沼液还田对蒙古黄芪生长及质量的影响
沼液为厌氧发酵的优质有机肥,可替代化肥或配施化肥施用于农田,提高中草药产量及其品质。为探究沼液还田对蒙古黄芪(Astragalus membranaceus var. mongholicus)生长及质量的影响,本研究以清水和化肥处理为对照,研究不同施用方式下(B1:喷洒,B2:追肥,B3:喷洒 + 追肥)沼液浓度(A1:100%浓度沼液;A2:80%浓度沼液;A3:50%浓度沼液)对整个生长期蒙古黄芪生理、生物量及有效成分含量的影响。结果显示:1)整个生长期11个处理的各指标基本呈先升后降趋势。2)沼液单独喷洒,以80%浓度沼液处理的各指标效果较佳,且显著优于化肥处理(P < 0.05)。3)追肥后,相比其他10个处理,80%浓度沼液追肥处理可显著增加成药期蒙古黄芪叶绿素含量、抗氧化酶活性和渗透调节物质含量,增加地上和地下根的产量(P < 0.05)。且蒙古黄芪根中有效成分毛蕊异黄酮葡萄糖苷、芒柄花苷、毛蕊异黄酮、黄芪甲苷含量,在80%浓度沼液追肥处理下分别显著高于化肥处理87.09%、60.65%、52.17%和24.21%。综合评价得出80%浓度沼液追肥处理的效果较佳。上述研究表明:适宜的沼液浓度及施用方式可增强黄芪抗逆性,提高药材生物量,改善黄芪质量。
English
-
中草药黄芪为豆科植物蒙古黄芪(Astragalus membranaceus var. mongholicus)或膜荚黄芪(A. membranaceus)的干燥根,具有补气升阳、固表止汗、利水消肿等功效,被广泛应用于医药、食品、保健等领域。目前商品主要为栽培的蒙古黄芪[1],但由于重茬连作现象突出,导致土壤肥力不足,若单纯过量施用化肥、农药,会导致土壤酸化和硬化、病虫害滋生等问题,严重影响黄芪品质[2-5],并造成各种环境问题,影响中药材产业的可持续发展。用有机肥代替或减少化肥施用量是当前国家推进中药材产业可持续发展的战略需求。
沼液作为有机肥,含多种促进植物生长的养分、生长激素及丰富的氨基酸。相比其他肥料,其施用优势有:可提供更多可利用的氮,被作物直接吸收[6],促进其生长发育;减少化肥投入,降低用肥成本[7],并保护环境;沼液资源丰富[8],使用简单方便,成本低廉,广泛应用于农作物及蔬菜种植方面。在中药材黄芪的相关研究中,有学者对沼液施用效果进行了初探[9-11],但均未涉及品质方面的研究。对沼液施用影响黄芪产量和质量的盆栽试验进行初步探索发现,适宜浓度的沼液能促进黄芪种子萌发,提高种苗抗逆性,促进其有效成分累积,进而提高蒙古黄芪质量[12]。为提高药材品质、减少化肥农药使用量,本研究开展大田试验,分析不同施肥方式下不同沼液浓度对蒙古黄芪苗的生长、抗逆生理指标及主要有效成分含量的影响,以期为提高蒙古黄芪产量、改善质量,推进沼液应用提供理论依据及技术支撑。
1. 材料与方法
1.1 试验材料
试验种苗为甘肃省定西市渭源县莲峰镇杨家咀村药农自育一年生蒙古黄芪幼苗。沼液取自兰州市花庄镇的甘肃荷斯坦良种奶牛繁育中心以牛粪为发酵原料的正常产气的沼气池,pH为7.83,有机质含量1.075 g·L−1,全氮含量1.036 g·L−1,全磷含量 0.533 g·L−1,全钾含量1.186 g·L−1。
1.2 试验设计
大田试验于甘肃省定西市渭源县莲峰镇杨家咀村农户自家田进行,采用完全随机区组设计,设置2个因素:A沼液浓度(A1:100%浓度;A2:80%浓度沼液;A3:50%浓度沼液),B施用方式(B1:喷洒;B2:追肥;B3:喷洒 + 追肥),1个常规化肥施肥(CF),1个对照(CK),共11个处理,如表1所列。每个处理重复3次(按小区计),共计33个小区,每小区6 m2,2019年3月初育苗,2020年3月25日移栽,株距为15 cm,行距为25 cm。移栽前所有处理基施聚失三铵复合肥料(N-P2O5-K2O) 50 kg·hm−2,沼液施用量为喷洒2.5 kg·m−2,追肥15 kg·m−2,试验期间设计2次喷洒,1次追肥,分别于2020年6月12日、7月12日叶面喷施2次,2020年8月12日土壤施肥1次,常规处理分别于2020年6月12日追肥1次聚合氨基酸复合肥料(金典三安)、8月12日追肥1次磷酸二铵,其用量按照药农经验施肥,均为750 kg·hm−2。整个生长周期分别于2020年6月27日、7月28日、8月27日、9月26日、10月24日采样5次,收集黄芪地上部分及地下部分,进行各指标测定。
表 1 大田试验设计Table 1. Specific scheme of the field experiments performed in this study处理
Treatment沼液施用方式(B) Method of biogas slurry application 喷洒
Spraying (B1)追肥
Topdressing (B2)喷洒 + 追肥
Spraying + topdressing (B3)沼液浓度
Biogas slurry concentrations100% (A1) A1B1 A1B2 A1B3 80% (A2) A2B1 A2B2 A2B3 50% (A3) A3B1 A3B2 A3B3 清水对照 Water control CK 常规化肥 Conventional fertilization CF 1.3 测定指标及方法
1.3.1 生物量测定
用卷尺测定其株长、根长,游标卡尺测定其茎直径、根粗。每个小区测定10株,即每个处理测定30株。根样品用自来水清洗干净,晾干表面水分,称重,即为鲜重;于40 ℃下烘干至恒重,用万分之一天平称其干重,每个处理重复3次。
1.3.2 生理指标测定
采集黄芪叶片,进行生理指标测定。叶绿素含量采用丙酮−乙醇研磨法[12]测定;超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)分别采用硝基蓝四唑光还原法[12]、愈创木酚比色法[12]、过氧化氢法[12]和紫外分光光度法[13]进行检测;游离脯氨酸(Pro)、可溶性糖(SS)和可溶性蛋白(SP)含量分别采用酸性茚三酮法、蒽醌比色法和考马斯亮蓝G-250比色法[12]进行测定;相对电解质(REL)采用电导率法[14]进行测定。
1.3.3 黄酮类和皂苷类成分含量测定
色谱条件:使用安捷伦1260 HPLC分析 (图1)。采用Agilent ZORBAX SB-C18 (150 mm × 4.6 mm,5 µm)色谱柱,分离黄酮类成分流动相为0.2%的甲酸和乙腈。梯度洗脱程序如下:20%~40% 乙腈,0~20 min;40%乙腈,20~30 min;40%乙腈30 min,平衡3 min。流速0.5 mL·min−1,柱温30 ℃,进样量10 µL,检测波长260 nm。分离皂苷类成分由水和乙腈组成,梯度洗脱程序如下:5%~13%乙腈,0~5 min;13%~21%乙腈,5%~10% min;21%~37%乙腈,10~23 min;37%~53% 乙腈,23~37 min;53%~69%乙腈,33~43 min;69%~100%乙腈,43~45 min。平衡3 min, 流速1 mL·min−1,柱温30 ℃,进样量10 µL,雾化温度30 ℃,漂移管温度105 ℃,载气流速2.5 L·min−1。
对照品样品制备:精密称取对照品毛蕊异黄酮葡萄糖苷(CG)、毛蕊异黄酮(CA)、芒柄花苷(ON)、芒柄花素(FOR)、黄芪甲苷(AS-Ⅳ)、黄芪皂苷Ⅲ (AS-Ⅲ )、黄芪皂苷Ⅱ (AS-Ⅱ)各3.90、2.50、0.40、2.70、10.20、1.40、4.20 mg,分别置于2 mL容量瓶,加甲醇定容至刻度,摇匀,配制成7个对照品贮备液。4 ℃保存备用。
供试样品制备:不同采收期的各处理蒙古黄芪药材,粉碎过0.25 mm筛,精密称定约2.0 g,置250 mL圆底烧瓶中,加入100%甲醇50 mL,回流提取60 min,过滤,滤渣再加入100%甲醇50 mL,回流提取60 min,过滤,合并滤液,减压回收,残渣加10 mL水复溶,水饱和正丁醇40 mL萃取两次,合并正丁醇萃取液,用氨水40 mL萃取正丁醇部位两次,弃去氨水部位,减压回收正丁醇部位,残渣加色谱甲醇溶解,并定容到5 mL容量瓶,0.22 µm滤膜滤过,即得供试样品。
线性关系:吸取配制好的一系列对照品溶液,按照色谱条件进行测定,分别记录对照溶液中对照品峰面积,以峰面积对数值为纵坐标,进样量对数值为横坐标,进行线性回归,得7种成分的回归方程、线性范围以及检测限和定量限(表2)。7种成分均在各自的浓度范围内线性良好。
表 2 7种成分线性方程Table 2. Linearity correlations of seven analytes成分
Constituent线性方程
Regression equationr 线性范围
Linear range/µg检测限(LOD)
Limit of detection/µg定量限(LOQ)
Limit of quantification/µgCG Y = 1730.9 X + 41.7270.9996 0.00585 ~5.85000 0.00195 0.00585 CA Y = 4156 X − 15.4581.0000 0.00405 ~2.70000 0.00135 0.00405 ON Y = 3165.6 X +4.0707 0.9999 0.00625 ~3.75000 0.00270 0.00625 FOR Y = 5991.2 X −0.1464 1.0000 0.00400 ~0.60000 0.00200 0.00400 AS-Ⅳ Y = 1.5997 X +1.8243 0.9995 0.510~51.000 0.255 0.510 AS-Ⅲ Y = 1.4223 X +1.5932 0.9996 0.175~7.000 0.140 0.175 AS-Ⅱ Y = 1.6311 X +1.8055 0.9995 0.420~21.000 0.315 0.420 CG,黄酮葡萄糖苷;CA,毛蕊异黄酮;ON,芒柄花苷;FOR,芒柄花素;AS-Ⅳ,黄芪甲苷;AS-Ⅲ ,黄芪皂苷Ⅲ ;AS-Ⅱ,黄芪皂苷Ⅱ;下同。
CG, calycosin-7-O-β-d-glucoside; CA, calycosin; ON, ononin, FOR, formononetin; AS-Ⅳ, astragaloside Ⅳ; AS-Ⅲ, astragaloside Ⅲ; AS-Ⅱ, astragaloside Ⅱ. This is applicable for the following figures and tables as well.方法学考察:取9月26日采样的A2B1样品,考察方法的精密度、重复性、稳定性及加样回收是否良好,制备供试品溶液,根据色谱条件进样测定,计算7种成分含量。分别进行1 d内连续进样5次的精密度实验、3份样品的重复性实验,并在1 d内进行间隔进样(0、1、4、8、12 h)的稳定性实验及7种成分的加样回收实验。连续及重复进样的7种成分含量相对标准偏差(RSD)值均小于2.87%;在1、4、8、12 h内其含量RSD值均小于2.88%;7种成分的加样回收率在96.47%~99.52%,RSD值均小于1.29%,表明所用仪器精密度良好,测试样品重复性较好,供试品在12 h内稳定,且建立的方法具良好的回收率。
含量测定:精密吸取不同采收期各处理的蒙古黄芪样品供试品溶液10 µL,注入液相色谱仪进行测定,计算7种成分的含量。
1.4 数据处理
使用Excel 2007整理数据,用Origin 9.1软件制图,应用SPSS 22.0统计分析软件对各指标进行Duncan 新复极差法进行显著性检验(P < 0.05);并对成药期所测指标数据进行主成分分析,根据提取因子的方差累积贡献率(≥ 80%以上),确定蒙古黄芪的生长性状及质量情况,评价施用沼液的最佳浓度及配施方式。
2. 结果与分析
2.1 沼液施用对蒙古黄芪生物量的影响
整个生长周期,11个处理组的蒙古黄芪株高和茎直径基本呈现先升后降趋势,即6月-8月呈上升趋势,8月-10月呈下降趋势(图2)。各处理的根干重、根长和根粗均在6月-9月迅速上升,9月-10月趋于平缓(图3)。
沼液喷洒处理后,7月28日数据显示(图2、3),80%沼液处理显著(A2B1)促进了株高、茎直径和根长的增加,分别显著高于CF处理10.68%、10.92%和9.42% (P < 0.05),高于CK处理10.69%、8.27%和23.66% (P < 0.05)。100%沼液处理(A1B3)的根干重和根粗分别高出CF处理15.49%和12.34% (P < 0.05),高出CK处理149.11%和132.19% (P < 0.05)。
图 2 不同采收期各处理蒙古黄芪地上生物量A1B1、A1B2、A1B3、A2B2、A2B3、A3B1、A3B2、A3B3、CF、CK详细信息参考表1;不同小写字母表示同一采样时间不同处理间差异显著(P < 0.05);下图同。Figure 2. Comparison of the aboveground biomass in different treatment samples of Astragalus membranaceus var. mongholicus during different periods of growthThe code name details of A1B1, A1B2, A1B3, A2B2, A2B3, A3B1, A3B2, A3B3, CF, CK reter to Table 1. Different lowercase letters for the same sampling dates indicate significant differences among different treatments at the 0.05 level. This is applicable for the following figures as well.追肥处理后,成药期数据显示(10月24日),80%沼液追肥处理(A2B2)可获得最高的茎直径(6.20 mm),显著高于CF处理24.50%。80%沼液配施处理(A2B3)获得最高的根粗和根干重,分别为8.25 mm、35.83 g,其次为A2B2处理,分别为8.10 mm、33.94 g。与CF处理相比,A2B3、A2B2处理的根粗分别显著升高7.31%、5.41% (P < 0.05),根干重分别显著升高10.49%、4.66% (P < 0.05)。50%沼液追肥处理(A3B2)的茎直径、根干重值最低,分别为4.54 mm、28.37 g。
2.2 沼液施用对蒙古黄芪生理特性的影响
整个生长周期,11个处理组的蒙古黄芪叶绿素含量、抗氧化酶活性及渗透调节物质SP、REL含量基本呈现先升后降趋势,SS呈一直上升趋势,Pro呈先降后升趋势(图4、5、6)。
沼液喷洒处理后,7月28日数据显示,80%沼液处理(A2B3)的叶绿素含量(Chla、Chlb、Chla + Chlb)、抗氧化酶活性(SOD、CAT、APX)、渗透调节物质(Pro、SS)含量及A2B1处理的SP含量较高,分别显著高于CF处理30.98%、53.89%、36.45%、15.49%、61.18%、129.99%、9.37%、44.48%、51.92% (P < 0.05)。
追肥后,成药期数据显示(10月24日),A2B2处理的Chla、Chla + Chlb含量、POD、CAT活性以及A2B3处理的SS含量均分别显著高于CF处理10.53%、10.28%、9.99%、562.98%、21.84% (P < 0.05)。A2B1处理的SOD活性、Pro含量以及A3B3处理的Chlb、SP含量、APX活性均显著高于CF、CK处理(P < 0.05)。REL以A2B2处理最低,显著低于CF处理14.88% (P < 0.05)。
2.3 沼液施用对蒙古黄芪有效成分含量的影响
各处理的CG、CA和ON含量在整个生长阶段均呈现先降(6月-8月)后升(8月-10月)的变化趋势。相反,FOR含量呈先升(6月-8月)后降(8月-10月)趋势。11个处理的AS-Ⅳ含量变化大体分为3类:第1类,呈先降后升趋势,包括A1B1、A1B3和CF处理;第2类,呈先增后降再增趋势,包括A1B2、A3B1、A2B2和A2B3处理;第3类,7月-9月增加,9月-10月减少,包括 A3B3、A2B3处理。大部分处理的AS-Ⅱ和AS-Ⅲ含量变化趋势相似,即为先降后升再降再升趋势。
沼液喷洒处理下(7月28日),CG、AS-Ⅳ、AS-Ⅲ 含量均以80%沼液处理(A2B3)较高,AS-Ⅱ含量以50%沼液处理(A3B3)较高,其中80%沼液处理(A2B3)的CG、AS-IV、AS-Ⅲ 含量,50%沼液处理(A3B3)的AS-Ⅱ含量分别显著高出CF处理19.15%、84.14%、63.41%、41.83% (表3)。
表 3 不同采收期各处理蒙古黄芪黄酮类和皂苷类成分含量Table 3. The contents of flavonoids and astragalus saponins in the different treatment samples of Astragalus mongholicus during different periods of growth采收期
Sampling period/
(MM-DD)处理
Treatment毛蕊异黄酮
葡萄糖苷 CG/
(mg·g−1)毛蕊异黄酮
CA/
(mg·g−1)黄芪甲苷
AS-Ⅳ/
(mg·g−1)芒柄花苷
ON/
(µg·g−1)芒柄花素
FOR/
(µg·g−1)黄芪皂苷Ⅲ
AS-Ⅲ/
(µg·g−1)黄芪皂苷Ⅱ
AS-Ⅱ/
(µg·g−1)06-27 A1B1 0.93 ± 0.00a 0.33 ± 0.00a 0.85 ± 0.02c 22.29 ± 0.20a 2.37 ± 0.04a 6.36 ± 0.10e 4.97 ± 0.01j A1B2 0.73 ± 0.00g 0.26 ± 0.00d 0.88 ± 0.01b 15.68 ± 0.61fg 0.93 ± 0.03e 7.05 ± 0.10d 6.62 ± 0.03h A1B3 0.92 ± 0.00ab 0.31 ± 0.00b 0.87 ± 0.01c 20.54 ± 0.30b 2.18 ± 0.03b 7.65 ± 0.20c 5.74 ± 0.09i A2B1 0.83 ± 0.01d 0.24 ± 0.00e 0.98 ± 0.00a 14.61 ± 0.20g 1.05 ± 0.03cd 6.27 ± 0.10ef 7.74 ± 0.12f A2B2 0.76 ± 0.01e 0.27 ± 0.00d 0.90 ± 0.01bc 17.95 ± 0.51cd 0.99 ± 0.04de 8.89 ± 0.20b 12.23 ± 0.23c A2B3 0.88 ± 0.00c 0.33 ± 0.00a 1.01 ± 0.01a 20.91 ± 0.22b 1.09 ± 0.02c 7.89 ± 0.10c 3.76 ± 0.09k A3B1 0.72 ± 0.01fg 0.20 ± 0.00g 0.72 ± 0.00e 15.39 ± 0.20fg 0.96 ± 0.02de 14.71 ± 0.00a 10.24 ± 0.02e A3B2 0.76 ± 0.00ef 0.27 ± 0.00d 0.87 ± 0.00bc 16.89 ± 0.21de 0.84 ± 0.03f 7.88 ± 0.10c 16.41 ± 0.07a A3B3 0.74 ± 0.01efg 0.23 ± 0.00f 0.68 ± 0.01f 16.06 ± 0.21ef 0.94 ± 0.03e 5.91 ± 0.10g 7.04 ± 0.06g CF 0.90 ± 0.00bc 0.29 ± 0.00c 0.94 ± 0.01b 18.35 ± 0.25c 0.96 ± 0.02de 5.32 ± 0.00h 11.22 ± 0.50d CK 0.73 ± 0.00g 0.17 ± 0.00h 0.82 ± 0.01d 12.15 ± 0.22h 0.59 ± 0.03g 5.96 ± 0.10fg 12.89 ± 0.22b 07-28 A1B1 0.32 ± 0.00ef 0.14 ± 0.00e 0.58 ± 0.01g 7.62 ± 0.21f 1.22 ± 0.01e 4.23 ± 0.12i 6.69 ± 0.03e A1B2 0.31 ± 0.00fg 0.15 ± 0.00d 0.95 ± 0.01c 8.82 ± 0.21e 1.52 ± 0.02d 7.85 ± 0.10e 5.71 ± 0.04g A1B3 0.34 ± 0.00e 0.15 ± 0.00d 0.60 ± 0.02g 8.36 ± 0.23ef 1.08 ± 0.03f 5.82 ± 0.10g 8.43 ± 0.06c A2B1 0.49 ± 0.00b 0.23 ± 0.00b 1.43 ± 0.01b 12.71 ± 0.22b 1.58 ± 0.02bc 10.84 ± 0.10b 3.61 ± 0.05j A2B2 0.31 ± 0.00fg 0.13 ± 0.00e 0.96 ± 0.01c 11.31 ± 0.53c 1.60 ± 0.02b 8.80 ± 0.00c 4.59 ± 0.04i A2B3 0.56 ± 0.00a 0.23 ± 0.00b 1.51 ± 0.00a 12.66 ± 0.20b 1.60 ± 0.02b 11.39 ± 0.10a 8.14 ± 0.03d A3B1 0.40 ± 0.00d 0.18 ± 0.00c 0.79 ± 0.00f 10.14 ± 0.22d 1.72 ± 0.03a 8.58 ± 0.10cd 5.94 ± 0.07f A3B2 0.30 ± 0.00g 0.13 ± 0.00e 0.88 ± 0.00d 9.82 ± 0.22d 1.52 ± 0.01cd 11.06 ± 0.11a 8.47 ± 0.06c A3B3 0.42 ± 0.00c 0.18 ± 0.00c 0.79 ± 0.01f 10.56 ± 0.24cd 1.74 ± 0.03a 8.51 ± 0.10d 13.02 ± 0.04a CF 0.47 ± 0.01b 0.23 ± 0.00ab 0.82 ± 0.01e 12.78 ± 0.27b 1.72 ± 0.03a 6.97 ± 0.10f 9.18 ± 0.06b CK 0.47 ± 0.01b 0.24 ± 0.00a 0.77 ± 0.01f 13.69 ± 0.00a 1.22 ± 0.02e 5.17 ± 0.10h 4.81 ± 0.08h 08-27 A1B1 0.46 ± 0.01a 0.27 ± 0.00a 1.07 ± 0.02b 14.29 ± 0.33a 2.02 ± 0.01c 17.57 ± 0.30a 5.47 ± 0.04k A1B2 0.40 ± 0.00cd 0.21 ± 0.00b 0.86 ± 0.01gh 11.23 ± 0.00b 2.01 ± 0.02c 16.42 ± 0.30b 18.81 ± 0.11a A1B3 0.26 ± 0.00f 0.13 ± 0.00e 0.92 ± 0.01ef 7.14 ± 0.11g 1.04 ± 0.01e 12.26 ± 0.21e 10.02 ± 0.03e A2B1 0.30 ± 0.01e 0.17 ± 0.00d 0.96 ± 0.00d 8.65 ± 0.23f 1.99 ± 0.05c 13.06 ± 0.10d 8.67 ± 0.07f A2B2 0.45 ± 0.02ab 0.21 ± 0.00b 0.84 ± 0.00h 9.10 ± 0.02e 2.66 ± 0.016a 8.01 ± 0.10g 12.43 ± 0.22d A2B3 0.42 ± 0.02bc 0.22 ± 0.01b 1.35 ± 0.02a 9.27 ± 0.10de 2.71 ± 0.19a 15.91 ± 0.00c 7.61 ± 0.03h A3B1 0.37 ± 0.01d 0.19 ± 0.00c 0.90 ± 0.01f 9.94 ± 0.20c 1.71 ± 0.02d 8.30 ± 0.10g 6.13 ± 0.03j A3B2 0.33 ± 0.00e 0.14 ± 0.00e 0.96 ± 0.00de 6.79 ± 0.00g 1.77 ± 0.04cd 6.16 ± 0.10h 8.31 ± 0.08g A3B3 0.33 ± 0.00e 0.22 ± 0.00b 0.94 ± 0.00de 10.84 ± 0.00b 2.01 ± 0.02c 15.73 ± 0.10c 12.93 ± 0.06c CF 0.33 ± 0.01e 0.18 ± 0.00d 0.89 ± 0.00fg 8.50 ± 0.00f 1.85 ± 0.02cd 11.86 ± 0.00e 13.49 ± 0.09b CK 0.39 ± 0.01cd 0.20 ± 0.01c 1.01 ± 0.01c 9.57 ± 0.12cd 2.29 ± 0.02b 10.44 ± 0.13f 7.09 ± 0.06i 09-26 A1B1 0.43 ± 0.01d 0.25 ± 0.01c 1.05 ± 0.01d 13.29 ± 0.20de 1.29 ± 0.06bc 8.45 ± 0.11d 7.66 ± 0.09d A1B2 0.42 ± 0.00d 0.25 ± 0.00cd 1.00 ± 0.01e 12.84 ± 0.00e 1.45 ± 0.03b 6.29 ± 0.11g 4.12 ± 0.06i A1B3 0.37 ± 0.00e 0.22 ± 0.00de 0.88 ± 0.01f 10.70 ± 0.23f 1.03 ± 0.03d 8.29 ± 0.13d 4.65 ± 0.04h A2B1 0.38 ± 0.00e 0.25 ± 0.00c 1.28 ± 0.01a 12.85 ± 0.10e 1.40 ± 0.02b 9.03 ± 0.00c 6.78 ± 0.09e A2B2 0.48 ± 0.01c 0.29 ± 0.00b 1.11 ± 0.00c 16.21 ± 0.30b 1.31 ± 0.04bc 10.69 ± 0.00a 4.75 ± 0.12h A2B3 0.49 ± 0.01c 0.22 ± 0.00e 1.00 ± 0.01e 11.62 ± 0.10f 0.94 ± 0.02d 7.23 ± 0.10e 9.07 ± 0.08c A3B1 0.32 ± 0.01f 0.18 ± 0.01f 0.77 ± 0.02g 9.47 ± 0.41g 1.35 ± 0.08bc 6.59 ± 0.10f 5.13 ± 0.04g A3B2 0.39 ± 0.01e 0.24 ± 0.01cd 1.00 ± 0.01e 12.73 ± 0.11e 1.46 ± 0.11b 8.22 ± 0.10d 10.92 ± 0.04b A3B3 0.51 ± 0.01b 0.26 ± 0.01c 1.19 ± 0.03b 14.30 ± 0.00cd 1.44 ± 0.06b 9.62 ± 0.22b 13.66 ± 0.04a CF 0.60 ± 0.01a 0.36 ± 0.01a 0.89 ± 0.01f 17.65 ± 0.10a 1.21 ± 0.05c 7.24 ± 0.11e 5.90 ± 0.13f CK 0.48 ± 0.01c 0.26 ± 0.01c 0.76 ± 0.00g 14.45 ± 0.11c 1.73 ± 0.06a 6.49 ± 0.13fg 4.36 ± 0.09i 10-24 A1B1 0.40 ± 0.01de 0.27 ± 0.00cd 1.18 ± 0.02a 14.26 ± 0.30c 0.61 ± 0.00a 12.20 ± 0.61a 9.67 ± 0.09d A1B2 0.44 ± 0.02c 0.27 ± 0.05de 0.98 ± 0.00cd 12.49 ± 0.71e 0.46 ± 0.00f 7.21 ± 0.12f 5.35 ± 0.00i A1B3 0.41 ± 0.00d 0.27 ± 0.04cd 0.83 ± 0.01e 14.09 ± 0.14cd 0.59 ± 0.01b 7.35 ± 0.00ef 7.68 ± 0.06f A2B1 0.41 ± 0.01de 0.26 ± 0.00f 1.05 ± 0.00b 13.96 ± 0.32cd 0.56 ± 0.01cd 9.56 ± 0.10b 12.39 ± 0.06a A2B2 0.58 ± 0.00a 0.35 ± 0.00a 1.18 ± 0.04a 18.54 ± 0.21a 0.58 ± 0.01bc 7.91 ± 0.10de 7.16 ± 0.07g A2B3 0.50 ± 0.00b 0.28 ± 0.00c 0.86 ± 0.02e 14.14 ± 0.00cd 0.55 ± 0.01d 5.75 ± 0.00g 11.21 ± 0.03b A3B1 0.38 ± 0.00ef 0.26 ± 0.00ef 0.86 ± 0.02e 13.31 ± 0.10d 0.49 ± 0.01e 8.10 ± 0.10d 10.28 ± 0.00c A3B2 0.44 ± 0.01c 0.27 ± 0.00cde 1.03 ± 0.01bc 13.76 ± 0.20cd 0.56 ± 0.00cd 8.31 ± 0.10cd 9.83 ± 0.00d A3B3 0.46 ± 0.00c 0.32 ± 0.01b 1.15 ± 0.01a 16.55 ± 0.10b 0.59 ± 0.00b 8.47 ± 0.10cd 5.88 ± 0.06h CF 0.31 ± 0.00g 0.23 ± 0.00g 0.95 ± 0.01d 11.54 ± 0.00f 0.44 ± 0.00g 8.69 ± 0.10c 8.70 ± 0.05e CK 0.38 ± 0.00f 0.23 ± 0.00g 1.01 ± 0.01cd 12.33 ± 0.10ef 0.44 ± 0.00fg 7.35 ± 0.00ef 4.32 ± 0.09j 追肥后,成药期数据表明(10月24日),沼液各处理的4种黄酮类成分含量与CF处理相比,均明显升高(P < 0.05)。A2B2、A3B3、A1B1处理的AS-Ⅳ含量较高,均显著大于其他8个处理(P < 0.05)。其中A2B2处理的CG、ON、CA、AS-Ⅳ含量,A1B1处理的FOR、AS-Ⅲ 含量均分别显著高出CF处理87.09%、60.65%、52.17%、24.21%、38.63%、40.39%。
同浓度沼液不同配比方式下(10月24日),100%沼液喷洒、80%沼液追肥及50%沼液配施处理的综合指标均优于相应沼液浓度其他配施方式(表3)。
2.4 主成分分析
提取因子的单一成分和综合得分显示(表4),A2B2处理的综合得分最高,为2.80,其次为A3B3处理,得分2.39;CK处理得分最低,其次为CF处理。结果表明,80%沼液追肥或50%沼液喷洒 + 追肥可促进黄芪苗的生长及质量的提高,且显著优于CF处理。
表 4 各主成分得分及综合得分Table 4. Principal component and composite scores处理
Treatment主成分 Principal component 综合得分
Principal
component1 2 3 A1B1 −0.11 −0.11 −1.49 −0.29 A1B2 −1.82 1.40 0.01 −0.87 A1B3 −2.19 0.92 0.40 −1.16 A2B1 −0.66 0.90 −0.32 −0.27 A2B2 3.45 2.59 −0.10 2.80 A2B3 1.19 −0.09 2.22 1.04 A3B1 −0.99 −0.68 1.01 −0.66 A3B2 1.76 −1.68 −1.01 0.64 A3B3 4.18 −1.35 −0.17 2.39 CF −2.21 −1.89 0.56 −1.78 CK −2.63 −0.01 −1.11 −1.85 3. 讨论
3.1 沼液施用对蒙古黄芪生物量的影响
沼液不同施用方式对蒙古黄芪生长所产生的影响不同,其生长形态能直观地反映这一结果。本研究结果表明,施用中等浓度的沼液(80%)喷洒或追肥均可促进黄芪植物茎的生长,并在收获期增加根的生物量,且效果优于常规化肥施肥处理。秦榕[9]、刘国胜[11]的研究结果也表明,中等浓度沼液叶面喷施可促进黄芪生长,提高药材产量。有机肥沼液相比化肥,能为植物提供更多可利用的氮和其他养分[15]。植物吸收并利用这些元素,促进细胞伸长、分裂、光合化合物积累;同时刺激茎、根生长,增加根部养分积累,提高根部生物量。此外,沼液作为肥料的功效还可归因于碳的快速释放,可增加土壤中有机碳含量,改善土壤结构,促进植物生长[16]。这一猜想还需要通过检测土壤质量指标来进一步验证。但试验中50%沼液喷洒或追肥对蒙古黄芪生长所产生的效果不佳,而配施效果较好,仅次于80%沼液追肥结果,说明沼液是一种速效肥,在植物不同生长阶段需及时补充适宜的营养,才能更好地促进植物生长,增加其产量,这与前期盆栽试验推测结果相一致[12]。
3.2 沼液施用对蒙古黄芪生理特性的影响
蒙古黄芪对沼液施入产生了积极的响应。与清水对照相比,沼液处理显著提高了SOD、CAT、POD和APX的活性(P < 0.05),这与前期盆栽研究结果相一致[12]。本研究发现,追肥当月(8月),80%沼液追肥处理显著提高了SOD、POD、CAT的活性,而APX活性较低,于9月APX活性达到最高。说明不同酶对相同浓度沼液表现出不同的敏感性,并在不同生长阶段被激活,通过整体协调发挥氧化还原平衡作用[17]以保护植物,反过来又提高植物的抗逆性,促进植物生长,同时激活相关酶促进植物次生代谢产物的合成[18],提升其质量。
Pro、SS和SP是植物的重要渗透调节物质,有助于维持植物细胞的水合状态和生理活性[19]。本研究结果表明,施用沼液可激活蒙古黄芪植物的渗透调节系统。蒙古黄芪生长中期(8月),相比CK、CF处理,80%沼液配施处理基本上显著增加了Pro、SS、SP的含量(P < 0.05),其CAT、POD、SOD、APX的活性及生物量也相应显著增加(P < 0.05)。说明适宜的沼液施用模式可通过诱导渗透调节物质的积累来稳定细胞膜和蛋白质的结构,降低其细胞渗透势,增强植物的养分吸收、根系伸展和渗透势[20],并与抗氧化酶系统起协同作用,增强植物对外部环境刺激的耐受性[21],从而促进植物生长并增加根系生物量。
3.3 沼液施用对蒙古黄芪有效成分含量的影响
皂苷和黄酮类成分均是蒙古黄芪的质控指标[22]。与清水对照、常规化肥施肥相比,所有沼液处理组均显著增加了成药期蒙古黄芪根中4种黄酮类成分含量。其中80%沼液追肥处理的CG、CA、ON含量以及CAT、POD和APX活性最高。CG是黄芪中的抗氧化分子[23],说明施用沼液引起蒙古黄芪植物的氧化应激反应,增加植物的ROS水平,过量产生的ROS会刺激植物合成黄酮类化合物以应对氧化胁迫,这与Lyu等[24]的研究结果相一致。
皂苷是植物抵御外部压力的防御性化合物[25]在外部环境刺激下,皂苷的合成和积累会在植物各个细胞间隙中增加[26]。本研究发现,沼液的施用会刺激蒙古黄芪根中皂苷成分的积累。与施用常规化肥相比,50%沼液配施、80%沼液追肥和100%沼液喷洒处理组均会增加成药期蒙古黄芪根中AS-Ⅳ的含量,其CAT、APX活性也增加。皂苷具有抗氧化潜力[27],推测蒙古黄芪植物中皂苷成分的积累可能与施用沼液引发的氧化应激有关。
4. 结论
综上所述,适宜的沼液浓度及施用方式应用于黄芪大田种植,在提高产量和品质方面,优于药农经验施肥(化肥),其最佳施肥方案是:低浓度沼液(50%)应在黄芪茎叶生长期多次喷洒,根生长期追肥;中浓度沼液(80%)应追肥。其中以80%沼液追肥效果较好,其次为50%喷洒 + 追施处理。该研究结果可为沼液应用于黄芪大田实践提供理论指导。
参考文献
[1] 杜国军, 秦雪梅, 李震宇, 何盼, 高凡茸, 李科, 周然. 蒙古黄芪主产区2种不同种植模式黄芪药材的质量比较. 中草药, 2013, 44(23): 3386-3393. DU G J, QIN X M, LI Z Y, HE P, GAO F R, LI K, ZHOU R. Comparative study on quality of Astragali radix by two different planting patterns in major producing areas. Chinese Traditional and Herbal Drugs, 2013, 44(23): 3386-3393.
[2] YAO R Y, HEINRICH M, WANG Z G, WECKERLE C S. Quality control of goji (fruits of Lycium barbarum L. and L. chinense Mill.): A value chain analysis perspective. Journal of Ethnopharmacology, 2018, 224: 349-358. doi: 10.1016/j.jep.2018.06.010
[3] HEINRICH M. Quality and safety of herbal medical products: Regulation and the need for quality assurance along the value chains. British Journal of Clinical Pharmacology, 2015, 80(1): 62-66. doi: 10.1111/bcp.12586
[4] 叶迎, 王瑞海, 苗青, 许京, 吴东苑, 刘丽梅. 甘肃产1~2年生红芪和黄芪皂苷、多糖、黄酮类成分含量差异研究. 中草药, 2023, 54(14): 4649-4661. YE Y, WANG R H, MIAO Q, XU J, WU D Y, LIU L M. Comparative study on statistical differences of saponins, polysaccharides and flavonoids contents of Gansu 1~2 years old Hedysari radix and Astragali radix. Chinese Traditional and Herbal Drugs, 2023, 54(14): 4649-4661.
[5] BI Y Q, BAO H Y, ZHANG C H, YAO R Y, LI M H. Quality control of radix Astragali (the root of Astragalus membranaceus var. mongholicus) along its value chains. Frontiers in Pharmacology, 2020, 11: 562376. doi: 10.3389/fphar.2020.562376
[6] GROSS T, BREITENMOSER L, KUMAR S, EHRENSPERGER A, WINTGENS T, HUGI C. Anaerobic digestion of biowaste in Indian municipalities: Effects on energy, fertilizers, water and the local environment. Resources, Conservation and Recycling, 2021, 170: 105569. doi: 10.1016/j.resconrec.2021.105569
[7] TANG J, YIN J Z, DAVY A J, PAN F F, HAN X, HUANG S N, WU D F. Biogas slurry as an alternative to chemical fertilizer: Changes in soil properties and microbial communities of fluvo-aquic soil in the north China plain. Sustainability, 2022, 14(22): 15099. doi: 10.3390/su142215099
[8] 国家发展和改革委员会. 关于促进生物天然气产业化发展的指导意见. (2019-12-19) [2021-01-10]. https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201912/t20191219_1213770.html?code=&state=123. National Development and Reform Commission. A guidelines on promoting the industrial development of biological natural gas. (2019-12-19) [2021-01-10]. https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201912/t20191219_1213770.html?code=&state=123.
[9] 秦榕. 黄芪喷施沼液增产效果试验. 现代农村科技, 2020, 11: 73. doi: 10.3969/j.issn.1674-5329.2020.03.064 QIN R. Experiment on the effect of spraying biogas slurry on the yield of Astragalus membranaceus. Modern Rural Technology, 2020, 11: 73. doi: 10.3969/j.issn.1674-5329.2020.03.064
[10] 王艳霞, 刘国胜, 王永生, 戴红平. 沼液在黄芪上的喷施效果试验初报. 中国沼气, 2014, 32(2): 56-57. doi: 10.3969/j.issn.1000-1166.2014.02.016 WANG Y X, LIU G S, WANG Y S, DAI H P. Preliminary report of the effect of biogas slurry spraying on Astragalus membranaceus. China Biogas, 2014, 32(2): 56-57. doi: 10.3969/j.issn.1000-1166.2014.02.016
[11] 刘国胜. 沼液对黄芪施用增产效果试验. 中国沼气, 2009, 27(5): 29-30. LIU G S. Experiment on the effect of biogas slurry application on the increase of Astragalus membranaceus production. China Biogas, 2009, 27(5): 29-30.
[12] 陆国弟, 杨扶德, 郑健, 王惠珍, 陈红刚, 杜弢. 沼液对蒙古黄芪抗逆生理指标及药用活性成分含量的影响. 西北植物学报, 2019, 39(12): 2235-2243. doi: 10.7606/j.issn.1000-4025.2019.12.2235 LU G D, YANG F D, ZHENG J, WANG H Z, CHEN H G, DU T. Effect of applying biogas slurry on physiological characteristics and active component content of Astragalus membranaceus var. mongholicus (Bge.) Hsiao. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2235-2243. doi: 10.7606/j.issn.1000-4025.2019.12.2235
[13] BEYER W F, FRIDOVICH I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161(2): 559-566. doi: 10.1016/0003-2697(87)90489-1
[14] 刘文静, 杨志青, 李钰莹, 高守舆, 张新荣. 盐胁迫对‘太行’白羊草生长与生理特性的影响. 草业科学, 2023, 40(10): 2651-2658. doi: 10.11829/j.issn.1001-0629.2022-0879 LIU W J, YANG Z Q, LI Y Y, GAO S Y, ZHANG X R. Effects of salt stress on the growth of Bothriochloa ischaemum and its physiological response. Pratacultural Science, 2023, 40(10): 2651-2658. doi: 10.11829/j.issn.1001-0629.2022-0879
[15] MÖLLER K, MÜLLER T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 2012, 12(3): 242-257. doi: 10.1002/elsc.201100085
[16] TERHOEVEN-URSELMANS T, SCHELLER E, RAUBUCH M, LUDWIG B, JOERGENSEN R G. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Applied Soil Ecology, 2009, 42(3): 297-302. doi: 10.1016/j.apsoil.2009.05.012
[17] NWUGO C C, HUERTA A J. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium stress. Journal of Proteome Research, 2011, 10(2): 518-528. doi: 10.1021/pr100716h
[18] EL-BELTAGI H S, MOHAMED H I, SOFY M R. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 2020, 25(7): 1702. doi: 10.3390/molecules25071702
[19] RU C, HU X T, CHEN D Y, WANG W, ZHEN J B. Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. Plant Science, 2022, 327: 111557.
[20] KHEIRIZADEH AROUGH Y, RAOUF SEYED SHARIFI R, SEYED SHARIFI R. Bio fertilizers and zinc effects on some physiological parameters of Triticale under water-limitation condition. Journal of Plant Interactions, 2016, 11(1): 167-177. doi: 10.1080/17429145.2016.1262914
[21] AHMED C B, ROUINA B B, SENSOY S, BOUKHRIS M, ABDALLAH F B. Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 2009, 67(2): 345-352. doi: 10.1016/j.envexpbot.2009.07.006
[22] LI M, HAN B, ZHAO H, XU C Y, XU D K, SIENIAWSKA E, LIN X M, KAI G Y. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine, 2022, 98: 153918. doi: 10.1016/j.phymed.2021.153918
[23] PAN H Y, LI X B, CHENG X W, WANG X Q, FANG C M, ZHOU T S, CHEN J K. Evidence of calycosin-7-O-β-D-glucoside’s role as a major antioxidant molecule of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao plants under freezing stress. Environmental and Experimental Botany, 2015, 109: 1-11. doi: 10.1016/j.envexpbot.2014.07.013
[24] LYU L J, CHEN X Y, LI H, HUANG J N, LIU Y P J, ZHAO A. Different adaptive patterns of wheat with different drought tolerance under drought stresses and rehydration revealed by integrated metabolomic and transcriptomic analysis. Frontiers in Plant Science, 2022, 13: 1008624. doi: 10.3389/fpls.2022.1008624
[25] PAPADOPOULOU K, MELTON R E, LEGGETT M, DANIELS M J, OSBOURN A E. Compromised disease resistance in saponin-deficient plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12923-12928.
[26] SZAKIEL A, PĄCZKOWSKI C, HENRY M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 2011, 10: 471-491. doi: 10.1007/s11101-010-9177-x
[27] WANG G Z, WANG J L, LIU W, NISAR M F, EL–ESAWI M A, WAN C P. Biological activities and chemistry of triterpene saponins from Medicago species: An update review. Evidence-based Complementary and Alternative Medicine, 2021, 2021: 6617916.
-
图 2 不同采收期各处理蒙古黄芪地上生物量
A1B1、A1B2、A1B3、A2B2、A2B3、A3B1、A3B2、A3B3、CF、CK详细信息参考表1;不同小写字母表示同一采样时间不同处理间差异显著(P < 0.05);下图同。
Figure 2. Comparison of the aboveground biomass in different treatment samples of Astragalus membranaceus var. mongholicus during different periods of growth
The code name details of A1B1, A1B2, A1B3, A2B2, A2B3, A3B1, A3B2, A3B3, CF, CK reter to Table 1. Different lowercase letters for the same sampling dates indicate significant differences among different treatments at the 0.05 level. This is applicable for the following figures as well.
表 1 大田试验设计
Table 1 Specific scheme of the field experiments performed in this study
处理
Treatment沼液施用方式(B) Method of biogas slurry application 喷洒
Spraying (B1)追肥
Topdressing (B2)喷洒 + 追肥
Spraying + topdressing (B3)沼液浓度
Biogas slurry concentrations100% (A1) A1B1 A1B2 A1B3 80% (A2) A2B1 A2B2 A2B3 50% (A3) A3B1 A3B2 A3B3 清水对照 Water control CK 常规化肥 Conventional fertilization CF 表 2 7种成分线性方程
Table 2 Linearity correlations of seven analytes
成分
Constituent线性方程
Regression equationr 线性范围
Linear range/µg检测限(LOD)
Limit of detection/µg定量限(LOQ)
Limit of quantification/µgCG Y = 1730.9 X + 41.7270.9996 0.00585 ~5.85000 0.00195 0.00585 CA Y = 4156 X − 15.4581.0000 0.00405 ~2.70000 0.00135 0.00405 ON Y = 3165.6 X +4.0707 0.9999 0.00625 ~3.75000 0.00270 0.00625 FOR Y = 5991.2 X −0.1464 1.0000 0.00400 ~0.60000 0.00200 0.00400 AS-Ⅳ Y = 1.5997 X +1.8243 0.9995 0.510~51.000 0.255 0.510 AS-Ⅲ Y = 1.4223 X +1.5932 0.9996 0.175~7.000 0.140 0.175 AS-Ⅱ Y = 1.6311 X +1.8055 0.9995 0.420~21.000 0.315 0.420 CG,黄酮葡萄糖苷;CA,毛蕊异黄酮;ON,芒柄花苷;FOR,芒柄花素;AS-Ⅳ,黄芪甲苷;AS-Ⅲ ,黄芪皂苷Ⅲ ;AS-Ⅱ,黄芪皂苷Ⅱ;下同。
CG, calycosin-7-O-β-d-glucoside; CA, calycosin; ON, ononin, FOR, formononetin; AS-Ⅳ, astragaloside Ⅳ; AS-Ⅲ, astragaloside Ⅲ; AS-Ⅱ, astragaloside Ⅱ. This is applicable for the following figures and tables as well.表 3 不同采收期各处理蒙古黄芪黄酮类和皂苷类成分含量
Table 3 The contents of flavonoids and astragalus saponins in the different treatment samples of Astragalus mongholicus during different periods of growth
采收期
Sampling period/
(MM-DD)处理
Treatment毛蕊异黄酮
葡萄糖苷 CG/
(mg·g−1)毛蕊异黄酮
CA/
(mg·g−1)黄芪甲苷
AS-Ⅳ/
(mg·g−1)芒柄花苷
ON/
(µg·g−1)芒柄花素
FOR/
(µg·g−1)黄芪皂苷Ⅲ
AS-Ⅲ/
(µg·g−1)黄芪皂苷Ⅱ
AS-Ⅱ/
(µg·g−1)06-27 A1B1 0.93 ± 0.00a 0.33 ± 0.00a 0.85 ± 0.02c 22.29 ± 0.20a 2.37 ± 0.04a 6.36 ± 0.10e 4.97 ± 0.01j A1B2 0.73 ± 0.00g 0.26 ± 0.00d 0.88 ± 0.01b 15.68 ± 0.61fg 0.93 ± 0.03e 7.05 ± 0.10d 6.62 ± 0.03h A1B3 0.92 ± 0.00ab 0.31 ± 0.00b 0.87 ± 0.01c 20.54 ± 0.30b 2.18 ± 0.03b 7.65 ± 0.20c 5.74 ± 0.09i A2B1 0.83 ± 0.01d 0.24 ± 0.00e 0.98 ± 0.00a 14.61 ± 0.20g 1.05 ± 0.03cd 6.27 ± 0.10ef 7.74 ± 0.12f A2B2 0.76 ± 0.01e 0.27 ± 0.00d 0.90 ± 0.01bc 17.95 ± 0.51cd 0.99 ± 0.04de 8.89 ± 0.20b 12.23 ± 0.23c A2B3 0.88 ± 0.00c 0.33 ± 0.00a 1.01 ± 0.01a 20.91 ± 0.22b 1.09 ± 0.02c 7.89 ± 0.10c 3.76 ± 0.09k A3B1 0.72 ± 0.01fg 0.20 ± 0.00g 0.72 ± 0.00e 15.39 ± 0.20fg 0.96 ± 0.02de 14.71 ± 0.00a 10.24 ± 0.02e A3B2 0.76 ± 0.00ef 0.27 ± 0.00d 0.87 ± 0.00bc 16.89 ± 0.21de 0.84 ± 0.03f 7.88 ± 0.10c 16.41 ± 0.07a A3B3 0.74 ± 0.01efg 0.23 ± 0.00f 0.68 ± 0.01f 16.06 ± 0.21ef 0.94 ± 0.03e 5.91 ± 0.10g 7.04 ± 0.06g CF 0.90 ± 0.00bc 0.29 ± 0.00c 0.94 ± 0.01b 18.35 ± 0.25c 0.96 ± 0.02de 5.32 ± 0.00h 11.22 ± 0.50d CK 0.73 ± 0.00g 0.17 ± 0.00h 0.82 ± 0.01d 12.15 ± 0.22h 0.59 ± 0.03g 5.96 ± 0.10fg 12.89 ± 0.22b 07-28 A1B1 0.32 ± 0.00ef 0.14 ± 0.00e 0.58 ± 0.01g 7.62 ± 0.21f 1.22 ± 0.01e 4.23 ± 0.12i 6.69 ± 0.03e A1B2 0.31 ± 0.00fg 0.15 ± 0.00d 0.95 ± 0.01c 8.82 ± 0.21e 1.52 ± 0.02d 7.85 ± 0.10e 5.71 ± 0.04g A1B3 0.34 ± 0.00e 0.15 ± 0.00d 0.60 ± 0.02g 8.36 ± 0.23ef 1.08 ± 0.03f 5.82 ± 0.10g 8.43 ± 0.06c A2B1 0.49 ± 0.00b 0.23 ± 0.00b 1.43 ± 0.01b 12.71 ± 0.22b 1.58 ± 0.02bc 10.84 ± 0.10b 3.61 ± 0.05j A2B2 0.31 ± 0.00fg 0.13 ± 0.00e 0.96 ± 0.01c 11.31 ± 0.53c 1.60 ± 0.02b 8.80 ± 0.00c 4.59 ± 0.04i A2B3 0.56 ± 0.00a 0.23 ± 0.00b 1.51 ± 0.00a 12.66 ± 0.20b 1.60 ± 0.02b 11.39 ± 0.10a 8.14 ± 0.03d A3B1 0.40 ± 0.00d 0.18 ± 0.00c 0.79 ± 0.00f 10.14 ± 0.22d 1.72 ± 0.03a 8.58 ± 0.10cd 5.94 ± 0.07f A3B2 0.30 ± 0.00g 0.13 ± 0.00e 0.88 ± 0.00d 9.82 ± 0.22d 1.52 ± 0.01cd 11.06 ± 0.11a 8.47 ± 0.06c A3B3 0.42 ± 0.00c 0.18 ± 0.00c 0.79 ± 0.01f 10.56 ± 0.24cd 1.74 ± 0.03a 8.51 ± 0.10d 13.02 ± 0.04a CF 0.47 ± 0.01b 0.23 ± 0.00ab 0.82 ± 0.01e 12.78 ± 0.27b 1.72 ± 0.03a 6.97 ± 0.10f 9.18 ± 0.06b CK 0.47 ± 0.01b 0.24 ± 0.00a 0.77 ± 0.01f 13.69 ± 0.00a 1.22 ± 0.02e 5.17 ± 0.10h 4.81 ± 0.08h 08-27 A1B1 0.46 ± 0.01a 0.27 ± 0.00a 1.07 ± 0.02b 14.29 ± 0.33a 2.02 ± 0.01c 17.57 ± 0.30a 5.47 ± 0.04k A1B2 0.40 ± 0.00cd 0.21 ± 0.00b 0.86 ± 0.01gh 11.23 ± 0.00b 2.01 ± 0.02c 16.42 ± 0.30b 18.81 ± 0.11a A1B3 0.26 ± 0.00f 0.13 ± 0.00e 0.92 ± 0.01ef 7.14 ± 0.11g 1.04 ± 0.01e 12.26 ± 0.21e 10.02 ± 0.03e A2B1 0.30 ± 0.01e 0.17 ± 0.00d 0.96 ± 0.00d 8.65 ± 0.23f 1.99 ± 0.05c 13.06 ± 0.10d 8.67 ± 0.07f A2B2 0.45 ± 0.02ab 0.21 ± 0.00b 0.84 ± 0.00h 9.10 ± 0.02e 2.66 ± 0.016a 8.01 ± 0.10g 12.43 ± 0.22d A2B3 0.42 ± 0.02bc 0.22 ± 0.01b 1.35 ± 0.02a 9.27 ± 0.10de 2.71 ± 0.19a 15.91 ± 0.00c 7.61 ± 0.03h A3B1 0.37 ± 0.01d 0.19 ± 0.00c 0.90 ± 0.01f 9.94 ± 0.20c 1.71 ± 0.02d 8.30 ± 0.10g 6.13 ± 0.03j A3B2 0.33 ± 0.00e 0.14 ± 0.00e 0.96 ± 0.00de 6.79 ± 0.00g 1.77 ± 0.04cd 6.16 ± 0.10h 8.31 ± 0.08g A3B3 0.33 ± 0.00e 0.22 ± 0.00b 0.94 ± 0.00de 10.84 ± 0.00b 2.01 ± 0.02c 15.73 ± 0.10c 12.93 ± 0.06c CF 0.33 ± 0.01e 0.18 ± 0.00d 0.89 ± 0.00fg 8.50 ± 0.00f 1.85 ± 0.02cd 11.86 ± 0.00e 13.49 ± 0.09b CK 0.39 ± 0.01cd 0.20 ± 0.01c 1.01 ± 0.01c 9.57 ± 0.12cd 2.29 ± 0.02b 10.44 ± 0.13f 7.09 ± 0.06i 09-26 A1B1 0.43 ± 0.01d 0.25 ± 0.01c 1.05 ± 0.01d 13.29 ± 0.20de 1.29 ± 0.06bc 8.45 ± 0.11d 7.66 ± 0.09d A1B2 0.42 ± 0.00d 0.25 ± 0.00cd 1.00 ± 0.01e 12.84 ± 0.00e 1.45 ± 0.03b 6.29 ± 0.11g 4.12 ± 0.06i A1B3 0.37 ± 0.00e 0.22 ± 0.00de 0.88 ± 0.01f 10.70 ± 0.23f 1.03 ± 0.03d 8.29 ± 0.13d 4.65 ± 0.04h A2B1 0.38 ± 0.00e 0.25 ± 0.00c 1.28 ± 0.01a 12.85 ± 0.10e 1.40 ± 0.02b 9.03 ± 0.00c 6.78 ± 0.09e A2B2 0.48 ± 0.01c 0.29 ± 0.00b 1.11 ± 0.00c 16.21 ± 0.30b 1.31 ± 0.04bc 10.69 ± 0.00a 4.75 ± 0.12h A2B3 0.49 ± 0.01c 0.22 ± 0.00e 1.00 ± 0.01e 11.62 ± 0.10f 0.94 ± 0.02d 7.23 ± 0.10e 9.07 ± 0.08c A3B1 0.32 ± 0.01f 0.18 ± 0.01f 0.77 ± 0.02g 9.47 ± 0.41g 1.35 ± 0.08bc 6.59 ± 0.10f 5.13 ± 0.04g A3B2 0.39 ± 0.01e 0.24 ± 0.01cd 1.00 ± 0.01e 12.73 ± 0.11e 1.46 ± 0.11b 8.22 ± 0.10d 10.92 ± 0.04b A3B3 0.51 ± 0.01b 0.26 ± 0.01c 1.19 ± 0.03b 14.30 ± 0.00cd 1.44 ± 0.06b 9.62 ± 0.22b 13.66 ± 0.04a CF 0.60 ± 0.01a 0.36 ± 0.01a 0.89 ± 0.01f 17.65 ± 0.10a 1.21 ± 0.05c 7.24 ± 0.11e 5.90 ± 0.13f CK 0.48 ± 0.01c 0.26 ± 0.01c 0.76 ± 0.00g 14.45 ± 0.11c 1.73 ± 0.06a 6.49 ± 0.13fg 4.36 ± 0.09i 10-24 A1B1 0.40 ± 0.01de 0.27 ± 0.00cd 1.18 ± 0.02a 14.26 ± 0.30c 0.61 ± 0.00a 12.20 ± 0.61a 9.67 ± 0.09d A1B2 0.44 ± 0.02c 0.27 ± 0.05de 0.98 ± 0.00cd 12.49 ± 0.71e 0.46 ± 0.00f 7.21 ± 0.12f 5.35 ± 0.00i A1B3 0.41 ± 0.00d 0.27 ± 0.04cd 0.83 ± 0.01e 14.09 ± 0.14cd 0.59 ± 0.01b 7.35 ± 0.00ef 7.68 ± 0.06f A2B1 0.41 ± 0.01de 0.26 ± 0.00f 1.05 ± 0.00b 13.96 ± 0.32cd 0.56 ± 0.01cd 9.56 ± 0.10b 12.39 ± 0.06a A2B2 0.58 ± 0.00a 0.35 ± 0.00a 1.18 ± 0.04a 18.54 ± 0.21a 0.58 ± 0.01bc 7.91 ± 0.10de 7.16 ± 0.07g A2B3 0.50 ± 0.00b 0.28 ± 0.00c 0.86 ± 0.02e 14.14 ± 0.00cd 0.55 ± 0.01d 5.75 ± 0.00g 11.21 ± 0.03b A3B1 0.38 ± 0.00ef 0.26 ± 0.00ef 0.86 ± 0.02e 13.31 ± 0.10d 0.49 ± 0.01e 8.10 ± 0.10d 10.28 ± 0.00c A3B2 0.44 ± 0.01c 0.27 ± 0.00cde 1.03 ± 0.01bc 13.76 ± 0.20cd 0.56 ± 0.00cd 8.31 ± 0.10cd 9.83 ± 0.00d A3B3 0.46 ± 0.00c 0.32 ± 0.01b 1.15 ± 0.01a 16.55 ± 0.10b 0.59 ± 0.00b 8.47 ± 0.10cd 5.88 ± 0.06h CF 0.31 ± 0.00g 0.23 ± 0.00g 0.95 ± 0.01d 11.54 ± 0.00f 0.44 ± 0.00g 8.69 ± 0.10c 8.70 ± 0.05e CK 0.38 ± 0.00f 0.23 ± 0.00g 1.01 ± 0.01cd 12.33 ± 0.10ef 0.44 ± 0.00fg 7.35 ± 0.00ef 4.32 ± 0.09j 表 4 各主成分得分及综合得分
Table 4 Principal component and composite scores
处理
Treatment主成分 Principal component 综合得分
Principal
component1 2 3 A1B1 −0.11 −0.11 −1.49 −0.29 A1B2 −1.82 1.40 0.01 −0.87 A1B3 −2.19 0.92 0.40 −1.16 A2B1 −0.66 0.90 −0.32 −0.27 A2B2 3.45 2.59 −0.10 2.80 A2B3 1.19 −0.09 2.22 1.04 A3B1 −0.99 −0.68 1.01 −0.66 A3B2 1.76 −1.68 −1.01 0.64 A3B3 4.18 −1.35 −0.17 2.39 CF −2.21 −1.89 0.56 −1.78 CK −2.63 −0.01 −1.11 −1.85 -
[1] 杜国军, 秦雪梅, 李震宇, 何盼, 高凡茸, 李科, 周然. 蒙古黄芪主产区2种不同种植模式黄芪药材的质量比较. 中草药, 2013, 44(23): 3386-3393. DU G J, QIN X M, LI Z Y, HE P, GAO F R, LI K, ZHOU R. Comparative study on quality of Astragali radix by two different planting patterns in major producing areas. Chinese Traditional and Herbal Drugs, 2013, 44(23): 3386-3393.
[2] YAO R Y, HEINRICH M, WANG Z G, WECKERLE C S. Quality control of goji (fruits of Lycium barbarum L. and L. chinense Mill.): A value chain analysis perspective. Journal of Ethnopharmacology, 2018, 224: 349-358. doi: 10.1016/j.jep.2018.06.010
[3] HEINRICH M. Quality and safety of herbal medical products: Regulation and the need for quality assurance along the value chains. British Journal of Clinical Pharmacology, 2015, 80(1): 62-66. doi: 10.1111/bcp.12586
[4] 叶迎, 王瑞海, 苗青, 许京, 吴东苑, 刘丽梅. 甘肃产1~2年生红芪和黄芪皂苷、多糖、黄酮类成分含量差异研究. 中草药, 2023, 54(14): 4649-4661. YE Y, WANG R H, MIAO Q, XU J, WU D Y, LIU L M. Comparative study on statistical differences of saponins, polysaccharides and flavonoids contents of Gansu 1~2 years old Hedysari radix and Astragali radix. Chinese Traditional and Herbal Drugs, 2023, 54(14): 4649-4661.
[5] BI Y Q, BAO H Y, ZHANG C H, YAO R Y, LI M H. Quality control of radix Astragali (the root of Astragalus membranaceus var. mongholicus) along its value chains. Frontiers in Pharmacology, 2020, 11: 562376. doi: 10.3389/fphar.2020.562376
[6] GROSS T, BREITENMOSER L, KUMAR S, EHRENSPERGER A, WINTGENS T, HUGI C. Anaerobic digestion of biowaste in Indian municipalities: Effects on energy, fertilizers, water and the local environment. Resources, Conservation and Recycling, 2021, 170: 105569. doi: 10.1016/j.resconrec.2021.105569
[7] TANG J, YIN J Z, DAVY A J, PAN F F, HAN X, HUANG S N, WU D F. Biogas slurry as an alternative to chemical fertilizer: Changes in soil properties and microbial communities of fluvo-aquic soil in the north China plain. Sustainability, 2022, 14(22): 15099. doi: 10.3390/su142215099
[8] 国家发展和改革委员会. 关于促进生物天然气产业化发展的指导意见. (2019-12-19) [2021-01-10]. https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201912/t20191219_1213770.html?code=&state=123. National Development and Reform Commission. A guidelines on promoting the industrial development of biological natural gas. (2019-12-19) [2021-01-10]. https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201912/t20191219_1213770.html?code=&state=123.
[9] 秦榕. 黄芪喷施沼液增产效果试验. 现代农村科技, 2020, 11: 73. doi: 10.3969/j.issn.1674-5329.2020.03.064 QIN R. Experiment on the effect of spraying biogas slurry on the yield of Astragalus membranaceus. Modern Rural Technology, 2020, 11: 73. doi: 10.3969/j.issn.1674-5329.2020.03.064
[10] 王艳霞, 刘国胜, 王永生, 戴红平. 沼液在黄芪上的喷施效果试验初报. 中国沼气, 2014, 32(2): 56-57. doi: 10.3969/j.issn.1000-1166.2014.02.016 WANG Y X, LIU G S, WANG Y S, DAI H P. Preliminary report of the effect of biogas slurry spraying on Astragalus membranaceus. China Biogas, 2014, 32(2): 56-57. doi: 10.3969/j.issn.1000-1166.2014.02.016
[11] 刘国胜. 沼液对黄芪施用增产效果试验. 中国沼气, 2009, 27(5): 29-30. LIU G S. Experiment on the effect of biogas slurry application on the increase of Astragalus membranaceus production. China Biogas, 2009, 27(5): 29-30.
[12] 陆国弟, 杨扶德, 郑健, 王惠珍, 陈红刚, 杜弢. 沼液对蒙古黄芪抗逆生理指标及药用活性成分含量的影响. 西北植物学报, 2019, 39(12): 2235-2243. doi: 10.7606/j.issn.1000-4025.2019.12.2235 LU G D, YANG F D, ZHENG J, WANG H Z, CHEN H G, DU T. Effect of applying biogas slurry on physiological characteristics and active component content of Astragalus membranaceus var. mongholicus (Bge.) Hsiao. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2235-2243. doi: 10.7606/j.issn.1000-4025.2019.12.2235
[13] BEYER W F, FRIDOVICH I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161(2): 559-566. doi: 10.1016/0003-2697(87)90489-1
[14] 刘文静, 杨志青, 李钰莹, 高守舆, 张新荣. 盐胁迫对‘太行’白羊草生长与生理特性的影响. 草业科学, 2023, 40(10): 2651-2658. doi: 10.11829/j.issn.1001-0629.2022-0879 LIU W J, YANG Z Q, LI Y Y, GAO S Y, ZHANG X R. Effects of salt stress on the growth of Bothriochloa ischaemum and its physiological response. Pratacultural Science, 2023, 40(10): 2651-2658. doi: 10.11829/j.issn.1001-0629.2022-0879
[15] MÖLLER K, MÜLLER T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 2012, 12(3): 242-257. doi: 10.1002/elsc.201100085
[16] TERHOEVEN-URSELMANS T, SCHELLER E, RAUBUCH M, LUDWIG B, JOERGENSEN R G. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Applied Soil Ecology, 2009, 42(3): 297-302. doi: 10.1016/j.apsoil.2009.05.012
[17] NWUGO C C, HUERTA A J. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium stress. Journal of Proteome Research, 2011, 10(2): 518-528. doi: 10.1021/pr100716h
[18] EL-BELTAGI H S, MOHAMED H I, SOFY M R. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 2020, 25(7): 1702. doi: 10.3390/molecules25071702
[19] RU C, HU X T, CHEN D Y, WANG W, ZHEN J B. Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. Plant Science, 2022, 327: 111557.
[20] KHEIRIZADEH AROUGH Y, RAOUF SEYED SHARIFI R, SEYED SHARIFI R. Bio fertilizers and zinc effects on some physiological parameters of Triticale under water-limitation condition. Journal of Plant Interactions, 2016, 11(1): 167-177. doi: 10.1080/17429145.2016.1262914
[21] AHMED C B, ROUINA B B, SENSOY S, BOUKHRIS M, ABDALLAH F B. Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 2009, 67(2): 345-352. doi: 10.1016/j.envexpbot.2009.07.006
[22] LI M, HAN B, ZHAO H, XU C Y, XU D K, SIENIAWSKA E, LIN X M, KAI G Y. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine, 2022, 98: 153918. doi: 10.1016/j.phymed.2021.153918
[23] PAN H Y, LI X B, CHENG X W, WANG X Q, FANG C M, ZHOU T S, CHEN J K. Evidence of calycosin-7-O-β-D-glucoside’s role as a major antioxidant molecule of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao plants under freezing stress. Environmental and Experimental Botany, 2015, 109: 1-11. doi: 10.1016/j.envexpbot.2014.07.013
[24] LYU L J, CHEN X Y, LI H, HUANG J N, LIU Y P J, ZHAO A. Different adaptive patterns of wheat with different drought tolerance under drought stresses and rehydration revealed by integrated metabolomic and transcriptomic analysis. Frontiers in Plant Science, 2022, 13: 1008624. doi: 10.3389/fpls.2022.1008624
[25] PAPADOPOULOU K, MELTON R E, LEGGETT M, DANIELS M J, OSBOURN A E. Compromised disease resistance in saponin-deficient plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12923-12928.
[26] SZAKIEL A, PĄCZKOWSKI C, HENRY M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 2011, 10: 471-491. doi: 10.1007/s11101-010-9177-x
[27] WANG G Z, WANG J L, LIU W, NISAR M F, EL–ESAWI M A, WAN C P. Biological activities and chemistry of triterpene saponins from Medicago species: An update review. Evidence-based Complementary and Alternative Medicine, 2021, 2021: 6617916.