欢迎访问 草业科学,今天是2025年4月13日 星期日!

1株白三叶根际产铁载体菌的功能特性及培养条件

韦鑫, 韦兴迪, 曾庆飞, 李亚娇, 丁磊磊, 王小利

韦鑫,韦兴迪,曾庆飞,李亚娇,丁磊磊,王小利. 1株白三叶根际产铁载体菌的功能特性及培养条件. 草业科学, 2024, 41(4): 919-930. DOI: 10.11829/j.issn.1001-0629.2023-0305
引用本文: 韦鑫,韦兴迪,曾庆飞,李亚娇,丁磊磊,王小利. 1株白三叶根际产铁载体菌的功能特性及培养条件. 草业科学, 2024, 41(4): 919-930. DOI: 10.11829/j.issn.1001-0629.2023-0305
WEI X, WEI X D, ZENG Q F, LI Y J, DING L L, WANG X L. Functional characteristics and optimum fermentation condition of a siderophore-producing bacteria from the rhizosphere of Trifolium repens. Pratacultural Science, 2024, 41(4): 919-930. DOI: 10.11829/j.issn.1001-0629.2023-0305
Citation: WEI X, WEI X D, ZENG Q F, LI Y J, DING L L, WANG X L. Functional characteristics and optimum fermentation condition of a siderophore-producing bacteria from the rhizosphere of Trifolium repens. Pratacultural Science, 2024, 41(4): 919-930. DOI: 10.11829/j.issn.1001-0629.2023-0305

1株白三叶根际产铁载体菌的功能特性及培养条件

基金项目: 贵州省农业科技支撑计划项目(黔科合支撑[2023]一般070);贵州省科学技术基金项目(黔科合基础[2020]1Y062);贵州省科研机构创新能力建设专项资金(黔科合服企[2022]004);贵州省草业研究所科技创新课题(草业所科技创新课题[2018]03号)
摘要:

为充分利用贵州岩溶山区牧草根际促生菌资源,以野生白三叶(Trifolium repens)根际铁载体产生菌TSQA26-3为研究对象,结合形态观察、VITEK-2全自动微生物鉴定系统和16S rRNA基因序列分析对菌株进行分类鉴定,开展菌株促生特性研究,筛选适宜菌株合成铁载体的发酵基础培养基,通过单因素试验和正交试验相结合,确定最佳培养基成分和培养条件,促进菌株合成铁载体能力的提升。结果表明,菌株TSQA26-3为恶臭假单胞菌(Pseudomonas putida);菌株同时还具有溶解无机磷、产植物生长素(IAA)和固氮能力;优化后的培养基(MG培养基)配方为,甘露醇25.0 g·L−1,L-谷氨酰胺2.5 g·L−1,K2HPO4 1.0 g·L−1,MgSO4·7H2O 0.25 g·L−1;最佳培养条件为,培养基初始pH 7.0,摇床转速170 r·min−1,培养温度30 ℃,培养基装液量为每250 mL瓶中装70 mL。

 

English

  • [1]

    GAMIT D A, TANK S K. Effect of siderophore producing microorganismon on plant growth of Cajanus cajan (pigeon pea). International Journal of Research in Pure and Applied Microbiology, 2014, 4(1): 20-27.

    [2]

    FRANCESCO M, STEFANO C. Evolution of macromolecular docking techniques: The case study of nickel and iron metabolism in pathogenic bacteria. Molecules, 2015, 20(8): 14265-14292. doi: 10.3390/molecules200814265

    [3]

    HAAS D, DÉFAGO G. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology, 2005, 3(4): 307-319. doi: 10.1038/nrmicro1129

    [4] 方涛, 李道季, 余立华. 海洋微生物铁载体的研究. 海洋科学, 2007, 31(10): 87-91.

    FANG T, LI D J, YU L H. Advance of the siderophors producde by marine microorganisms. Marine Sciences, 2007, 31(10): 87-91.

    [5]

    TAGHAVI S, VAN DER LELIE D, HOFFMAN A, ZHANG Y B, WALLA M D, VANGRONSVELD J, NEWMAN L, MONCHY S. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genetics, 2010, 6(5): e1000943. doi: 10.1371/journal.pgen.1000943

    [6]

    SAHA M, SARKAR S, SARKAR B, SHARMA B K, BHATTACHARJEE S, TRIBEDI P. Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999. doi: 10.1007/s11356-015-4294-0

    [7]

    CORNELIS P, MATTHIJS S. Diversity of siderophore-mediated iron uptake systems in Fluorescent pseudomonads: Not only pyoverdines. Environmental Microbiology, 2002, 4(12): 787-798. doi: 10.1046/j.1462-2920.2002.00369.x

    [8] 殷奥杰, 王齐, 葛淼淼, 鲁统壮, 任丽英. 微生物铁载体的应用研究进展. 环境保护与循环经济, 2021(7): 20-24, 69.

    YIN A J, WANG Q, GE M M, LU T Z, REN L Y. Research progress on the microbial siderophore. Environmental Protection and Circular Economy, 2021(7): 20-24, 69.

    [9] 魏本杰, 曾晓希, 刘志成, 杨少迪, 朱生翠, 汤建新. 产铁载体菌的筛选鉴定及活化镉的性能探究. 环境科学与技术, 2014, 37(11): 26-31.

    WEI B J, ZENG X X, LIU Z C, YANG S D, ZHU S C, TANG J X. Isolation, identification and study on cadmium-mobilization ability of sidorophores-producing bacteria. Environmental Science & Technology, 2014, 37(11): 26-31.

    [10] 晋银佳, 刘文, 朱跃, 王丰吉. 荧光假单胞菌产铁载体对油麦菜吸收砂基和水基中镉的影响. 环境工程学报, 2016, 10(1): 415-420.

    JIN Y J, LIU W, ZHU Y, WANG F J. Effects of siderophore produced by Pseudomonas fluorescence on cadmium uptake from sand-base and water-base systems by lettuces. Chinese Journal of Environmental Engineering, 2016, 10(1): 415-420.

    [11] 黎循航, 张言周, 李韵雅, 孙萌, 管政兵, 蔡宇杰, 廖祥儒. 铁载体产生菌筛选、鉴定及防治Botryosphaeria dothidea. 食品与生物技术学报, 2019, 38(3): 144-151.

    LI X H, ZHANG Y Z, LI Y Y, SUN M, GUAN Z B, CAI Y J, LIAO X R. Isolation and characterization of siderophore producing bacteria for biocontrol Botryosphaeria dothidea. Journal of Food Science and Biotechnology, 2019, 38(3): 144-151.

    [12]

    SRIVASTAVA P, SAHGAL M, SHARMA K, ENSHASY H A E, GAFUR A, ALFARRAJ S, ANSARI M J, SAYYED R Z. Optimization and identification of siderophores produced by Pseudomonas monteilii strain MN759447 and its antagonism toward fungi associated with mortality in Dalbergia sissoo plantation forests. Frontiers in Plant Science, 2022, 13: 984522. doi: 10.3389/fpls.2022.984522

    [13] 朱慧明, 张彦, 杨洪江. 高产铁载体假单胞菌的筛选及其对铁氧化物的利用. 生物技术通报, 2015, 31(9): 177-182.

    ZHU H M, ZHANG Y, YANG H J. Screening of Pseudomonas strains producing high-yield siderophore and its utilization of iron hydroxides. Biotechnology Bulletin, 2015, 31(9): 177-182.

    [14] 陈伟, 王小利, 付薇, 曾庆飞, 陈莹, 舒健虹. 黑麦草根际产铁载体细菌HMGY6B的筛选鉴定及对病原菌的拮抗作用. 微生物学通报, 2016, 43(10): 2207-2215.

    CHEN W, WANG X L, FU W, ZENG Q F, CHEN Y, SHU J H. Screening, identification and antagonistic against the pathogens of a siderophore-producing bacteria HMGY6B from rhizosphere of ryegrass. Microbiology China, 2016, 43(10): 2207-2215.

    [15]

    GAO B B, CHAI X F, HUANG Y M, WANG X N, HAN Z H, XU X F, WU T, ZHANG X Z, WANG Y. Siderophore production in pseudomonas SP. strain SP3 enhances iron acquisition in apple rootstock. Journal of Applied Microbiology, 2022, 133(2): 720-732.

    [16] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016.

    YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.

    [17] 王振龙, 姚拓, 李明源, 李青璞, 柴加丽, 张琛, 张银翠. 若尔盖高寒草地优势牧草植物根际促生菌的筛选及特性. 草业科学, 2023, 40(2): 319-328.

    WANG Z L, YAO T, LI M Y, LI Q P, CHAI J L, ZHANG C, ZHANG Y C. Isolation, screening, and characterization of dominant plant growth-promoting rhizobacterial species in Zoige alpine grassland. Pratacultural Science, 2023, 40(2): 319-328.

    [18] 杨杉杉, 李国光, 张胜男, 路晓培, 丁悦, 国情文, 田再民, 冯福应. 假单胞菌BP16的分离鉴定及其植物促生性状和效应. 微生物学通报, 2018, 45(10): 2121-2130.

    YANG S S, LI G G, ZHANG S N, LU X P, DING Y, GUO Q W, TIAN Z M, FENG F Y. Isolation and identification of Pseudomonas sp. BP16 and its plant growth-promoting traits and effects. Microbiology China, 2018, 45(10): 2121-2130.

    [19] 葛红莲, 纪秀娥. 黄瓜根际解钾细菌的分离筛选、鉴定及其促生效果. 北方园艺, 2017(13): 21-25.

    GE H L, JI X E. Screening, identification and promoting effects of potassium-solubilizing bacteria in rhizosphere of cucumber. Northern Horticulture, 2017(13): 21-25.

    [20] 蔡璐, 王小利, 陈莹, 王子苑, 李小冬. 无机磷溶解菌RW8的筛选、鉴定及对白三叶促生效果研究. 草业学报, 2017, 26(5): 181-188. doi: 10.11686/cyxb2016282

    CAI L, WANG X L, CHEN Y, WANG Z Y, LI X D. Isolation and identification of an inorganic phosphorus-solubilizing bacterium RW8 and its growth-promoting effect on white cover (Trifolium reports). Acta Prataculturae Sinica, 2017, 26(5): 181-188. doi: 10.11686/cyxb2016282

    [21] 程宇阳. 苹果园白三叶根际土溶磷菌的分离、鉴定及其特性研究. 咸阳: 西北农林科技大学硕士学位论文, 2020.

    CHENG Y Y. Isolation, identification and characterization of phosphorus soluble bacteria in rhizosphere soil of apple orchard. Master Thesis. Xianyang: Northwest A&F University, 2020.

    [22] 韦兴迪, 曾庆飞, 谭玉兰, 韦鑫, 李亚娇, 陈超. 贵州部分地区野生白三叶根瘤菌资源调查与区系分析. 作物杂志, 2018(2): 35-43.

    WEI X D, ZENG Q F, TAN Y L, WEI X, LI Y J, CHEN C. Investigation and floristic analysis on rhizobial resources of Trifolium repens in some regions of Guizhou Province. Crops, 2018(2): 35-43.

    [23]

    KUMAR A, TRIPTI, MALEVA M, BRUNO L B, RAJKUMAR M. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere, 2021, 276: 130038. doi: 10.1016/j.chemosphere.2021.130038

    [24] 荣良燕, 姚拓, 赵桂琴, 柴强, 席琳乔, 王小利. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用. 植物保护, 2011, 37(1): 59-64.

    RONG L Y, YAO T, ZHAO G Q, CHAI Q, XI L Q, WANG X L. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens. Plant Protection, 2011, 37(1): 59-64.

    [25] 雷平, 黄军, 黄彬彬, 毕世宇, 郭照辉, 刘清术, 唐滢. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用. 激光生物学报, 2020, 29(4): 379-384.

    LEI P, HUANG J, HUANG B B, BI S Y, GUO Z H, LIU Q S, TANG Y. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from Capscium. Acta Laser Biology Sinica, 2020, 29(4): 379-384.

    [26] 王亚军, 冯炬威, 李雅倩, 虞方伯. 高产铁载体菌Burkholderia vietnamiensis YQ9 促生特性研究及其对重金属胁迫条件下种子萌发的影响. 环境科学学报, 2022, 42(2): 430-437.

    WANG Y J, FENG J W, LI Y Q, YU F B. Studies on growth-promoting properties of an efficient siderophore producing bacterium, Burkholderia vietnamiensis YQ9, and its effects on seed germination under heavy metal stress. Acta Scientiae Circumstantiae, 2022, 42(2): 430-437.

    [27] 陈佳亮. 烟草根际促生菌Sm-1的分离及其外泌铁载体的纯化与鉴定. 长沙: 湖南农业大学硕士学位论文, 2017.

    CHEN J L. Separation of growth-promoting bacteria Sm-1 and purification and identification of siderophore. Master Thesis. Changsha: Hunan Agricultural University, 2017.

    [28] 李韵雅. 高产铁载体根际促生菌的筛选及其在土壤修复方面的潜在应用. 无锡: 江南大学硕士学位论文, 2018.

    LI Y Y. Screening of siderophore-high-yield plant growth promoting rhizobacteria and its potential application in soil remediation. Master Thesis. Wuxi: Jiangnan University, 2018.

    [29] 舒健虹, 王子苑, 刘晓霞, 曾庆飞, 王小利. 牧草促生菌分离鉴定及对大豆促生性能的研究. 中国土壤与肥料, 2020(4): 215-222.

    SHU J H, WANG Z Y, LIU X X, ZENG Q F, WANG X L. Identification of forage-promoting strains and their effects on soybean growth and quality. Soil and Fertilizer Sciences in China, 2020(4): 215-222.

    [30] 焦振泉, 刘秀梅. 细菌分类与鉴定的新热点: 16S-23S rDNA间区. 微生物学通报, 2001, 28(1): 84-89.

    JIAO Z Q, LIU X M. New hotspot in bacterial classification and identification: 16S-23S rDNA Interregion. Microbiology China, 2001, 28(1): 84-89.

    [31]

    CLARRIDGE J E. Ⅲ Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 2004, 17(4): 840-862.

    [32] 张帆, 李树垚, 张子豪, 蔡雪凤, 任岩, 刘凯, 侯翠艳, 易欣欣, 高秀芝. 铜绿假单胞菌检测方法的比较与优化. 生物技术通报, 2018, 34(3): 67-74.

    ZHANG F, LI S Y, ZHANG Z H, CAI X F, REN Y, LIU K, HOU C Y, YI X X, GAO X Z. Comparison and optimization of the detection method for Pseudomonas aeruginosa. Biotechnology Bulletin, 2018, 34(3): 67-74.

    [33] 白李明, 王宝国. 蜡样芽孢杆菌检测中VITEK-2全自动微生物鉴定仪的应用研究. 中国医疗器械信息, 2023, 29(3): 49-51.

    BAI L M, WANG B G. Application of VITEK-2 automatic microbial identification instrument in the detection of Bacillus cereus. China Medical Device Information, 2023, 29(3): 49-51.

    [34] 孟令缘, 牛沁雅, 廉鲁昕, 黄巾凌, 崔生辉, 闫韶飞, 李凤琴, 杨保伟. 基于16S rDNA序列、MALDI-TOF-MS和VITEK的沙门氏菌和金黄色葡萄球菌的鉴定. 中国食品学报, 2021, 21(10): 197-205.

    MENG L Y, NIU Q Y, LIAN L X, HUANG J L, CUI S H, YAN S F, LI F Q, YANG B W. Identification of Salmonella and Staphylococcus aureus using 16S rDNA Sequencing, MALDI-TOF-MS and VITEK System. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10): 197-205.

    [35] 子建文, 唐辉, 李倩, 资云海, 张玉岭, 李晓霞. 滇藏相邻地区高海拔山脉土壤微生物学调查. 西南国防医药, 2016, 26(9): 1089-1091.

    ZI J W, TANG H, LI Q, ZI Y H, ZHANG Y L, LI X X. Investigation on soil microbiology of high altitude mountains in the adjacent areas of yunnan and Tibet. Medical Journal of National Defending Forces in Southwest China, 2016, 26(9): 1089-1091.

    [36] 郭瑞军. VITEK 2 Compact及其在食品微生物检测中的应用研究. 现代食品, 2020(12): 192-193, 201.

    GUO R J. VITEK 2 Compact system and its application in food microbiological detection. Modern Food, 2020(12): 192-193, 201.

    [37] 于素芳, 丁延芹, 姚良同, 岳宝强, 杜秉海. 一株棉花根际铁载体产生菌E19的分离鉴定. 生物技术, 2007, 17(6): 19-21.

    YU S F, DING Y Q, YAO L T, YUE B Q, DU B H. Isolation and identification of siderophores producting bacteria E19 from cotton rhizosphere. Biotechnology, 2007, 17(6): 19-21.

    [38] 刘艳萍, 滕松山, 赵蕾. 高产嗜铁素恶臭假单胞菌A3菌株的鉴定及其对黄瓜的促生作用. 植物营养与肥料学报, 2011, 17(6): 1507-1514.

    LIU Y P, TENG S S, ZHAO L. Identification of a siderophore-producing bacterium Pseudomonas putida A3 and its growth-promoting effects on cucumber seedlings. Journal of Plant Nutrition and Fertilizers, 2011, 17(6): 1507-1514.

    [39] 曹宏丽, 郝尚华, 楚梦晓, 邱爽, 罗梦香, 王明道. 1株高产铁载体菌株的筛选鉴定以及化感作用的验证. 河南农业大学学报, 2021, 55(4): 727-735.

    CAO H L, HAO S H, CHU M X, QIU S, LUO M X, WANG M D. Screening and identification of a high-yielding siderophore strain and verification of allelopathic effect. Journal of Henan Agricultural University, 2021, 55(4): 727-735.

    [40] 杨晓蕾, 李建宏, 姚拓, 梅丽娜, 李琦, 白洁, 朱青青, 赵晓倩, 赵树栋. 5株植物根际促生菌功能特性及培养条件. 草业科学, 2022, 39(1): 30-38.

    YANG X L, LI J H, YAO T, MEI L N, LI Q, BAI J, ZHU Q Q, ZHAO X Q, ZHAO S D. Functional characteristics and culture conditions of five plant growth-promoting rhizobacteria strains. Pratacultural Science, 2022, 39(1): 30-38.

    [41] 龙云川, 陈轩, 周少奇. 高产铁载体根际菌的筛选鉴定及硒活化特性评价. 生物技术进展, 2017, 7(5): 402-408.

    LONG Y C, CHEN X, ZHOU S Q. Isolation, identification and assessment on selenium biofortification of siderophore-producing rhizobacteria. Current Biotechnology, 2017, 7(5): 402-408.

    [42]

    MOHAMED H A. Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. European Journal of Soil Biology, 1998, 34(2): 99-104. doi: 10.1016/S1164-5563(99)80007-7

  • 图  1   可溶性指数和噬铁圈计算方法

    A:晕圈直径;B:菌落直径;可溶性指数 = A/B;噬铁圈 = (A − B)/2。

    Figure  1.   The calculation method for soluble index and zone radius

    A: halo diameter; B: colony diameter; Soluble index = A/B; Zone radius = (A − B)/2.

    图  2   TSQA26-3菌落形态及革兰氏染色结果

    A为菌株TSQA26-3在CAS培养基上的形态;B为菌株在NB固体培养基上的形态;C为革兰氏染色镜检结果。

    Figure  2.   The morphology and Gram staining result of TSQA26-3

    A is the morphology of the strain TSQA26-3 on CAS medium; B is the morphology of the strain TSQA26-3 on NB medium; C is the result of Gram-stain microscopy.

    图  3   菌株基于16S rRNA基因序列的系统发育树

    Figure  3.   Phylogenetic tree of the strain TSQA26-3 based on its 16S rRNA gene sequences

    图  4   不同培养基对菌株铁载体合成的影响

    不同小写字母表示不同处理之间差异显著(P < 0.05);下同。

    Figure  4.   Effects of different media on the siderophores produced by TSQA26-3

    Different lowercase letters indicate significant differences between treatments at the 0.05 level. This is applicable for the following figures and table as well.

    图  5   不同碳源对菌株铁载体合成的影响

    Glu、Suc、Mal、Man、Amb、Sol分别代表葡萄糖、蔗糖、麦芽糖、甘露醇、琥珀酸和可溶性淀粉。

    Figure  5.   Effects of different carbon sources on the siderophores produced by TSQA26-3

    Glu, Suc, Mal, Man, Amb, Sol indicate glucose, sucrose, maltose, mannitol, amber acid and soluble starch, respectively.

    图  6   不同氮源对菌株铁载体合成的影响

    Asp、Pro、Arg、Glu、Gly、Amm分别表示L-天冬酰胺、L-脯氨酸、L-精氨酸、L-谷氨酰胺、甘氨酸和硫酸铵。

    Figure  6.   Effects of different nitrogen sources on the siderophores produced by TSQA26-3

    Asp, Pro, Arg, Glu, Gly, Amm indicate L-Asparagine, L-Proline, L-Arginine, L-Glutamine, Glycine and (NH4)2SO4.

    图  7   不同培养条件对菌株合成铁载体的影响

    Figure  7.   Effects of different culture conditions on the siderophores produced by TSQA26-3

    表  1   培养基成分正交试验设计

    Table  1   The orthogonal test of factors of the medium

    水平
    Level
    因素 Factor
    碳源
    Carbon
    source/(g·L−1)
    氮源
    Nitrogen
    source/(g·L−1)
    K2HPO4/
    (g·L−1)
    MgSO4·7H2O/
    (g·L−1)
    1 15.0 1.5 0.5 0.25
    2 20.0 2.0 1.0 0.50
    3 25.0 2.5 1.5 0.75
    下载: 导出CSV

    表  2   分离菌株产铁载体能力分析

    Table  2   Analysis of siderophores produced by the isolated strains

    序号
    No.
    土壤编号
    Soil No.
    菌株编号
    Strains No.
    可溶性指数
    Soluble index
    噬铁圈
    Zone radius/mm
    1 TSQA26 TSQA26-3 5.14 ± 0.08aA 8.42 ± 0.22aA
    2 TSTS36 TSTS36-3 5.07 ± 0.09aA 6.53 ± 0.46bB
    3 TSTP39 TSTP39-1 4.96 ± 0.06aA 6.31 ± 0.31bB
     同列不同大写字母和小写字母分别表示差异极显著(P < 0.01)和差异显著(P < 0.05)。
     The capital letters indicate significant differences at the 0.01 level, and the lowercase letters indicate significant differences at the 0.05 level.
    下载: 导出CSV

    表  3   TSQA26-3促生特性检测

    Table  3   Detection of the plant-promoting ability of TSQA26-3

    促生特性检测 Plant-promoting ability 定量分析 Quantitative analysis
    指标
    Parameter
    活性
    Activity
    指标
    Parameter

    Value
    溶解无机磷能力
    Phosphate solubilization (inorganic)
    + 无机磷溶磷量
    Inorganic phosphorus solubilizing amount/(mg·L−1)
    30.31 ± 5.29
    溶解有机磷能力
    Phosphate solubilization (organic)
    有机磷溶磷量
    Organic phosphorus solubilizing amount/(mg·L−1)
    0
    固氮能力 Nitrogen fixation + 固氮酶活性 Nitrogenase activity/(IU·L−1) 88.24 ± 3.04
    产IAA IAA production + 产IAA能力 Capacity of IAA secretion/(mg·L−1) 9.71 ± 0.31
    解钾能力 Potassium decomposition 解钾能力 Soluble potassium content/(mg·L−1) 0
    下载: 导出CSV

    表  4   培养基中各营养成分正交试验结果

    Table  4   Results of the orthogonal test with different nutritional facts in the medium

    序号
    No.
    甘露醇
    Mannitol
    L-谷氨酰胺
    L-Glutamine
    K2HPO4 MgSO4·7H2O su/%
    1 1 1 1 1 69.19 ± 3.47b
    2 1 2 2 2 69.85 ± 1.58b
    3 1 3 3 3 76.56 ± 1.11b
    4 2 1 2 3 46.79 ± 5.07d
    5 2 2 3 1 88.79 ± 0.67a
    6 2 3 1 2 57.75 ± 4.31c
    7 3 1 3 2 68.88 ± 4.48b
    8 3 2 1 3 45.07 ± 4.98d
    9 3 3 2 1 89.44 ± 0.53a
    K1 71.87 61.62 57.34 82.47
    K2 64.44 67.90 68.69 65.49
    K3 67.80 74.58 78.07 56.14
    R 7.43 12.96 20.74 26.33
     碳氮源,K2HPO4和MgSO4·7H2O下的1,2,3与表1相同。R为极差。
     1, 2, and 3 in the carbon, nitrogen sources, K2HPO4, and MgSO4·7H2O column are the same as in Table 1. R is a range.
    下载: 导出CSV
  • [1]

    GAMIT D A, TANK S K. Effect of siderophore producing microorganismon on plant growth of Cajanus cajan (pigeon pea). International Journal of Research in Pure and Applied Microbiology, 2014, 4(1): 20-27.

    [2]

    FRANCESCO M, STEFANO C. Evolution of macromolecular docking techniques: The case study of nickel and iron metabolism in pathogenic bacteria. Molecules, 2015, 20(8): 14265-14292. doi: 10.3390/molecules200814265

    [3]

    HAAS D, DÉFAGO G. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology, 2005, 3(4): 307-319. doi: 10.1038/nrmicro1129

    [4] 方涛, 李道季, 余立华. 海洋微生物铁载体的研究. 海洋科学, 2007, 31(10): 87-91.

    FANG T, LI D J, YU L H. Advance of the siderophors producde by marine microorganisms. Marine Sciences, 2007, 31(10): 87-91.

    [5]

    TAGHAVI S, VAN DER LELIE D, HOFFMAN A, ZHANG Y B, WALLA M D, VANGRONSVELD J, NEWMAN L, MONCHY S. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genetics, 2010, 6(5): e1000943. doi: 10.1371/journal.pgen.1000943

    [6]

    SAHA M, SARKAR S, SARKAR B, SHARMA B K, BHATTACHARJEE S, TRIBEDI P. Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999. doi: 10.1007/s11356-015-4294-0

    [7]

    CORNELIS P, MATTHIJS S. Diversity of siderophore-mediated iron uptake systems in Fluorescent pseudomonads: Not only pyoverdines. Environmental Microbiology, 2002, 4(12): 787-798. doi: 10.1046/j.1462-2920.2002.00369.x

    [8] 殷奥杰, 王齐, 葛淼淼, 鲁统壮, 任丽英. 微生物铁载体的应用研究进展. 环境保护与循环经济, 2021(7): 20-24, 69.

    YIN A J, WANG Q, GE M M, LU T Z, REN L Y. Research progress on the microbial siderophore. Environmental Protection and Circular Economy, 2021(7): 20-24, 69.

    [9] 魏本杰, 曾晓希, 刘志成, 杨少迪, 朱生翠, 汤建新. 产铁载体菌的筛选鉴定及活化镉的性能探究. 环境科学与技术, 2014, 37(11): 26-31.

    WEI B J, ZENG X X, LIU Z C, YANG S D, ZHU S C, TANG J X. Isolation, identification and study on cadmium-mobilization ability of sidorophores-producing bacteria. Environmental Science & Technology, 2014, 37(11): 26-31.

    [10] 晋银佳, 刘文, 朱跃, 王丰吉. 荧光假单胞菌产铁载体对油麦菜吸收砂基和水基中镉的影响. 环境工程学报, 2016, 10(1): 415-420.

    JIN Y J, LIU W, ZHU Y, WANG F J. Effects of siderophore produced by Pseudomonas fluorescence on cadmium uptake from sand-base and water-base systems by lettuces. Chinese Journal of Environmental Engineering, 2016, 10(1): 415-420.

    [11] 黎循航, 张言周, 李韵雅, 孙萌, 管政兵, 蔡宇杰, 廖祥儒. 铁载体产生菌筛选、鉴定及防治Botryosphaeria dothidea. 食品与生物技术学报, 2019, 38(3): 144-151.

    LI X H, ZHANG Y Z, LI Y Y, SUN M, GUAN Z B, CAI Y J, LIAO X R. Isolation and characterization of siderophore producing bacteria for biocontrol Botryosphaeria dothidea. Journal of Food Science and Biotechnology, 2019, 38(3): 144-151.

    [12]

    SRIVASTAVA P, SAHGAL M, SHARMA K, ENSHASY H A E, GAFUR A, ALFARRAJ S, ANSARI M J, SAYYED R Z. Optimization and identification of siderophores produced by Pseudomonas monteilii strain MN759447 and its antagonism toward fungi associated with mortality in Dalbergia sissoo plantation forests. Frontiers in Plant Science, 2022, 13: 984522. doi: 10.3389/fpls.2022.984522

    [13] 朱慧明, 张彦, 杨洪江. 高产铁载体假单胞菌的筛选及其对铁氧化物的利用. 生物技术通报, 2015, 31(9): 177-182.

    ZHU H M, ZHANG Y, YANG H J. Screening of Pseudomonas strains producing high-yield siderophore and its utilization of iron hydroxides. Biotechnology Bulletin, 2015, 31(9): 177-182.

    [14] 陈伟, 王小利, 付薇, 曾庆飞, 陈莹, 舒健虹. 黑麦草根际产铁载体细菌HMGY6B的筛选鉴定及对病原菌的拮抗作用. 微生物学通报, 2016, 43(10): 2207-2215.

    CHEN W, WANG X L, FU W, ZENG Q F, CHEN Y, SHU J H. Screening, identification and antagonistic against the pathogens of a siderophore-producing bacteria HMGY6B from rhizosphere of ryegrass. Microbiology China, 2016, 43(10): 2207-2215.

    [15]

    GAO B B, CHAI X F, HUANG Y M, WANG X N, HAN Z H, XU X F, WU T, ZHANG X Z, WANG Y. Siderophore production in pseudomonas SP. strain SP3 enhances iron acquisition in apple rootstock. Journal of Applied Microbiology, 2022, 133(2): 720-732.

    [16] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016.

    YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.

    [17] 王振龙, 姚拓, 李明源, 李青璞, 柴加丽, 张琛, 张银翠. 若尔盖高寒草地优势牧草植物根际促生菌的筛选及特性. 草业科学, 2023, 40(2): 319-328.

    WANG Z L, YAO T, LI M Y, LI Q P, CHAI J L, ZHANG C, ZHANG Y C. Isolation, screening, and characterization of dominant plant growth-promoting rhizobacterial species in Zoige alpine grassland. Pratacultural Science, 2023, 40(2): 319-328.

    [18] 杨杉杉, 李国光, 张胜男, 路晓培, 丁悦, 国情文, 田再民, 冯福应. 假单胞菌BP16的分离鉴定及其植物促生性状和效应. 微生物学通报, 2018, 45(10): 2121-2130.

    YANG S S, LI G G, ZHANG S N, LU X P, DING Y, GUO Q W, TIAN Z M, FENG F Y. Isolation and identification of Pseudomonas sp. BP16 and its plant growth-promoting traits and effects. Microbiology China, 2018, 45(10): 2121-2130.

    [19] 葛红莲, 纪秀娥. 黄瓜根际解钾细菌的分离筛选、鉴定及其促生效果. 北方园艺, 2017(13): 21-25.

    GE H L, JI X E. Screening, identification and promoting effects of potassium-solubilizing bacteria in rhizosphere of cucumber. Northern Horticulture, 2017(13): 21-25.

    [20] 蔡璐, 王小利, 陈莹, 王子苑, 李小冬. 无机磷溶解菌RW8的筛选、鉴定及对白三叶促生效果研究. 草业学报, 2017, 26(5): 181-188. doi: 10.11686/cyxb2016282

    CAI L, WANG X L, CHEN Y, WANG Z Y, LI X D. Isolation and identification of an inorganic phosphorus-solubilizing bacterium RW8 and its growth-promoting effect on white cover (Trifolium reports). Acta Prataculturae Sinica, 2017, 26(5): 181-188. doi: 10.11686/cyxb2016282

    [21] 程宇阳. 苹果园白三叶根际土溶磷菌的分离、鉴定及其特性研究. 咸阳: 西北农林科技大学硕士学位论文, 2020.

    CHENG Y Y. Isolation, identification and characterization of phosphorus soluble bacteria in rhizosphere soil of apple orchard. Master Thesis. Xianyang: Northwest A&F University, 2020.

    [22] 韦兴迪, 曾庆飞, 谭玉兰, 韦鑫, 李亚娇, 陈超. 贵州部分地区野生白三叶根瘤菌资源调查与区系分析. 作物杂志, 2018(2): 35-43.

    WEI X D, ZENG Q F, TAN Y L, WEI X, LI Y J, CHEN C. Investigation and floristic analysis on rhizobial resources of Trifolium repens in some regions of Guizhou Province. Crops, 2018(2): 35-43.

    [23]

    KUMAR A, TRIPTI, MALEVA M, BRUNO L B, RAJKUMAR M. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere, 2021, 276: 130038. doi: 10.1016/j.chemosphere.2021.130038

    [24] 荣良燕, 姚拓, 赵桂琴, 柴强, 席琳乔, 王小利. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用. 植物保护, 2011, 37(1): 59-64.

    RONG L Y, YAO T, ZHAO G Q, CHAI Q, XI L Q, WANG X L. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens. Plant Protection, 2011, 37(1): 59-64.

    [25] 雷平, 黄军, 黄彬彬, 毕世宇, 郭照辉, 刘清术, 唐滢. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用. 激光生物学报, 2020, 29(4): 379-384.

    LEI P, HUANG J, HUANG B B, BI S Y, GUO Z H, LIU Q S, TANG Y. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from Capscium. Acta Laser Biology Sinica, 2020, 29(4): 379-384.

    [26] 王亚军, 冯炬威, 李雅倩, 虞方伯. 高产铁载体菌Burkholderia vietnamiensis YQ9 促生特性研究及其对重金属胁迫条件下种子萌发的影响. 环境科学学报, 2022, 42(2): 430-437.

    WANG Y J, FENG J W, LI Y Q, YU F B. Studies on growth-promoting properties of an efficient siderophore producing bacterium, Burkholderia vietnamiensis YQ9, and its effects on seed germination under heavy metal stress. Acta Scientiae Circumstantiae, 2022, 42(2): 430-437.

    [27] 陈佳亮. 烟草根际促生菌Sm-1的分离及其外泌铁载体的纯化与鉴定. 长沙: 湖南农业大学硕士学位论文, 2017.

    CHEN J L. Separation of growth-promoting bacteria Sm-1 and purification and identification of siderophore. Master Thesis. Changsha: Hunan Agricultural University, 2017.

    [28] 李韵雅. 高产铁载体根际促生菌的筛选及其在土壤修复方面的潜在应用. 无锡: 江南大学硕士学位论文, 2018.

    LI Y Y. Screening of siderophore-high-yield plant growth promoting rhizobacteria and its potential application in soil remediation. Master Thesis. Wuxi: Jiangnan University, 2018.

    [29] 舒健虹, 王子苑, 刘晓霞, 曾庆飞, 王小利. 牧草促生菌分离鉴定及对大豆促生性能的研究. 中国土壤与肥料, 2020(4): 215-222.

    SHU J H, WANG Z Y, LIU X X, ZENG Q F, WANG X L. Identification of forage-promoting strains and their effects on soybean growth and quality. Soil and Fertilizer Sciences in China, 2020(4): 215-222.

    [30] 焦振泉, 刘秀梅. 细菌分类与鉴定的新热点: 16S-23S rDNA间区. 微生物学通报, 2001, 28(1): 84-89.

    JIAO Z Q, LIU X M. New hotspot in bacterial classification and identification: 16S-23S rDNA Interregion. Microbiology China, 2001, 28(1): 84-89.

    [31]

    CLARRIDGE J E. Ⅲ Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 2004, 17(4): 840-862.

    [32] 张帆, 李树垚, 张子豪, 蔡雪凤, 任岩, 刘凯, 侯翠艳, 易欣欣, 高秀芝. 铜绿假单胞菌检测方法的比较与优化. 生物技术通报, 2018, 34(3): 67-74.

    ZHANG F, LI S Y, ZHANG Z H, CAI X F, REN Y, LIU K, HOU C Y, YI X X, GAO X Z. Comparison and optimization of the detection method for Pseudomonas aeruginosa. Biotechnology Bulletin, 2018, 34(3): 67-74.

    [33] 白李明, 王宝国. 蜡样芽孢杆菌检测中VITEK-2全自动微生物鉴定仪的应用研究. 中国医疗器械信息, 2023, 29(3): 49-51.

    BAI L M, WANG B G. Application of VITEK-2 automatic microbial identification instrument in the detection of Bacillus cereus. China Medical Device Information, 2023, 29(3): 49-51.

    [34] 孟令缘, 牛沁雅, 廉鲁昕, 黄巾凌, 崔生辉, 闫韶飞, 李凤琴, 杨保伟. 基于16S rDNA序列、MALDI-TOF-MS和VITEK的沙门氏菌和金黄色葡萄球菌的鉴定. 中国食品学报, 2021, 21(10): 197-205.

    MENG L Y, NIU Q Y, LIAN L X, HUANG J L, CUI S H, YAN S F, LI F Q, YANG B W. Identification of Salmonella and Staphylococcus aureus using 16S rDNA Sequencing, MALDI-TOF-MS and VITEK System. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10): 197-205.

    [35] 子建文, 唐辉, 李倩, 资云海, 张玉岭, 李晓霞. 滇藏相邻地区高海拔山脉土壤微生物学调查. 西南国防医药, 2016, 26(9): 1089-1091.

    ZI J W, TANG H, LI Q, ZI Y H, ZHANG Y L, LI X X. Investigation on soil microbiology of high altitude mountains in the adjacent areas of yunnan and Tibet. Medical Journal of National Defending Forces in Southwest China, 2016, 26(9): 1089-1091.

    [36] 郭瑞军. VITEK 2 Compact及其在食品微生物检测中的应用研究. 现代食品, 2020(12): 192-193, 201.

    GUO R J. VITEK 2 Compact system and its application in food microbiological detection. Modern Food, 2020(12): 192-193, 201.

    [37] 于素芳, 丁延芹, 姚良同, 岳宝强, 杜秉海. 一株棉花根际铁载体产生菌E19的分离鉴定. 生物技术, 2007, 17(6): 19-21.

    YU S F, DING Y Q, YAO L T, YUE B Q, DU B H. Isolation and identification of siderophores producting bacteria E19 from cotton rhizosphere. Biotechnology, 2007, 17(6): 19-21.

    [38] 刘艳萍, 滕松山, 赵蕾. 高产嗜铁素恶臭假单胞菌A3菌株的鉴定及其对黄瓜的促生作用. 植物营养与肥料学报, 2011, 17(6): 1507-1514.

    LIU Y P, TENG S S, ZHAO L. Identification of a siderophore-producing bacterium Pseudomonas putida A3 and its growth-promoting effects on cucumber seedlings. Journal of Plant Nutrition and Fertilizers, 2011, 17(6): 1507-1514.

    [39] 曹宏丽, 郝尚华, 楚梦晓, 邱爽, 罗梦香, 王明道. 1株高产铁载体菌株的筛选鉴定以及化感作用的验证. 河南农业大学学报, 2021, 55(4): 727-735.

    CAO H L, HAO S H, CHU M X, QIU S, LUO M X, WANG M D. Screening and identification of a high-yielding siderophore strain and verification of allelopathic effect. Journal of Henan Agricultural University, 2021, 55(4): 727-735.

    [40] 杨晓蕾, 李建宏, 姚拓, 梅丽娜, 李琦, 白洁, 朱青青, 赵晓倩, 赵树栋. 5株植物根际促生菌功能特性及培养条件. 草业科学, 2022, 39(1): 30-38.

    YANG X L, LI J H, YAO T, MEI L N, LI Q, BAI J, ZHU Q Q, ZHAO X Q, ZHAO S D. Functional characteristics and culture conditions of five plant growth-promoting rhizobacteria strains. Pratacultural Science, 2022, 39(1): 30-38.

    [41] 龙云川, 陈轩, 周少奇. 高产铁载体根际菌的筛选鉴定及硒活化特性评价. 生物技术进展, 2017, 7(5): 402-408.

    LONG Y C, CHEN X, ZHOU S Q. Isolation, identification and assessment on selenium biofortification of siderophore-producing rhizobacteria. Current Biotechnology, 2017, 7(5): 402-408.

    [42]

    MOHAMED H A. Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. European Journal of Soil Biology, 1998, 34(2): 99-104. doi: 10.1016/S1164-5563(99)80007-7

图(7)  /  表(4)
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • 被引次数: 0
文章相关
  • 通讯作者: 王小利
  • 收稿日期:  2023-06-05
  • 接受日期:  2023-10-17
  • 网络出版日期:  2024-03-15
  • 刊出日期:  2024-04-14

目录

/

返回文章
返回