, 吴康云, 胡明文, 盖霞普. 接种丛枝菌根真菌对辣椒积累转运镉的影响. 南方农业学报, 2021, 52(1): 172-179.

    MOU Y M, XING D, ZHOU P, SONG L L, WU K Y, HU M W, GAI X P. Effects of the arbuscular mycorrhizal fungi on cadmium accumulation and transport in Capsicum annum L. Journal of Southern Agriculture, 2021, 52(1): 172-179.

    [47] 杨聪, 陈胜伦, 刘豫, 金卓君, 张春来, 徐卫红. 纳米氢氧化镁, 黑麦草套种和丛枝菌根对萝卜Cd含量和土壤Cd化学形态及微生物数量的影响. 农学学报, 2019, 9(7): 37-43.

    YANG C, CHEN S L, LIU Y, JIN Z J, ZHANG C L, XU W H. Effects of nano-magnesium hydroxide, ryegrass and arbuscular mycorrhiza on radish cd concentration and soil cd chemical forms and microbial populations. Journal of Agriculture, 2019, 9(7): 37-43.

    [48] 孙珂珂, 胡亚, 邓文彬, 刘宇称, 唐婷. 植物响应高锰胁迫的研究进展. 植物学研究, 2019, 8(6): 445-453. doi: 10.12677/BR.2019.86056

    SUN K K, HU Y, DENG W B, LIU Y C, TANG T. Advances in research on the response of plants to high manganese stress. Botanical Research, 2019, 8(6): 445-453. doi: 10.12677/BR.2019.86056

    [49] 刘振国, 王天慧, 王伟. 纳米氧化铜(CuO NPs)对紫花苜蓿幼苗根系活性氧(ROS)、抗氧化酶活性和根系活力的影响. 生态毒理学报, 2016, 11(5): 117-124.

    LIU Z G, WANG T H, WANG W. Effects of CuO NPs on ROS, antioxidant enzyme activity and root activity of the alfalfa seedlings. AsianJournal of Ecotoxicology, 2016, 11(5): 117-124.

    [50] 屈雁朋, 房玉林, 刘延琳, 宋士仁, 张昂, 周光荣. 镉胁迫下接种AM真菌对葡萄次生代谢酶活性的影响. 西北林学院学报, 2009, 24(5): 101-105.

    QU Y P, FANG Y L, LIU Y L, SONG S R, ZHANG A, ZHOU G R. Effects of AM fungal on the secondary metabolites of grape under cadmium stress. Journal of Northwest Forestry University, 2009, 24(5): 101-105.

    [51] 谢翔宇, 翁铂森, 赵素贞, 严重玲. Cd胁迫下接种丛枝菌根真菌对秋茄幼苗生长与抗氧化酶系统的影响. 厦门大学学报(自然科学版), 2013, 52(2): 244-253.

    XIE X Y, WONG B S, ZHAO S Z, YAN Z Q. Effects of arbuscular mycorrhizal inoculation and Cd stress on the growth and antioxidant enzyme system of Kandelia obovata. Journal of Xiamen University (Natural Science), 2013, 52(2): 244-253.

    [52] 王诗琪, 孙约兵, 黄青青, 徐应明, 董如茵, 孟庆尧. 纳米氧化铜对镉胁迫下小油菜生理生化和重金属累积的影响. 环境科学, 2023, 44(9): 5204-5213.

    WANG S Q, SUN Y B, HUANG Q Q, XU Y M, DONG R Y, MENG Q Y. Effects of nano-copper oxide on physiobiochemical properties of Brassica chinensis L. and its heavy metal accumulation under cadmium stress. Environmental Science, 2023, 44(9): 5204-5213.

图(4)  /  表(2)
计量
  • PDF下载量:  2
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • 被引次数: 0
文章相关
  • 通讯作者: 苑红丹
  • 收稿日期:  2024-05-04
  • 接受日期:  2024-06-27
  • 刊出日期:  2025-03-14

目录

/

返回文章
返回