欢迎访问 草业科学,今天是2025年4月13日 星期日!

外源脯氨酸降低Cd对喜旱莲子草的迫害

王希武, 桂晴, 胡伟, 杨玉洁

王希武,桂晴,胡伟,杨玉洁. 外源脯氨酸降低Cd对喜旱莲子草的迫害. 草业科学, 2024, 41(6): 1359-1370. DOI: 10.11829/j.issn.1001-0629.2023-0121
引用本文: 王希武,桂晴,胡伟,杨玉洁. 外源脯氨酸降低Cd对喜旱莲子草的迫害. 草业科学, 2024, 41(6): 1359-1370. DOI: 10.11829/j.issn.1001-0629.2023-0121
WANG X W, GUI Q, HU W, YANG Y J. Reduction in heavy metal Cd accumulation by exogenous proline in Alternanthera philoxeroides. Pratacultural Science, 2024, 41(6): 1359-1370. DOI: 10.11829/j.issn.1001-0629.2023-0121
Citation: WANG X W, GUI Q, HU W, YANG Y J. Reduction in heavy metal Cd accumulation by exogenous proline in Alternanthera philoxeroides. Pratacultural Science, 2024, 41(6): 1359-1370. DOI: 10.11829/j.issn.1001-0629.2023-0121

外源脯氨酸降低Cd对喜旱莲子草的迫害

基金项目: 长江大学湿地生态与农业利用教育部工程研究中心开放基金项目(KF202313);江苏省科学技术厅现代农业重点项目(2022Z21007)
摘要:

喜旱莲子草(Alternanthera philoxeroides)为苋科多年生草本植物,是重金属镉(Cd)的超富集植物,具有药用价值高、抗逆性强等特点,是一种Cd污染土壤修复的重要候选植物。为探究添加外源脯氨酸条件下,重金属Cd对喜旱莲子草的形态、生理指标、抗氧化系统等的影响,以同一水域的喜旱莲子草为试验材料进行一系列生理生化试验,旨在揭示Cd毒害下,外施脯氨酸对喜旱莲子草的作用机理。结果表明,从形态指标上看,喜旱莲子草受到Cd毒害时,其根、茎、叶的生长明显受到抑制。但在外施脯氨酸的条件下,能够缓解Cd对喜旱莲子草所造成的伤害,降低Cd对喜旱莲子草的毒害作用。从生理指标上看,喜旱莲子草在Cd的毒害作用下,其丙二醛(MDA)、过氧化氢(H2O2)、游离脯氨酸(Pro)、可溶性糖(SS)显著提高,可溶性蛋白(SP)处理之间差异并不显著。从抗氧化系统指标上看,喜旱莲子草在Cd的毒害作用下,其谷胱甘肽过氧化物酶(GPX)、过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)含量显著提高,但在茎部处理之间SOD含量差异不显著。总体来看,对喜旱莲子草添加外源脯氨酸,能够缓解Cd对喜旱莲子草的毒害作用。以此,为今后喜旱莲子草在修复Cd污染土壤方面的开发利用提供科学理论基础和参考依据。

 

English

  • [1] 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略. 中国科学院院刊, 2014, 29(3): 315-320, 350.

    ZHOU J J, ZHOU J, FENG R G. Status of China’s heavy metal contamination in soil and its remediationstrategy. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 315-320, 350.

    [2]

    HE Z L, YANG X E, STOFFELLA P J. Trace elements in agroecosystems and impacts on the environment. Joumal of Trace Elements in Medicine and Biology, 2005, 19(2-3): 125-140. doi: 10.1016/j.jtemb.2005.02.010

    [3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 中国环保产业, 2014(5): 10-11.

    Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution investigation bulletin. China Environmental Protection Industry, 2014(5): 10-11.

    [4] 周桑扬, 杨凯, 吴晓芙, 冀泽华. 人工湿地植物去除废水中重金属的作用机制研究进展. 湿地科学, 2016, 14(5): 717-724. doi: 10.13248/j.cnki.wetlandsci.2016.05.017

    ZHOU S Y, YANG K, WU X F, JI Z H. Advance in mechanism of removing heavy metals from wastewater by plants in wetlands. Wetland Science, 2016, 14(5): 717-724. doi: 10.13248/j.cnki.wetlandsci.2016.05.017

    [5]

    GREENWAY M. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science and Technology, 1997, 35(5): 135-142. doi: 10.2166/wst.1997.0182

    [6] 中国植物志编委会. 中国植物志 第25 (2)卷. 北京: 科学出版社, 1979: 236.

    Editorial Committee of Chinese Journal of Plant of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1979: 236.

    [7] 李印霞, 刘碧波, 饶本强, 李敦海. 温室条件下水花生对富营养化水体浮游生物和水质的影响. 四川农业大学学报, 2017, 35(2): 260-265.

    LI Y X, LIU B B, RAO B Q, LI D H. Study on effects of Alternanthera philoxeroides on plankton and water quality from eutrophic water. Journal of Sichuan Agricultural University, 2017, 35(2): 260-265.

    [8] 张伟, 韩士群, 郭起金. 凤眼莲、水花生、鲢鱼对富营养化水体藻类及氮、磷的去除作用. 江苏农业学报, 2012, 28(5): 1037-1041.

    ZHANG W, HAN S Q, GUO Q J. Removal of algae, nitrogen and phosphorus in eutrophied water by Eichhornia crassipe, Alternanthera philoxeroides and Hypophthalmichthys molitrix. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 1037-1041.

    [9] 何少林, 黄翔峰, 陈广, 李旭东, 池金萍, 杨殿海, 安丽, 周琪. 高效藻类塘去除农村生活污水中的磷. 中国给水排水, 2006, 21(9): 18-21. doi: 10.3321/j.issn:1000-4602.2006.09.005

    HE S L, HUANG Q F, CHEN G, LI X D, CHI J P, YANG D H, AN L, ZHOU Q. Phosphorus removal from rural domestic sewage in high rate algal pond. China Water & Wastewater, 2006, 21(9): 18-21. doi: 10.3321/j.issn:1000-4602.2006.09.005

    [10] 邓琳静, 刘艳霖, 幸嘉瑜, 陈静, 朱睿, 程学勤. 水体重金属污染处理研究进展. 广东化工, 2020, 47(19): 104-106, 114. doi: 10.3969/j.issn.1007-1865.2020.19.044

    DENG L J, LIU Y L, XING J Y, CHEN J, ZHU R, CHENG X Q. Research progress in treatment of heavy metal pollution in water. Guangdong Chemical Industry, 2020, 47(19): 104-106, 114. doi: 10.3969/j.issn.1007-1865.2020.19.044

    [11] 宋志忠, 王莉, 金曼, 苏彦华. 重金属胁迫条件下空心莲子草的生长和营养特征分析(英文). 基因组学与应用生物学, 2011, 30(5): 614-619. doi: 10.3969/gab.030.000614

    SONG Z Z, WANG L, JIN M, SUN Y H. Alternanthera philoxeroides might be used for bioremediating heavy metal contaminated soil. Genomics and Applied Biology, 2011, 30(5): 614-619. doi: 10.3969/gab.030.000614

    [12] 华建峰, 胡李娟, 张垂胜, 殷云龙, 王兴祥. 3种水生植物对锰污染水体修复作用的研究. 生态环境学报, 2010, 19(9): 2160-2165. doi: 10.3969/j.issn.1674-5906.2010.09.024

    HUA J F, HU L J, ZHANG C S, YIN Y L, WANG X X. Phytoremediation of manganese-contaminated water by three aquatic macrophytes. Ecology and Environmental Sciences, 2010, 19(9): 2160-2165. doi: 10.3969/j.issn.1674-5906.2010.09.024

    [13] 闫大江. 空心莲子草对南四湖Cd、Pb污染底泥修复效果及机制研究. 济南: 山东建筑大学硕士学位论文, 2021.

    YAN D J. Study on the remediation effect and mechanism of Alternanthera philoxeroides on Cd and Pb contaminated sediment in Nansi Lake. Master Thesis. Ji’nan: Shandong Jianzhu University, 2021.

    [14] 徐丽, 张震, 张鹏, 王育鹏, 檀根甲. 喜旱莲子草对重金属元素的耐性试验研究. 安徽农业科学, 2010, 38(13): 6831-6832, 6877. doi: 10.3969/j.issn.0517-6611.2010.13.081

    XU L, ZHANG Z, ZHANG P, WANG Y P, TAN G J. Study on tolerance of Alternanthera philoxeroides to heavy metals. Journal of Anhui Agricultural Sciences, 2010, 38(13): 6831-6832, 6877. doi: 10.3969/j.issn.0517-6611.2010.13.081

    [15]

    RIZWAN M, ALI S, ABBAS T, ZIA-UR-REHMAN M, HANNAN F, KELLER C, AL-WABEL M I, OK Y S. Cadmium minimization in wheat: A critical review. Ecotoxicology and Environmental Safety, 2016, 130: 43-53. doi: 10.1016/j.ecoenv.2016.04.001

    [16] 刘朋虎, 李波, 江枝和, 雷锦桂, 翁伯琦, 黄在兴. 镉对姬松茸农艺性状及矿物质元素吸收的影响. 农业环境科学学报, 2018, 37(1): 58-63. doi: 10.11654/jaes.2017-1524

    LIU P H, LI B, JIANG Z H, LEI J G, WENG B Q, HUANG Z X. Effects of cadmium (Cd) in different concentrations on agronomic traits and mineral elements absorption of Agaricus brasiliensis. Journal of Agro-Environment Science, 2018, 37(1): 58-63. doi: 10.11654/jaes.2017-1524

    [17] 郭嘉航, 张福琼, 黄晶心, 杨云, 孙世中, 熊明月, 韩飞. 施氮对镉胁迫下鬼针草叶片光合效率的影响. 环境科学与技术, 2022, 45(4): 146-153. doi: 10.19672/j.cnki.1003-6504.2636.21.338

    GUO J H, ZHANG F Q, HUANG J X, YANG Y, SUN S Z, XIONG M Y, HAN F. Effects of nitrogen application on photosynthetic efficiency of Bidens pilosa L. leaves under Cadmium stress. Environmental Science & Technology, 2022, 45(4): 146-153. doi: 10.19672/j.cnki.1003-6504.2636.21.338

    [18] 李二豹, 樊文华, 刘奋武, 王改玲, 于敏敏. 硅对镉胁迫下黄瓜苗期生长及光合作用的影响. 北方园艺, 2021(8): 8-16.

    LI E B, FAN W H, LIU F W, WANG G L, YU M M. Effects of Silicon on growth and photosynthesis of cucumber seedling under Cadmium stress. Northern Horticulture, 2021(8): 8-16.

    [19] 刘伟, 樊文华, 刘奋武, 张昊, 王改玲, 于敏敏, 田露丹. 施磷对镉胁迫下黄瓜苗期光合作用及抗氧化酶系统的影响. 土壤通报, 2022, 53(3): 596-604. doi: 10.19336/j.cnki.trtb.2021033006

    LIU W, FAN W H, LIU F W, ZHANG H, WANG G L, YU M M, TIAN L D. Effects of phosphorus on photosynthesis and antioxidant enzyme system of cucumber seedlings under Cadmium stress. Chinese Journal of Soil Science, 2022, 53(3): 596-604. doi: 10.19336/j.cnki.trtb.2021033006

    [20] 赵素达, 付成秋, 朱松龄. 镉对石莼光合作用和呼吸作用及叶绿素含量的影响. 青岛海洋大学学报(自然科学版), 2000(3): 519-523. doi: 10.3969/j.issn.1672-5174.2000.03.021

    ZHAO S D, FU C Q, ZHU S L. Effect of Cadmium on photosynthesis, chlorophyll oncentration and respiration of Ulva pertusa. Periodical of Ocean University of China, 2000(3): 519-523. doi: 10.3969/j.issn.1672-5174.2000.03.021

    [21] 陈爱葵, 王茂意, 刘晓海, 曾小龙. 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013, 32(4): 514-522.

    CHEN A K, WANG M Y, LIU X H, ZENG X L. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecological Science, 2013, 32(4): 514-522.

    [22] 樊金娟, 刘宇, 曹樱迪, 张微, 田静. 玉米对镉胁迫的响应及其耐镉机制研究进展. 沈阳农业大学学报, 2018, 49(5): 633-640.

    FAN J J, LIU Y, CAO Y D, ZHANG W, TIAN J. Responses of maize to Cadmium stress and mechanisms of Cadmium tolerance. Journal of Shenyang Agricultural University, 2018, 49(5): 633-640.

    [23] 仇硕, 张敏, 孙延东, 黄苏珍. 植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展. 西北植物学报, 2006, 26(12): 2615-2622. doi: 10.3321/j.issn:1000-4025.2006.12.035

    QIU SH, ZHANG M, SUN Y D, HUANG S Z. Research advances in the mechanisms of Cd2+ uptake, transport, accumulation and tolerance in plants. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2615-2622. doi: 10.3321/j.issn:1000-4025.2006.12.035

    [24] 宋建, 金凤媚, 薛俊, 刘仲齐. 镉胁迫对植物生长及生理生态效应的研究进展. 天津农业科学, 2014, 20(12): 19-22. doi: 10.3969/j.issn.1006-6500.2014.12.005

    SONG J, JIN F M, XUE J, LIU Z Q. Advances of Cadmium stress on plants growth and physiological and ecological effects. Tianjin Agricultural Sciences, 2014, 20(12): 19-22. doi: 10.3969/j.issn.1006-6500.2014.12.005

    [25] 汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义. 植物生理学通讯, 1984(1): 15-21.

    TANG Z C. Accumulation of proline in plants under adverse conditions and its possible significance. Plant Physiology Journal, 1984(1): 15-21.

    [26]

    KEMBLE A R, MACPHERSON H T. Liberation of amino acids in perennial rye grass during wilting. The Biochemical Journal, 1954, 58(1): 46-49. doi: 10.1042/bj0580046

    [27] 包懿玮, 刘博洋, 李金艳, 王淑华. 苜蓿种子萌发和幼苗生长对盐碱胁迫的响应. 吉林农业大学学报, 2021, 43(5): 549-556. doi: 10.13327/j.jjlau.2021.4427

    BAO Y W, LIU B Y, LI J Y, WANG S H. Response of seed germination and seedling growth of alfalfa (Medicago sativa L.) to saline-sodic stress. Journal of Jilin Agricultural University, 2021, 43(5): 549-556. doi: 10.13327/j.jjlau.2021.4427

    [28] 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究. 草业学报, 2022, 31(6): 127-138. doi: 10.11686/cyxb2021367

    SUN S P, LI Y, LIU X E, ZHONG P F, SHAN L S, HOU Y L. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica. Acta Prataculturae Sinica, 2022, 31(6): 127-138. doi: 10.11686/cyxb2021367

    [29] 李波, 白庆武, 马兰, 于非. 苜蓿抗性变异细胞系的筛选. 草业科学, 2003, 20(4): 5-9. doi: 10.3969/j.issn.1001-0629.2003.04.003

    LI B, BAI Q W, MA L, YU F. The selection of alfalfa resistance variation cells. Pratacultural Science, 2003, 20(4): 5-9. doi: 10.3969/j.issn.1001-0629.2003.04.003

    [30] 张越, 董喜光, 薛立, 陈红跃, 梁梓毅. 臭氧胁迫对山杜英幼苗生理的影响. 中南林业科技大学学报, 2015, 35(9): 97-103.

    ZHANG Y, DONG X G, XUE L, CHEN H Y, LIANG Z Y. Effects of ozone stress on physiological characteristics of Elaeocarpus sylvestris seedlings. Journal of Central South University of Forestry & Technology, 2015, 35(9): 97-103.

    [31] 牟祚民, 姜贝贝, 潘远智, 刘庆林. 重金属胁迫对天竺葵生长及生理特性的影响. 草业科学, 2019, 36(2): 434-441. doi: 10.11829/j.issn.1001-0629.2018-0225

    MU Z M, JIANG B B, PAN Y Z, LIU Q L. Effect of heavy metal stress on the growth and physiological characteristics of Pelargonium hortorum. Pratacultural Science, 2019, 36(2): 434-441. doi: 10.11829/j.issn.1001-0629.2018-0225

    [32] 钱海胜, 陈亚华, 王桂萍, 沈振国. 镉在不结球白菜中的积累及外源脱落酸对镉积累的影响. 南京农业大学学报, 2008, 31(4): 61-65.

    QIAN H S, CHEN Y H, WANG G P, SHEN Z G. Cadmium accumulation and effect of exogenous abscisic acid on cadmium accumulation in cadmium treated Brassica campestris ssp. chinensis L. Journal of Nanjing Agricultural University, 2008, 31(4): 61-65.

    [33] 鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展. 中国水稻科学, 2013, 27(5): 539-544. doi: 10.3969/j.issn.1001-7216.2013.05.012

    E Z G, ZHANG Y P, WANG L. Molecular mechanism of rice responses to Cadmium stress. Chinese Journal of Rice Science, 2013, 27(5): 539-544. doi: 10.3969/j.issn.1001-7216.2013.05.012

    [34] 邱漫莉. 外源脯氨酸对镉胁迫下金银花生理特征的影响. 沈阳: 辽宁大学硕士学位论文, 2021.

    QIU M L. Effects of exogenous proline on physiological characteristics of Lonicera japonica under Cadmium stress. Master Thesis. Shenyang: Liaoning University, 2021.

    [35] 孙金月, 赵玉田, 常汝镇, 梁博文, 刘方. 小麦细胞壁糖蛋白的耐盐性保护作用与机制研究. 中国农业科学, 1997, 30(4): 10-16, 98. doi: 10.3321/j.issn:0578-1752.1997.04.002

    SUN J Y, ZHAO Y T, CHANG R Z, LIANG B W, LIU F. Study on the protective function and mechanism of cell wall glycoproteins in salt tolerance of wheat. Scientia Agricultura Sinica, 1997, 30(4): 10-16, 98. doi: 10.3321/j.issn:0578-1752.1997.04.002

    [36] 李爱军, 张桂香, 周福平, 张海燕, 杨彬, 史红梅. 低温胁迫下高粱幼苗对外源脯氨酸的响应. 种子, 2019, 38(5): 44-47.

    LI A J, ZHANG G X, ZHOU F P, ZHANG H Y, YANG B, SHI H M. Response of sorghum seedlings to exogenous proline under low temperature stress. Seed, 2019, 38(5): 44-47.

    [37]

    HOQUE M A, OKUMA E, BANU M N A, NAKAMURA Y, SHIMOISHI Y, MURATA Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 2007, 164(5): 553-561. doi: 10.1016/j.jplph.2006.03.010

    [38]

    OKUMA E, MURAKAMI Y, SHIMOISHI Y, TADA M, MURATA Y. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition, 2004, 50(8): 1301-1305. doi: 10.1080/00380768.2004.10408608

    [39]

    JAIN M, MATHYR G, KOUL S, SARIN N B. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 2001, 20(5): 463-468. doi: 10.1007/s002990100353

    [40]

    SHARMA S S, SCHAT H, VOOIJS R. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 1998, 49(6): 1531-1535. doi: 10.1016/S0031-9422(98)00282-9

    [41]

    HORVATH E M, SZALAI G, JANDA T. Induction of Abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 2007, 26(3): 290-300. doi: 10.1007/s00344-007-9017-4

    [42] 许晔, 施国新, 徐勤松, 王学, 丁秉中. 外源脯氨酸(Pro)对茶菱抗Cd2+胁迫能力的影响. 植物研究, 2007, 27(2): 169-174. doi: 10.3969/j.issn.1673-5102.2007.02.012

    XU Y, SHI G X, XU Q S, WANG X, DING B Z. Effects of exogenous pro on resistance of Trapella sinensis Olive to Cd2+ stress. Bulletin of Botanical Research, 2007, 27(2): 169-174. doi: 10.3969/j.issn.1673-5102.2007.02.012

    [43] 王迪华, 王改玲, 樊存虎. 镉胁迫对小白菜种子萌发、生理特性及其镉积累的影响. 中国瓜菜, 2021, 34(9): 80-83. doi: 10.3969/j.issn.1673-2871.2021.09.014

    WANG D H, WANG G L, FAN C H. Effects of soil cadmium stress on seed germination, physiological characteristics and cadmium accumulation of pakchoi. China Cucurbits and Vegetables, 2021, 34(9): 80-83. doi: 10.3969/j.issn.1673-2871.2021.09.014

    [44] 胡佳瑶, 王悟敏, 匡雪韶, 刘文胜. 镉胁迫下青葙种子萌发及幼苗生理特性. 草业科学, 2022, 39(7): 1391-1398. doi: 10.11829/j.issn.1001-0629.2021-0652

    HU J Y, WANG W M, KUANG X S, LIU W S. Seed germination and seedling physiological characteristics of Celosia argentea under cadmium stress. Pratacultural Science, 2022, 39(7): 1391-1398. doi: 10.11829/j.issn.1001-0629.2021-0652

    [45] 刘朝荣, 张柳青, 杨艳, 黄兴, 黎云祥, 权秋梅, 朱晓华. 珙桐幼苗生理生化指标对重金属铅、镉胁迫的响应. 广西植物, 2021, 41(9): 1401-1410.

    LIU ZH R, ZHANG L Q, YANG Y, HUANG X, LI Y X, QUAN Q M, ZHU X H. Effects of lead and cadmium on physiology and biochemical indexes of Davidia involucrata seedlings. Guihaia, 2021, 41(9): 1401-1410.

    [46] 彭昌琴, 陈兴银, 杨鹏, 穆仕海, 关萍. 镉胁迫对尾穗苋种子萌发及幼苗生理特性的影响. 种子, 2018, 37(7): 43-48. doi: 10.16590/j.cnki.1001-4705.2018.07.043

    PENG C Q, CHEN X Y, YANG P, MU S H, GUAN P. Effects of Cadmium stress on seed germination of Amaranthus caudatus and physiological characteristics of seedlings. Seed, 2018, 37(7): 43-48. doi: 10.16590/j.cnki.1001-4705.2018.07.043

    [47] 周际海, 程坤, 郜茹茹, 段洪浪, 濮海燕, 金志农. 土壤镉污染对香樟幼苗光合和生理特性的影响. 林业科学, 2020, 56(6): 193-201.

    ZHOU J H, CHENG K, GAO R R, DUAN H L, PU H Y, JIN Z N. Photosynthesis and other physiological characteristics of Cinnamomum camphora seedlings under Cadmium stress. Scientia Silvae Sinicae, 2020, 56(6): 193-201.

    [48] 肖雪, 李宗艳, 马长乐, 于达勇. 镉胁迫对双腺藤幼苗生长及生理特性的影响. 西部林业科学, 2021, 50(3): 118-123. doi: 10.16473/j.cnki.xblykx1972.2021.03.016

    XIAO X, LI Z Y, MA C L, YU D Y. Effects of Cd2+ stress on the growth and physiological characteristics of Mandevilla sanderi seedlings. Journal of West China Forestry Science, 2021, 50(3): 118-123. doi: 10.16473/j.cnki.xblykx1972.2021.03.016

  • 图  1   外源脯氨酸降低重金属镉对喜旱莲子草生理指标的影响

    不同小写字母表示相同部位不同处理间差异显著(P < 0.05);下图同。

    Figure  1.   Exogenous proline reduces the effect of heavy metal cadmium on physiological indices of Alternanthera philoxeroides

    Different lowercase letters indicate significant differences between different treatments for the same tissue at the 0.05 level; This is applicable for the following figures as well.

    图  2   外源脯氨酸降低重金属镉对喜旱莲子草抗氧化系统的影响

    Figure  2.   Exogenous proline reduces the effect of heavy metal cadmium on the antioxidant system of Alternanthera philoxeroides

    表  1   外源脯氨酸降低重金属镉对喜旱莲子草根、茎、叶长度的影响

    Table  1   Exogenous proline reduces the effects of heavy metal cadmium on root, stem, and leaf length of Alternanthera philoxeroides cm

    处理 Treatment 根 Root 茎 Stem 叶 Leaf
    CK 6.63 ± 0.30a 55.61 ± 0.75a 5.37 ± 0.26a
    W1 4.60 ± 0.25b 50.30 ± 1.39b 4.63 ± 0.08b
    W2 6.43 ± 0.19a 55.74 ± 3.40a 5.67 ± 0.78a
    W3 6.87 ± 0.20a 56.44 ± 1.83a 5.70 ± 0.20a
     CK,对照,不添加脯氨酸和Cd;W1,只添加Cd (20 mg·L−1);W2,只添加脯氨酸(10 mmol·L−1);W3,既添加脯氨酸(10 mmol·L−1)又添加Cd (20 mg·L−1)。同列不同小写字母表示差异显著 (P < 0.05)。下同。
     CK, control group without adding proline and cadmium; W1, only added cadmium (20 mg·L−1); W2, only added proline (10 mmol·L−1); W3, added both proline (10 mmol·L−1) and cadmium (20 mg·L−1). Different lowercase letters indicate significant differences at the 0.05 level. This is applicable for the following tables and figures as well.
    下载: 导出CSV

    表  2   外源脯氨酸降低重金属镉对喜旱莲子草茎、叶干重与鲜重的影响

    Table  2   Exogenous proline reduced the effect of heavy metal cadmium on dry weight and fresh weight of leaves and stem of Alternanthera philoxeroides g

    处理
    Treatment
    干重 Dry weight 鲜重 Fresh weight
    叶 Leaf 茎 Stem 叶 Leaf 茎 Stem
    CK 0.2126 ± 0.0003a 0.2080 ± 0.0020a 0.2658 ± 0.0004a 0.2600 ± 0.0026a
    W1 0.2070 ± 0.0081b 0.1990 ± 0.0068b 0.2212 ± 0.0101b 0.2112 ± 0.0085b
    W2 0.2183 ± 0.0066a 0.2116 ± 0.0066a 0.2729 ± 0.0083a 0.2770 ± 0.0083a
    W3 0.2210 ± 0.0050a 0.2193 ± 0.0162a 0.2762 ± 0.0062a 0.2866 ± 0.0202a
    下载: 导出CSV
  • [1] 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略. 中国科学院院刊, 2014, 29(3): 315-320, 350.

    ZHOU J J, ZHOU J, FENG R G. Status of China’s heavy metal contamination in soil and its remediationstrategy. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 315-320, 350.

    [2]

    HE Z L, YANG X E, STOFFELLA P J. Trace elements in agroecosystems and impacts on the environment. Joumal of Trace Elements in Medicine and Biology, 2005, 19(2-3): 125-140. doi: 10.1016/j.jtemb.2005.02.010

    [3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 中国环保产业, 2014(5): 10-11.

    Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution investigation bulletin. China Environmental Protection Industry, 2014(5): 10-11.

    [4] 周桑扬, 杨凯, 吴晓芙, 冀泽华. 人工湿地植物去除废水中重金属的作用机制研究进展. 湿地科学, 2016, 14(5): 717-724. doi: 10.13248/j.cnki.wetlandsci.2016.05.017

    ZHOU S Y, YANG K, WU X F, JI Z H. Advance in mechanism of removing heavy metals from wastewater by plants in wetlands. Wetland Science, 2016, 14(5): 717-724. doi: 10.13248/j.cnki.wetlandsci.2016.05.017

    [5]

    GREENWAY M. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science and Technology, 1997, 35(5): 135-142. doi: 10.2166/wst.1997.0182

    [6] 中国植物志编委会. 中国植物志 第25 (2)卷. 北京: 科学出版社, 1979: 236.

    Editorial Committee of Chinese Journal of Plant of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1979: 236.

    [7] 李印霞, 刘碧波, 饶本强, 李敦海. 温室条件下水花生对富营养化水体浮游生物和水质的影响. 四川农业大学学报, 2017, 35(2): 260-265.

    LI Y X, LIU B B, RAO B Q, LI D H. Study on effects of Alternanthera philoxeroides on plankton and water quality from eutrophic water. Journal of Sichuan Agricultural University, 2017, 35(2): 260-265.

    [8] 张伟, 韩士群, 郭起金. 凤眼莲、水花生、鲢鱼对富营养化水体藻类及氮、磷的去除作用. 江苏农业学报, 2012, 28(5): 1037-1041.

    ZHANG W, HAN S Q, GUO Q J. Removal of algae, nitrogen and phosphorus in eutrophied water by Eichhornia crassipe, Alternanthera philoxeroides and Hypophthalmichthys molitrix. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 1037-1041.

    [9] 何少林, 黄翔峰, 陈广, 李旭东, 池金萍, 杨殿海, 安丽, 周琪. 高效藻类塘去除农村生活污水中的磷. 中国给水排水, 2006, 21(9): 18-21. doi: 10.3321/j.issn:1000-4602.2006.09.005

    HE S L, HUANG Q F, CHEN G, LI X D, CHI J P, YANG D H, AN L, ZHOU Q. Phosphorus removal from rural domestic sewage in high rate algal pond. China Water & Wastewater, 2006, 21(9): 18-21. doi: 10.3321/j.issn:1000-4602.2006.09.005

    [10] 邓琳静, 刘艳霖, 幸嘉瑜, 陈静, 朱睿, 程学勤. 水体重金属污染处理研究进展. 广东化工, 2020, 47(19): 104-106, 114. doi: 10.3969/j.issn.1007-1865.2020.19.044

    DENG L J, LIU Y L, XING J Y, CHEN J, ZHU R, CHENG X Q. Research progress in treatment of heavy metal pollution in water. Guangdong Chemical Industry, 2020, 47(19): 104-106, 114. doi: 10.3969/j.issn.1007-1865.2020.19.044

    [11] 宋志忠, 王莉, 金曼, 苏彦华. 重金属胁迫条件下空心莲子草的生长和营养特征分析(英文). 基因组学与应用生物学, 2011, 30(5): 614-619. doi: 10.3969/gab.030.000614

    SONG Z Z, WANG L, JIN M, SUN Y H. Alternanthera philoxeroides might be used for bioremediating heavy metal contaminated soil. Genomics and Applied Biology, 2011, 30(5): 614-619. doi: 10.3969/gab.030.000614

    [12] 华建峰, 胡李娟, 张垂胜, 殷云龙, 王兴祥. 3种水生植物对锰污染水体修复作用的研究. 生态环境学报, 2010, 19(9): 2160-2165. doi: 10.3969/j.issn.1674-5906.2010.09.024

    HUA J F, HU L J, ZHANG C S, YIN Y L, WANG X X. Phytoremediation of manganese-contaminated water by three aquatic macrophytes. Ecology and Environmental Sciences, 2010, 19(9): 2160-2165. doi: 10.3969/j.issn.1674-5906.2010.09.024

    [13] 闫大江. 空心莲子草对南四湖Cd、Pb污染底泥修复效果及机制研究. 济南: 山东建筑大学硕士学位论文, 2021.

    YAN D J. Study on the remediation effect and mechanism of Alternanthera philoxeroides on Cd and Pb contaminated sediment in Nansi Lake. Master Thesis. Ji’nan: Shandong Jianzhu University, 2021.

    [14] 徐丽, 张震, 张鹏, 王育鹏, 檀根甲. 喜旱莲子草对重金属元素的耐性试验研究. 安徽农业科学, 2010, 38(13): 6831-6832, 6877. doi: 10.3969/j.issn.0517-6611.2010.13.081

    XU L, ZHANG Z, ZHANG P, WANG Y P, TAN G J. Study on tolerance of Alternanthera philoxeroides to heavy metals. Journal of Anhui Agricultural Sciences, 2010, 38(13): 6831-6832, 6877. doi: 10.3969/j.issn.0517-6611.2010.13.081

    [15]

    RIZWAN M, ALI S, ABBAS T, ZIA-UR-REHMAN M, HANNAN F, KELLER C, AL-WABEL M I, OK Y S. Cadmium minimization in wheat: A critical review. Ecotoxicology and Environmental Safety, 2016, 130: 43-53. doi: 10.1016/j.ecoenv.2016.04.001

    [16] 刘朋虎, 李波, 江枝和, 雷锦桂, 翁伯琦, 黄在兴. 镉对姬松茸农艺性状及矿物质元素吸收的影响. 农业环境科学学报, 2018, 37(1): 58-63. doi: 10.11654/jaes.2017-1524

    LIU P H, LI B, JIANG Z H, LEI J G, WENG B Q, HUANG Z X. Effects of cadmium (Cd) in different concentrations on agronomic traits and mineral elements absorption of Agaricus brasiliensis. Journal of Agro-Environment Science, 2018, 37(1): 58-63. doi: 10.11654/jaes.2017-1524

    [17] 郭嘉航, 张福琼, 黄晶心, 杨云, 孙世中, 熊明月, 韩飞. 施氮对镉胁迫下鬼针草叶片光合效率的影响. 环境科学与技术, 2022, 45(4): 146-153. doi: 10.19672/j.cnki.1003-6504.2636.21.338

    GUO J H, ZHANG F Q, HUANG J X, YANG Y, SUN S Z, XIONG M Y, HAN F. Effects of nitrogen application on photosynthetic efficiency of Bidens pilosa L. leaves under Cadmium stress. Environmental Science & Technology, 2022, 45(4): 146-153. doi: 10.19672/j.cnki.1003-6504.2636.21.338

    [18] 李二豹, 樊文华, 刘奋武, 王改玲, 于敏敏. 硅对镉胁迫下黄瓜苗期生长及光合作用的影响. 北方园艺, 2021(8): 8-16.

    LI E B, FAN W H, LIU F W, WANG G L, YU M M. Effects of Silicon on growth and photosynthesis of cucumber seedling under Cadmium stress. Northern Horticulture, 2021(8): 8-16.

    [19] 刘伟, 樊文华, 刘奋武, 张昊, 王改玲, 于敏敏, 田露丹. 施磷对镉胁迫下黄瓜苗期光合作用及抗氧化酶系统的影响. 土壤通报, 2022, 53(3): 596-604. doi: 10.19336/j.cnki.trtb.2021033006

    LIU W, FAN W H, LIU F W, ZHANG H, WANG G L, YU M M, TIAN L D. Effects of phosphorus on photosynthesis and antioxidant enzyme system of cucumber seedlings under Cadmium stress. Chinese Journal of Soil Science, 2022, 53(3): 596-604. doi: 10.19336/j.cnki.trtb.2021033006

    [20] 赵素达, 付成秋, 朱松龄. 镉对石莼光合作用和呼吸作用及叶绿素含量的影响. 青岛海洋大学学报(自然科学版), 2000(3): 519-523. doi: 10.3969/j.issn.1672-5174.2000.03.021

    ZHAO S D, FU C Q, ZHU S L. Effect of Cadmium on photosynthesis, chlorophyll oncentration and respiration of Ulva pertusa. Periodical of Ocean University of China, 2000(3): 519-523. doi: 10.3969/j.issn.1672-5174.2000.03.021

    [21] 陈爱葵, 王茂意, 刘晓海, 曾小龙. 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013, 32(4): 514-522.

    CHEN A K, WANG M Y, LIU X H, ZENG X L. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecological Science, 2013, 32(4): 514-522.

    [22] 樊金娟, 刘宇, 曹樱迪, 张微, 田静. 玉米对镉胁迫的响应及其耐镉机制研究进展. 沈阳农业大学学报, 2018, 49(5): 633-640.

    FAN J J, LIU Y, CAO Y D, ZHANG W, TIAN J. Responses of maize to Cadmium stress and mechanisms of Cadmium tolerance. Journal of Shenyang Agricultural University, 2018, 49(5): 633-640.

    [23] 仇硕, 张敏, 孙延东, 黄苏珍. 植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展. 西北植物学报, 2006, 26(12): 2615-2622. doi: 10.3321/j.issn:1000-4025.2006.12.035

    QIU SH, ZHANG M, SUN Y D, HUANG S Z. Research advances in the mechanisms of Cd2+ uptake, transport, accumulation and tolerance in plants. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2615-2622. doi: 10.3321/j.issn:1000-4025.2006.12.035

    [24] 宋建, 金凤媚, 薛俊, 刘仲齐. 镉胁迫对植物生长及生理生态效应的研究进展. 天津农业科学, 2014, 20(12): 19-22. doi: 10.3969/j.issn.1006-6500.2014.12.005

    SONG J, JIN F M, XUE J, LIU Z Q. Advances of Cadmium stress on plants growth and physiological and ecological effects. Tianjin Agricultural Sciences, 2014, 20(12): 19-22. doi: 10.3969/j.issn.1006-6500.2014.12.005

    [25] 汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义. 植物生理学通讯, 1984(1): 15-21.

    TANG Z C. Accumulation of proline in plants under adverse conditions and its possible significance. Plant Physiology Journal, 1984(1): 15-21.

    [26]

    KEMBLE A R, MACPHERSON H T. Liberation of amino acids in perennial rye grass during wilting. The Biochemical Journal, 1954, 58(1): 46-49. doi: 10.1042/bj0580046

    [27] 包懿玮, 刘博洋, 李金艳, 王淑华. 苜蓿种子萌发和幼苗生长对盐碱胁迫的响应. 吉林农业大学学报, 2021, 43(5): 549-556. doi: 10.13327/j.jjlau.2021.4427

    BAO Y W, LIU B Y, LI J Y, WANG S H. Response of seed germination and seedling growth of alfalfa (Medicago sativa L.) to saline-sodic stress. Journal of Jilin Agricultural University, 2021, 43(5): 549-556. doi: 10.13327/j.jjlau.2021.4427

    [28] 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究. 草业学报, 2022, 31(6): 127-138. doi: 10.11686/cyxb2021367

    SUN S P, LI Y, LIU X E, ZHONG P F, SHAN L S, HOU Y L. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica. Acta Prataculturae Sinica, 2022, 31(6): 127-138. doi: 10.11686/cyxb2021367

    [29] 李波, 白庆武, 马兰, 于非. 苜蓿抗性变异细胞系的筛选. 草业科学, 2003, 20(4): 5-9. doi: 10.3969/j.issn.1001-0629.2003.04.003

    LI B, BAI Q W, MA L, YU F. The selection of alfalfa resistance variation cells. Pratacultural Science, 2003, 20(4): 5-9. doi: 10.3969/j.issn.1001-0629.2003.04.003

    [30] 张越, 董喜光, 薛立, 陈红跃, 梁梓毅. 臭氧胁迫对山杜英幼苗生理的影响. 中南林业科技大学学报, 2015, 35(9): 97-103.

    ZHANG Y, DONG X G, XUE L, CHEN H Y, LIANG Z Y. Effects of ozone stress on physiological characteristics of Elaeocarpus sylvestris seedlings. Journal of Central South University of Forestry & Technology, 2015, 35(9): 97-103.

    [31] 牟祚民, 姜贝贝, 潘远智, 刘庆林. 重金属胁迫对天竺葵生长及生理特性的影响. 草业科学, 2019, 36(2): 434-441. doi: 10.11829/j.issn.1001-0629.2018-0225

    MU Z M, JIANG B B, PAN Y Z, LIU Q L. Effect of heavy metal stress on the growth and physiological characteristics of Pelargonium hortorum. Pratacultural Science, 2019, 36(2): 434-441. doi: 10.11829/j.issn.1001-0629.2018-0225

    [32] 钱海胜, 陈亚华, 王桂萍, 沈振国. 镉在不结球白菜中的积累及外源脱落酸对镉积累的影响. 南京农业大学学报, 2008, 31(4): 61-65.

    QIAN H S, CHEN Y H, WANG G P, SHEN Z G. Cadmium accumulation and effect of exogenous abscisic acid on cadmium accumulation in cadmium treated Brassica campestris ssp. chinensis L. Journal of Nanjing Agricultural University, 2008, 31(4): 61-65.

    [33] 鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展. 中国水稻科学, 2013, 27(5): 539-544. doi: 10.3969/j.issn.1001-7216.2013.05.012

    E Z G, ZHANG Y P, WANG L. Molecular mechanism of rice responses to Cadmium stress. Chinese Journal of Rice Science, 2013, 27(5): 539-544. doi: 10.3969/j.issn.1001-7216.2013.05.012

    [34] 邱漫莉. 外源脯氨酸对镉胁迫下金银花生理特征的影响. 沈阳: 辽宁大学硕士学位论文, 2021.

    QIU M L. Effects of exogenous proline on physiological characteristics of Lonicera japonica under Cadmium stress. Master Thesis. Shenyang: Liaoning University, 2021.

    [35] 孙金月, 赵玉田, 常汝镇, 梁博文, 刘方. 小麦细胞壁糖蛋白的耐盐性保护作用与机制研究. 中国农业科学, 1997, 30(4): 10-16, 98. doi: 10.3321/j.issn:0578-1752.1997.04.002

    SUN J Y, ZHAO Y T, CHANG R Z, LIANG B W, LIU F. Study on the protective function and mechanism of cell wall glycoproteins in salt tolerance of wheat. Scientia Agricultura Sinica, 1997, 30(4): 10-16, 98. doi: 10.3321/j.issn:0578-1752.1997.04.002

    [36] 李爱军, 张桂香, 周福平, 张海燕, 杨彬, 史红梅. 低温胁迫下高粱幼苗对外源脯氨酸的响应. 种子, 2019, 38(5): 44-47.

    LI A J, ZHANG G X, ZHOU F P, ZHANG H Y, YANG B, SHI H M. Response of sorghum seedlings to exogenous proline under low temperature stress. Seed, 2019, 38(5): 44-47.

    [37]

    HOQUE M A, OKUMA E, BANU M N A, NAKAMURA Y, SHIMOISHI Y, MURATA Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 2007, 164(5): 553-561. doi: 10.1016/j.jplph.2006.03.010

    [38]

    OKUMA E, MURAKAMI Y, SHIMOISHI Y, TADA M, MURATA Y. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Science and Plant Nutrition, 2004, 50(8): 1301-1305. doi: 10.1080/00380768.2004.10408608

    [39]

    JAIN M, MATHYR G, KOUL S, SARIN N B. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 2001, 20(5): 463-468. doi: 10.1007/s002990100353

    [40]

    SHARMA S S, SCHAT H, VOOIJS R. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 1998, 49(6): 1531-1535. doi: 10.1016/S0031-9422(98)00282-9

    [41]

    HORVATH E M, SZALAI G, JANDA T. Induction of Abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 2007, 26(3): 290-300. doi: 10.1007/s00344-007-9017-4

    [42] 许晔, 施国新, 徐勤松, 王学, 丁秉中. 外源脯氨酸(Pro)对茶菱抗Cd2+胁迫能力的影响. 植物研究, 2007, 27(2): 169-174. doi: 10.3969/j.issn.1673-5102.2007.02.012

    XU Y, SHI G X, XU Q S, WANG X, DING B Z. Effects of exogenous pro on resistance of Trapella sinensis Olive to Cd2+ stress. Bulletin of Botanical Research, 2007, 27(2): 169-174. doi: 10.3969/j.issn.1673-5102.2007.02.012

    [43] 王迪华, 王改玲, 樊存虎. 镉胁迫对小白菜种子萌发、生理特性及其镉积累的影响. 中国瓜菜, 2021, 34(9): 80-83. doi: 10.3969/j.issn.1673-2871.2021.09.014

    WANG D H, WANG G L, FAN C H. Effects of soil cadmium stress on seed germination, physiological characteristics and cadmium accumulation of pakchoi. China Cucurbits and Vegetables, 2021, 34(9): 80-83. doi: 10.3969/j.issn.1673-2871.2021.09.014

    [44] 胡佳瑶, 王悟敏, 匡雪韶, 刘文胜. 镉胁迫下青葙种子萌发及幼苗生理特性. 草业科学, 2022, 39(7): 1391-1398. doi: 10.11829/j.issn.1001-0629.2021-0652

    HU J Y, WANG W M, KUANG X S, LIU W S. Seed germination and seedling physiological characteristics of Celosia argentea under cadmium stress. Pratacultural Science, 2022, 39(7): 1391-1398. doi: 10.11829/j.issn.1001-0629.2021-0652

    [45] 刘朝荣, 张柳青, 杨艳, 黄兴, 黎云祥, 权秋梅, 朱晓华. 珙桐幼苗生理生化指标对重金属铅、镉胁迫的响应. 广西植物, 2021, 41(9): 1401-1410.

    LIU ZH R, ZHANG L Q, YANG Y, HUANG X, LI Y X, QUAN Q M, ZHU X H. Effects of lead and cadmium on physiology and biochemical indexes of Davidia involucrata seedlings. Guihaia, 2021, 41(9): 1401-1410.

    [46] 彭昌琴, 陈兴银, 杨鹏, 穆仕海, 关萍. 镉胁迫对尾穗苋种子萌发及幼苗生理特性的影响. 种子, 2018, 37(7): 43-48. doi: 10.16590/j.cnki.1001-4705.2018.07.043

    PENG C Q, CHEN X Y, YANG P, MU S H, GUAN P. Effects of Cadmium stress on seed germination of Amaranthus caudatus and physiological characteristics of seedlings. Seed, 2018, 37(7): 43-48. doi: 10.16590/j.cnki.1001-4705.2018.07.043

    [47] 周际海, 程坤, 郜茹茹, 段洪浪, 濮海燕, 金志农. 土壤镉污染对香樟幼苗光合和生理特性的影响. 林业科学, 2020, 56(6): 193-201.

    ZHOU J H, CHENG K, GAO R R, DUAN H L, PU H Y, JIN Z N. Photosynthesis and other physiological characteristics of Cinnamomum camphora seedlings under Cadmium stress. Scientia Silvae Sinicae, 2020, 56(6): 193-201.

    [48] 肖雪, 李宗艳, 马长乐, 于达勇. 镉胁迫对双腺藤幼苗生长及生理特性的影响. 西部林业科学, 2021, 50(3): 118-123. doi: 10.16473/j.cnki.xblykx1972.2021.03.016

    XIAO X, LI Z Y, MA C L, YU D Y. Effects of Cd2+ stress on the growth and physiological characteristics of Mandevilla sanderi seedlings. Journal of West China Forestry Science, 2021, 50(3): 118-123. doi: 10.16473/j.cnki.xblykx1972.2021.03.016

图(2)  /  表(2)
计量
  • PDF下载量:  21
  • 文章访问数:  62
  • HTML全文浏览量:  9
  • 被引次数: 0
文章相关
  • 通讯作者: 杨玉洁
  • 收稿日期:  2023-03-08
  • 接受日期:  2023-06-04
  • 网络出版日期:  2023-12-15
  • 刊出日期:  2024-06-29

目录

/

返回文章
返回