高寒草甸蘑菇圈上植物内生真菌多样性
黄绿卷毛菇(Floccularia luteovirens)是青藏高原特有真菌资源,对高寒草甸植物群落结构和稳定性有重要影响,可形成典型的蘑菇圈。本研究采用传统组织分离法结合ITS序列鉴定方法,分析采自祁连高寒草甸黄绿卷毛菇蘑菇圈上不同植物可培养内生真菌的多样性。结果表明:从6类植物108块组织中分离得到70株内生真菌,总分离率为64.81%,总定殖率为33.33%。多样性与相似性分析表明,矮嵩草(Kobresia humilis)内生真菌丰富度和多样性最高,米尔克棘豆(Oxytropis merkensis)内生真菌均匀度指数最高;火绒草(Leontopodium leontopodioides)和米尔克棘豆相似性最高,其次为麻花艽(Gentiana straminea)与米尔克棘豆、鹅绒委陵菜(Potentilla anserina);不同组织间内生真菌相似性排序为:根−茎 > 叶−茎 > 根−叶。内生真菌结构分析表明,不同植物中优势菌分别为Peziza ostracoderma和Stagonospora sp.;不同组织中相对丰度最高均为Peziza ostracoderma。共现网络分析结果表明矮嵩草是黄绿卷毛菇蘑菇圈上的核心植物,特征向量中心性(EC)值为1;Peziza ostracoderma是核心内生真菌,EC值为0.75。黄绿卷毛菇蘑菇圈上植物及其内生真菌均具有丰富的多样性,且内生真菌的分布具有一定的植物特异性和组织偏好性。本研究结果有助于从植物内生真菌的角度为进一步探究青藏高原特有真菌黄绿卷毛菇蘑菇圈上植物−微生物的互作关系提供新思路。
English
-
蘑菇圈常见于草原和林地,是指同种蘑菇(偶尔伴生)子实体在地上呈圈状生长的生态学现象[1-2]。草原蘑菇圈植物、真菌及其生境之间的互作[3]促使蘑菇圈植被呈现明显圈带现象,因此,一般将其分为圈内、圈上和圈外3个部分。圈上区域植被生物量[4]、土壤养分[5]、植物营养成分[6]、土壤呼吸作用[7]、土壤微生物结构[8-9]等均优于圈内及圈外,在景观上圈上区域植物更加浓绿茂密。同时,蘑菇圈还会影响草地群落稳定性和演替方向[10]。因此,圈上区域对于研究草原植被-微生物-土壤互作关系具有一定指示意义。
我国高寒草甸常见的蘑菇圈真菌为黄绿卷毛菇(Floccularia luteovirens) [3],隶属担子菌门、伞菌纲、伞菌目、口蘑科、卷毛菇属[11]。在我国的地理分布范围为28°93′~37°69′ N、90°04′~102°01′ E,是青藏高原特有真菌[12],是珍贵的高原生物资源[13],也是当地著名特产[14],营养丰富、味道鲜美,富含核黄素[15]和抗氧化物质[16],具有重要研究价值。在青海省境内,大多分布于祁连、玛沁、甘德等地[17],其中以祁连地区天然黄绿卷毛菇最负盛名。
内生真菌(endophytic fungi)广泛存在于自然环境中,与宿主协同进化,提高宿主环境适应性。对于宿主植物与内生真菌共生体的研究可以了解特定生境中植物-内生真菌-环境之间的相互关系和发展动态。研究表明,黄绿卷毛菇能够与其生境内矮嵩草(Kobresia humilis)、苔草(Carex)等宿主植物形成共生体[18],成为优势内生真菌种群之一[19],同时,生境微生物对其菌丝生长、菌根化和子实体形成具有促进作用[20]。目前,对黄绿卷毛菇适生草地[21]及蘑菇圈上[22]植物群落结构和土壤微生物[23]进行了研究,尚未见黄绿卷毛菇蘑菇圈上植物内生真菌多样性方面的报道。
本研究选取青海省祁连县峨堡地区黄绿卷毛菇蘑菇圈,采集圈上植物,研究植物内生真菌多样性及其差异,旨在补充黄绿卷毛菇蘑菇圈上植物-内生真菌互作关系数据。
1. 材料与方法
1.1 样品采集及标本鉴定
2020年7月(黄绿卷毛菇大量发生期和植物生长旺期)在青海省海北藏族自治州祁连县峨堡镇(海拔3 493 m,37°58′ N,100°56′ E)高寒草甸,挑选典型的黄绿卷毛菇蘑菇圈,以黄绿卷毛菇为参照物中心设置0.5 m × 0.5 m 的样方,共设置3个样方,样方间间隔10 m以上。连根采集样方中不同种类植物,每种3~5个重复,标记后装于自封袋中随冰盒带回实验室。参照《青海植物志》 [24]并借助iPlant.cn植物智平台(http://www.iplant.cn)进行植物标本分类鉴定。用流水冲洗干净植物表面泥土和杂质,4 ℃保存并在24 h内完成植物可培养内生真菌的分离纯化。采样点信息如表1所列。
表 1 采样点信息及黄绿卷毛菇蘑菇圈上植物分布Table 1. Sampling information and plant species on the fairy ring of Floccularia luteovirens样方
Quadrat海拔
Elevation/m经度
Longitude (E)纬度
Latitude (N)植物 Plant 1 3 400 100°56′22″ 37°57′60″ 矮嵩草 Kobresia humilis, 火绒草 Leontopodium leontopodioides 2 3 450 100°56′26″ 37°58′04″ 麻花艽 Gentiana straminea, 鹅绒萎陵菜 Potentilla anserina 3 3 450 100°56′26″ 37°58′04″ 黄芪 Astragalus membranaceus, 米尔克棘豆 Oxytropis merkensis 1.2 可培养内生真菌的分离纯化
利用PDA培养基,参照文献[19]的方法,对不同种类植物根、茎、叶分别进行内生真菌分离培养并纯化至单菌落,参照文献[25]的方法检测是否消毒干净并保证分离到的菌为“内生菌”。
1.3 DNA提取、PCR扩增和测序
内生真菌菌落长至直径2~3 cm,在旦巴等 [26] CTAB法的基础上稍作改良并提取DNA,即菌丝经过液氮研磨、65 ℃温育、溶解、浸提和几次离心后收集的沉淀,加入300 μL 70%乙醇,12 000 r·min−1离心10 min,弃乙醇;70%乙醇重复清洗一遍,弃乙醇,4 ℃风干加50 μL TE溶解DNA。
使用通用引物ITS1 (5′ -TCCGTAGGTGAACCTGCGG-3′)和ITS4 (5′ -TCCTCCGCTTATTGATATGC- 3′)进行PCR序列扩增,PCR体系25 μL (9.5 μL dd H2O;12.5 μL 2 × Taq PCR MasterMix;1 μL前引物;1 μL后引物;1 μL已提取DNA),扩增程序设定为:95 ℃ 1 min (预变性);94 ℃ 15 s (变性),58 ℃ 15 s (退火), 72 ℃ 1 min (延伸),72 ℃ 5 min (再延伸),35循环;4 ℃保存。
PCR扩增产物以1%琼脂凝胶电泳(120 V,30 min),选条带清晰、DNA浓度 ≥ 100 ng·μL−1且A260/280介于1.8~2.0的PCR产物送至上海生物工程有限公司测序。测序完成后在Genebank中进行序列比对,确定菌株分类并获取序列登录号。
1.4 相关指标计算方法
根据菌株分离情况,分别计算不同植物、不同组织可培养内生真菌分离率(isolation rate,IR)、分离频率(isolation frequency,IF)和定殖率(colonization rate,CR) [27]。计算丰富度指数(Margalef index,R)、多样性指数(Simpson index,D;Shannon-Wiener,H′)、均匀度指数(Pielou index,Ju)和相似性指数(Jaccard similarity index,Cj;Sorenson’s similarity coefficients,Cs) [28-29],分析黄绿卷毛菇蘑菇圈上植物可培养内生真菌的多样性。
1.5 统计分析
数据统计与分析使用Excel 2020和SPSS 26.0软件进行;群落组成差异可视化用Omicshare云平台(https://www.omicshare.com/tools);网络关系可视化用Gephi 0.9.2 (Gephi - The Open Graph Viz Platform),同时以特征向量中心性(eigenvector centrality, EC) [30]判定核心节点。
2. 结果与分析
2.1 黄绿卷毛菇蘑菇圈上植物内生真菌的组成
从黄绿卷毛菇蘑菇圈上总共采集到莎草科矮嵩草(Kobresia humilis),菊科火绒草(Leontopodium leontopodioides),龙胆科麻花艽(Gentiana straminea),蔷薇科鹅绒委陵菜(Potentilla anserina),豆科黄芪(Astragalus membranaceus)和米尔克棘豆(Oxytropis merkensis) 6类植物标本(表1和图1)。从6类植物根、茎、叶的108块组织中共计分离到70株内生真菌,形态学鉴定初步分为15类,ITS分子生物学进一步鉴定为6个属:盘菌属(Peziza sp.)、壳多孢属(Stagonospora sp.)、Ascomycota sp.、青霉菌属(Penicillium sp.)、刺盘孢属(Colletotrichum sp.)和枝孢属(Cladosporium sp.),分离率和分离频率依次表现为Peziza sp. > Stagonospora sp. > Cladosporium sp. > Ascomycota sp. > Colletotrichum sp. > Penicillium sp.(表2)。
表 2 黄绿卷毛菇蘑菇圈上植物内生真菌种类Table 2. Endophytic fungi on the fairy ring of Floccularia luteovirens序号
Code属
Genus分类
Taxa登录号
Accession No.分离率
Isolation rate/%分离频率
Isolation frequency/%1 Peziza sp. Peziza ostracoderma ON175946 28.70 44.29 2 Peziza ostracoderma ON175949 3 Peziza ostracoderma ON175950 4 Peziza ostracoderma ON175951 5 Peziza ostracoderma ON175953 6 Peziza sp. MAB-2010a ON175947 7 Peziza sp. MAB-2010a ON175948 8 Stagonospora sp. Stagonospora pseudoperfecta ON175952 22.22 31.75 9 Stagonospora sp. TS1-rh ON175954 10 Stagonospora trichophoricola ON175955 11 Stagonospora sp. ON175957 12 Ascomycota sp. Ascomycota sp. G47 ON175956 3.70 5.29 13 Penicillium sp. Penicillium camemberti ON175958 1.85 2.65 14 Colletotrichum sp. Colletotrichum sp. ON175959 3.70 5.29 15 Cladosporium sp. Cladosporium sp. SM13-7-1 ON175960 4.63 6.61 2.2 黄绿卷毛菇蘑菇圈上植物内生真菌的定殖率和分离率
内生真菌分离率为64.81%,定殖率为33.33%。不同植物间内生真菌分离率排序为矮嵩草(177.78%) > 火绒草(94.44%) > 鹅绒委陵菜(61.11%) > 麻花艽(44.44%) > 米尔克棘豆(11.11%),未从黄芪中分离到内生真菌(表3)。不同组织间,内生真菌定殖率和分离率排序均为根(63.89%和119.44%) > 茎(22.22%和44.44%) > 叶(13.89%和30.56%) (表3)。
表 3 不同植物及不同组织内生真菌的定殖率和分离率Table 3. Colonization and isolation rates of endophytic fungi of different plants and tissues项目
Item组织块数
Number of tissues
detected分离菌株数 Number of isolates 分离率
Isolation
rate/%根 Root 茎 Stem 叶 Leaf 火绒草 Leontopodium leontopodioides 18 11 6 0 94.44 米尔克棘豆 Oxytropis merkensis 18 2 0 0 11.11 麻花艽 Gentiana straminea 18 6 0 2 44.44 矮嵩草 Kobresia humilis 18 16 10 6 177.78 鹅绒萎陵菜 Potentilla anserina 18 8 0 3 61.11 黄芪 Astragalus membranaceus 18 0 0 0 0.00 组织块数 Number of tissues detected − 36 36 36 − 有菌组织块数 Number of tissues colonized by fungi − 23 8 5 − 定殖率 Colonization rate/% − 63.89 22.22 13.89 − 分离率 Isolation rate/% − 119.44 44.44 30.56 − 每一植物的结果表示该植物中所有组织部位的总和,每一组织的结果表示该组织中所有植物的总和。下同。
Results for each plant are presented as the sum of organs for that plant, while for organ is the sum of all plant for each organ. This is applicable for the following tables as well.2.3 黄绿卷毛菇蘑菇圈上植物内生真菌的多样性及相似性分析
黄绿卷毛菇蘑菇圈上不同植物内生真菌丰富度指数和多样性指数为矮嵩草最高(R = 1.73,H′ = 1.86),米尔克棘(R = 1.44,H′ = 0.69)、火绒草(R = 0.71,H′ = 0.80)居中,麻花艽(R = 0.48,H′ = 0.56)、鹅绒委陵菜(R = 0.42,H′ = 0.59)最低;辛普森指数矮嵩草明显高于其他植物;均匀度指数(Ju)米尔克棘豆达到1,其余植物为0.2~0.3 (表4)。不同植物内生真菌相似性系数比较结果表明,火绒草和米尔克棘豆相似性最高(Cs火−米 = 0.80,Cj火−米 = 0.67),其次为麻花艽与米尔克棘豆、鹅绒委陵菜(Cs = 0.5,Cj = 0.33),其余植物间存在较大差异(表4)。不同组织内生真菌相似性系数比较结果表明,根和茎相似性最高(Cs根−茎 = 0.50,Cj根−茎 = 0.33),其次为叶和茎(Cs叶−茎 = 0.25,Cj根−茎 = 0.20),最后为根和叶(Cs根−叶 = 0.20,Cs根−叶 = 0.11) (表5)。不同组织部位的内生真菌丰富度指数和多样性指数均为根(R = 1.86,H′ = 1.78) > 茎(R = 1.08,H′ = 1.32) > 叶(R = 0.42,H′ = 0.69);辛普森指数和均匀度指数根与茎相近而大于叶(表6)。
表 6 不同植物中内生真菌的多样性指数Table 6. Diversity index of endophytic fungi in different plant species项目
Item根
Root茎
Stem叶
Leaf物种数 Species number 8 4 2 丰富度指数 Margalef richness index (R) 1.86 1.08 0.42 辛普森指数 Simpson index (D) 0.79 0.72 0.50 多样性指数 Shannon–Wiener index (H′) 1.78 1.32 0.69 均匀度指数 Pielou index (Ju) 0.47 0.48 0.29 表 5 不同植物、组织中内生真菌的相似性系数Table 5. Similarity coefficients of endophytic fungi in different plant and tissues相似性系数
Similarity
coefficient项目
Item火绒草
Leontopodium
leontopodioides米尔克棘豆
Oxytropis
merkensis麻花艽
Gentiana
straminea矮嵩草
Kobresia
humilis鹅绒萎陵菜
Potentilla
anserina根
Root茎
Stem叶
LeafCs 火绒草 Leontopodium leontopodioides 1 0.8 0.4 0.2 0 米尔克棘豆 Oxytropis merkensis 1 0.5 0.22 0 麻花艽 Gentiana straminea 1 0.22 0.50 矮嵩草 Kobresia humilis 1 0.22 鹅绒萎陵菜 Potentilla anserina 1 根 Root 1 0.50 0.20 茎 Stem 1 0.33 叶 Leaf 1 Cj 火绒草 Leontopodium leontopodioides 1 0.67 0.25 0.11 0 米尔克棘豆 Oxytropis merkensis 1 0.33 0.13 0 麻花艽 Gentiana straminea 1 0.13 0.33 矮嵩草 Kobresia humilis 1 0.13 鹅绒萎陵菜 Potentilla anserina 1 根 Root 1 0.33 0.11 茎 Stem 1 0.20 叶 Leaf 1 表 4 不同组织中内生真菌的多样性指数Table 4. Diversity index of endophytic fungi in different plant tissues项目
Item火绒草
Leontopodium
leontopodioides米尔克棘豆
Oxytropis
merkensis麻花艽
Gentiana
straminea矮嵩草
Kobresia
humilis鹅绒萎陵菜
Potentilla
anserina物种数 Species number 3 2 1 7 2 丰富度指数 Margalef richness index (R) 0.71 1.44 0.48 1.73 0.42 辛普森指数 Simpson index (D) 0.46 0.50 0.38 0.83 0.40 多样性指数 Shannon–Weiner index (H′) 0.80 0.69 0.56 1.86 0.59 均匀度指数 Pielou index (Ju) 0.28 1.00 0.27 0.28 0.24 2.4 黄绿卷毛菇蘑菇圈上植物内生真菌的宿主和组织差异
矮嵩草、火绒草、麻花艽和米尔克棘豆中相对丰度最高均为盘菌属壳皮盘菌(Peziza ostracoderma),鹅绒萎陵菜中未分离到盘菌属,相对丰度最高为壳多孢属Stagonospora sp.(图2a)。矮嵩草特有内生真菌5类3属,分别为Ascomycota sp. G47、Colletotrichum sp.、Stagonospora pseudoperfecta、Stagonospora trichophoricola和Stagonospora sp. TS1-rh,火绒草特有1属Penicillium camembeti (图2b)。
图 2 黄绿卷毛菇蘑菇圈上植物内生真菌的宿主和组织差异a、c分别为不同植物和不同组织可培养内生真菌的相对丰度(属水平);b、d分别为不同宿主和不同组织部位中可培养内生真菌共有属和特有属的韦恩图。Figure 2. Host variation and tissue-specificity of endophytic fungi on the fairy ring of Floccularia luteovirensa, c: Relative abundance of endophytic fungi in different host plants (a) and organs (c). b, d: Venn diagrams of shared and exclusive fungal genera of host plants (b) and organs (d).根、茎、叶不同组织部位可培养内生真菌相对丰度最高均为盘菌属壳皮盘菌Peziza ostracoderma,分别为34.88%、37.50%和54.55%。其次为壳多孢属Stagonospora sp. (根25.58%,茎25%)、炭疽菌属Colletotrichum sp. (茎25%)和枝孢属Cladosporium sp. SM13-7-1 (叶45.45%) (图2c)。不同组织间共有的内生真菌为壳皮盘菌Peziza ostracoderma,茎和叶特有内生真菌各1属,分别为Colletotrichum sp.和Cladosporium sp. SM13-7-1,根中特有内生真菌5类3属,分别为Penicillium camembeti、Peziza sp. MAB-2010a、Stagonospora pseudoperfecta、Stagonospora trichophoricola和Stagonospora sp. TS1-rh (图2d)。
2.5 黄绿卷毛菇蘑菇圈上植物-内生真菌互作关系
通过共现网络分析植物与内生真菌之间的关系,共得到15个节点和16个边,其中每个节点表示内生真菌和植物分类,不同颜色表示不同模块,整个网络共分为4个模块(图3)。根据特征向量中心性,矮嵩草是黄绿卷毛菇蘑菇圈上的核心植物(EC = 1),对整个网络具有重要影响,排序依次为矮嵩草 > 火绒草(EC = 0.42) > 米尔克棘豆(EC = 0.36)、麻花艽(EC = 0.34) > 鹅绒委陵菜(EC = 0.23)。壳皮盘菌Peziza ostracoderma是整个内生真菌网络中的核心(EC = 0.75),其次为Stagonospora sp. (EC = 0.43),与矮嵩草关联的Stagonospora pseudoperfecta、Stagonospora sp. TS1-rh、Stagonospora trichophoricola、Ascomycota sp. G47和Colletotrichum sp.具有同样的中心性(EC. = 0.34),高于其余内生真菌。
图 3 黄绿卷毛菇蘑菇圈上植物内生真菌共现网络分析每个节点表示内生真菌和植物分类,不同颜色表示不同模块。Figure 3. Co-occurrence network analysis of endophytic fungi on the fairy ring of Floccularia luteovirensEach node represents taxa at the genus level of fungi and plants, and the nodes are colored according to the class of the modules to which they belong for a clearer display.3. 讨论
3.1 高寒草甸黄绿卷毛菇蘑菇圈上植物多样性
本研究从祁连峨堡黄绿卷毛菇蘑菇圈上总共采集到6类植物,其中矮嵩草为核心植物,其内生真菌丰富度、多样性均最高,对整个植物-内生真菌网络具有重要影响(图3)。早期在该区域的研究表明,黄绿卷毛菇蘑菇圈上共有26种植物,优势种为小嵩草(Kobresia parva),主要伴生种为异针茅、美丽风毛菊、雪白萎陵菜、蓝花棘豆和异叶米口袋[17, 22]。这些差异可能是由于采样点、采样时间不同造成的时空差异[31-32],另一方面,这可能反映出黄绿卷毛菇蘑菇圈上植物演替的动态变化趋势:短期内,黄绿卷毛菇提高蘑菇圈上植被物种多样性和丰富度[22],但是长期来看,黄绿卷毛菇同其他蘑菇圈环一样,在促进草地植物生长的同时会降低物种多样性,进而影响群落稳定性和演替方向[10]。例如,毛玉晶等[21]对青海高原4个海拔梯度8个黄绿卷毛菇适生草地植物多样性研究共得到32种植物,其中矮嵩草分布率达到100%,本研究中其他5种植物在该研究调查区域内亦有分布。
3.2 高寒草甸黄绿卷毛菇蘑菇圈上植物内生真菌多样性
鹅绒委陵菜中相对丰度最高为Stagonospora sp.,其余植物(图2a)及不同组织(图2c)中相对丰度最高均为Peziza ostracoderma,是整个植物内生真菌网络的核心(图3)。Peziza ostracoderma是一种外生菌根真菌[33],广泛存在于蘑菇生长区域[34],可通过多种介质传播例如空气传播[35]。而郭璟等[19]对青海海晏地区黄绿卷毛菇生境中矮嵩草内生真菌多样性研究发现Stagonospora为优势菌属且不同组织中的内生真菌优势菌株不同,这可能与研究区域地理位置[36]、气候条件[37]、宿主植物[38]、草地利用方式[39]和土壤健康程度[40]等因素有关。
3.3 高寒草甸黄绿卷毛菇蘑菇圈上植物−内生真菌共现网络分析
核心植物对整个内生真菌网络具有重要影响,与之相关的内生真菌也更重要,但是核心植物特有内生真菌与核心菌属并非一一对应。本研究中核心植物矮嵩草特有的内生真菌Ascomycota sp. G47、Colletotrichum sp.、Stagonospora pseudoperfecta、Stagonospora trichophoricola和Stagonospora sp. TS1-rh,重要性均等且高于除Peziza ostracoderma和Stagonospora sp.以外的其他属(图3)。其中,Colletotrichum sp. 大多为致病菌[41],然而其代谢物具有良好的抗菌、抑藻活性[42];Stagonospora trichophoricola具有抗细菌病害的潜力[43]。此外,与宿主共生的内生真菌还会影响其他真菌的多样性和发生率[44],而微生物的多样性主要通过促进相关的网络复杂性维持生态系统功能[45]。黄绿卷毛菇对蘑菇圈上植物群落、生物量及土壤微生物的影响已得到证实[17, 23, 46-47],然而它是否会影响蘑菇圈上植物内生真菌的多样性及高寒草甸黄绿卷毛菇-植物-内生真菌三者间的互作机制还需要进一步研究。
4. 结论
黄绿卷毛菇蘑菇圈上植物内生真菌具有明显的宿主和组织差异,其中,植物分离率排序为矮嵩草 > 火绒草 > 鹅绒委陵菜 > 麻花艽 > 米尔克棘豆 > 黄芪(0);组织分离率排序为根 > 茎 > 叶。矮嵩草是黄绿卷毛菇蘑菇圈上的核心植物,其可培养内生真菌的多样性、丰富度最高,不同植物间无共有内生真菌。盘菌属壳皮盘菌(Peziza ostracoderma)是核心菌且在不同组织中相对丰度均最高。本研究揭示了高寒草甸黄绿卷毛菇蘑菇圈上植物内生真菌的多样性,为进一步研究青藏高原特有真菌黄绿卷毛菇蘑菇圈上植物-微生物的互作关系提供了新思路。
参考文献
[1] 赵吉, 邵玉琴, 包青海. 草原蘑菇圈的土壤-植物系统研究. 生态学杂志, 2003, 22(5): 43-46. ZHAO J, SHAO Y Q, BAO Q H. Soil-vegetation system surround the fairy ring in steppe. Chinese Journal of Ecology, 2003, 22(5): 43-46.
[2] 宋超, 图力古尔. 蘑菇圈形成机理及其生态学意义. 中国食用菌, 2007, 26(6): 9-13. doi: 10.3969/j.issn.1003-8310.2007.06.002 SONG C, Tuliguer. Fairy ring formation mechanism and its ecological significance. Edible Fungi of China, 2007, 26(6): 9-13. doi: 10.3969/j.issn.1003-8310.2007.06.002
[3] 佟旭泽, 范凯凯, 闫玉春, 辛晓平, 王旭. 草原蘑菇圈生态学研究进展. 中国农业资源与区划, 2022, 43(3): 222-229. TONG X Z, FAN K K, YAN Y C, XIN X P, WANG X. Advance in ecological research of fairy rings in grassland ecosystem. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 222-229.
[4] 陈立红, 阎伟, 刘建. 草原蘑菇圈对牧草长势影响的初步分析. 西北植物学报, 2002, 22(6): 141-145. CHEN L H, YAN W, LIU J. Preliminary study of the effects of fairy ring of grassland on the growth of herbage. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(6): 141-145.
[5] 张灏, 杨超. 草地蘑菇圈对植被及土壤真菌的影响. 草业科学, 2019, 36(7): 1774-1780. ZHANG H, YANG C. Effects of grassland fairy rings on vegetation and soil fungi. Pratacultural Science, 2019, 36(7): 1774-1780.
[6] 刘振魁. 高寒草甸白蘑菇圈与圈外植物及土壤的比较. 草业科学, 1997, 14(3): 69-71. LIU Z K. A comparison between mushroom sphere and plants outside the sphere and soil in alpine meadow. Pratacultural Science, 1997, 14(3): 69-71.
[7] 范凯凯, 佟旭泽, 闫玉春, 辛晓平, 王旭. 呼伦贝尔草原蘑菇圈对土壤呼吸作用的影响. 中国农业科学, 2020, 53(13): 2595-2603. doi: 10.3864/j.issn.0578-1752.2020.13.008 FAN K K, TONG Z X, YAN Y C, XIN X P, WANG X. Effect of fairy rings on soil respiration in Hulunber meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2595-2603. doi: 10.3864/j.issn.0578-1752.2020.13.008
[8] 王芳, 鲁铁, 图力古尔. 蒙古白丽蘑蘑菇圈土壤真菌多样性. 菌物研究, 2015, 13(2): 115-121. WANG F, LU T, Tuliguer. The diversity of soil fungi on Leucocalocybe mongolicum fairy ring. Journal of Fungal Research, 2015, 13(2): 115-121.
[9] YANG C, LI J J, LIU N, ZHANG Y J. Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. Plant and Soil, 2019, 441: 499-510. doi: 10.1007/s11104-019-04141-7
[10] 李佳琪, 赵敏, 魏斌, 胡廷花, 于应文. 蘑菇圈形成对高寒草甸群落植被结构及稳定性的作用. 草业学报, 2018, 27(4): 1-9. LI J Q, ZHAO M, WEI W, HU Y H, YU Y W. Effects of fairy ring formation on community vegetation structures and stability in alpine meadows. Acta Prataculturae Sinica, 2018, 27(4): 1-9.
[11] 戴大日, 谢占玲, 郭璟, 毛玉晶, 孟清. 黄绿卷毛菇优良菌株筛选及其发酵特性. 食用菌学报, 2020, 27(4): 115-119. DAI D R, XIE Z L, GUO J, MAO Y J, MENG Q. Strain screening and growth characteristics of Floccularia luteovirens. Acta Edulis Fungi, 2020, 27(4): 115-119.
[12] 谢占玲, 赵联正, 李椰, 雷洁琼, 张凤梅. 青藏高原特有种黄绿卷毛菇的地理分布与生态环境的相关性. 生态学报, 2016, 36(10): 2851-2857. XIE Z L, ZHAO L Z, LI Y, LEI J Q, ZHANG F M. The correlation of geographic distribution and ecological environment of endemic species Floccularia luteovirens on Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2016, 36(10): 2851-2857.
[13] 刘西周, 王润楠. 黄绿蜜环菌的研究进展. 中国食用菌, 2021, 40(1): 1-6. LIU X Z, WANG R N. Research progress on the Armillaria luteo-virens. Edible Fungi of China, 2021, 40(1): 1-6.
[14] 刘昆, 蒋俊, 郑巧平, 何捷. 黄绿卷毛菇研究进展. 中国食用菌, 2019, 38(5): 1-5, 12. LIU K, JIANG J, ZHENG Q P, HE J. Research progress on Floccularia luteoviren. Edible Fungi of China, 2019, 38(5): 1-5, 12.
[15] GAN X, BAO X, LIU B, LI Y, CAO D, ZHANG H, ZONG Y. Chemical constituents and molecular mechanism of the yellow phenotype of yellow mushroom (Floccularia luteovirens). Journal of Fungi, 2022, 8(3): 314. doi: 10.3390/jof8030314
[16] LIU Z J, JIAO Y C, LU H Y, SHU X L, CHEN Q H. Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydrate Polymers, 2020, 229: 115432. doi: 10.1016/j.carbpol.2019.115432
[17] 雷茜, 王文颖. 野生黄蘑菇圈对草地植被及土壤的影响. 西北民族学院学报(自然科学版), 2000, 21(35): 42-46. LEI Q, WANG W Y. The growth of fairy rings of Armillaria luteo-virens and their effect upon grassland vegetation and soil. Journal of Northwest Minorities University (Natural Science Edition), 2000, 21(35): 42-46.
[18] 邢睿, 徐明行, 王久利, 陈世龙. 基于核基因的黄绿卷毛菇系统发育与谱系地理学分析. 基因组学与应用生物学, 2019, 38(7): 3057-3064. XIN R, XU M X, WANG J L, CHEN S L. Phylogenetic and phylogeographic analysis of Floccularia luteovirens based on rDNA fragments. Genomics and Applied Biology, 2019, 38(7): 3057-3064.
[19] 郭璟, 谢占玲, 罗涛, 薛治峰, 郭建娟, 李发雄, 张秀娟. 黄绿卷毛菇生境中矮嵩草内生真菌多样性比较研究. 生物技术通报, 2019, 35(11): 109-117. GUO J, XIE Z L, LUO T, XUE Z F, GUO J J, LI F X, ZHANG X J. Comparative study on endophytic fungi diversity of Kobresia humilis in Floccularia luteovirens. Biotechnology Bulletin, 2019, 35(11): 109-117.
[20] 任丽莹, 白玛央宗, 丹增晋美, 刘晓玲, 宗同铠, 刘淑艳, 刘小勇, 普布多吉. 西藏黄绿卷毛菇生境土壤微生物群落组成. 菌物学报, 2022, 41(6): 906-917. REN L Y, Baimayangzong, Danzengjinmei, LIU X L, ZONG T K, LIU S Y, LIU X Y, Pubuduoji. Composition of soil microbial community in the habitat of Floccularia luteovirens in Tibet, southwest China. Mycosystema, 2022, 41(6): 906-917.
[21] 毛玉晶, 谢占玲, 徐鸿雁, 孟清, 郭璟, 戴大日, 王晓芳, 孙占清, 周晓雨. 不同海拔梯度下黄绿卷毛菇群落植物多样性研究. 青海大学学报, 2022, 40(1): 1-9. MAO Y J, XIE Z L, XU H Y, MENG Q, GUO J, DAI D R, WANG X F, SUN Z Q, ZHOU X Y. Study on the plant diversity of Floccularia luteovirens community under different altitude gradients. Journal of Qinghai University, 2022, 40(1): 1-9.
[22] 王启兰, 姜文波, 陈波. 黄绿蜜环菌蘑菇圈生长对土壤及植物群落的影响. 生态学杂志, 2005, 24(3): 269-272. doi: 10.3321/j.issn:1000-4890.2005.03.008 WANG Q L, JIANG W B, CHEN B. Effects of fairy ring growth of Armillaria luteovirens on soil fertility and plant community. Chinese Journal of Ecology, 2005, 24(3): 269-272. doi: 10.3321/j.issn:1000-4890.2005.03.008
[23] XING R, YAN H Y, GAO Q B, ZHANG F Q, WANG J L, CHEN S L. Microbial communities inhabiting the fairy ring of Floccularia luteovirens and isolation of potential mycorrhiza helper bacteria. Journal of Basic Microbiology, 2018, 58: 554-563. doi: 10.1002/jobm.201700579
[24] 刘尚武. 青海植物志(1-4卷). 青海: 青海人民出版社, 1996-1999. LIU S W. Flora of Qinghai (Volume 1-4). Qinghai: Qinghai People’s Publishing House, 1996-1999.
[25] 陈梦, 陈敬忠, 刘济明, 武梦瑶, 颜强, 李鹏, 黄路婷, 肖雪峰. 小蓬竹根际土壤微生物及内生真菌多样性分析. 生态学报, 2021, 41(10): 4120-4130. CHEN M, CHEN J Z, LIU J M, WU M Y, YAN Q, LI P, HUANG L T, XIAO X F. Diversity analysis of rhizosphere soil fungi and endophytic fungi in Ampelocalamus luodianensis. Acta Ecologica Sinica, 2021, 41(10): 4120-4130.
[26] 旦巴, 何燕, 卓嘎, 孟霞, 王建林. SDS法和CTAB法提取西藏黄籽油菜干种子DNA用于SSR分析. 西藏科技, 2011, 8(8): 9-11. Danba, HE Y, Zhuoga, MENG X, WANG J L. SDS and CTAB methods were used to extract DNA from yellow-seed rapeseed of Tibet for SSR analysis. Tibet’s Science and Technology, 2011, 8(8): 9-11.
[27] 罗鑫, 于存. 贵州马尾松内生真菌多样性. 菌物学报, 2021, 40(3): 531-546. LUO X, YU C. Diversity of endophytic fungi from Pinus massoniana in Guizhou Province, southwestern China. Mycosystema, 2021, 40(3): 531-546.
[28] 石丹, 倪九派, 倪呈圣, 刘锦春. 巫山高山移民迁出区不同弃耕年限对植物物种多样性的影响. 生态学报, 2019, 39(15): 5584-5593. SHI D, NI J P, NI C S, LIU J C. The effects of different restoration years on plant diversity in Wushan′s alpine emigrant region. Acta Ecologica Sinica, 2019, 39(15): 5584-5593.
[29] 张红芳, 何刚, 孙启彪, 季晓红, 欧阳建萍, 何贞英, 康美如, 陈晔. 中国江西龙虎山崖顶植物根中深色有隔内生菌多样性. 菌物学报, 2021, 40(10): 2700-2715. ZHANG H F, HE G, SUN Q B, JI X H, OUYANG J P, HE Z Y, KANG M R, CHEN Y. Diversity of dark septate endophytes in cliff-top plant roots in Longhu Mountain, Jiangxi Province, East China. Mycosystema, 2021, 40(10): 2700-2715.
[30] HANSEN D L, SHNEIDERMAN B, SMITH M A, HIMELBOIM I. Analyzing Social Media Networks with NodeXL (Second Edition). San Francisco: Morgan Kaufmann, 2020: 79-94.
[31] LI M, TAO X, LI B, DU Q, ZHU X Q, HUANG D M, YAN S Z, CHEN S L. Spatiotemporal distribution and dynamic changes of myxomycetes in subtropical forests of China. Fungal Ecology, 2021, 53: 101078. doi: 10.1016/j.funeco.2021.101078
[32] RUEDA-ALMAZÁN J E, HERNÁNDEZ V M, ALCALÁ-MARTÍNEZ J R, FERNÁNDEZ-DUQUE A, RUIZ-AGUILAR M, ALCALÁ R E. Spatial and temporal differences in the community structure of endophytic fungi in the carnivorous plant Pinguicula moranensis (Lentibulariaceae). Fungal Ecology, 2021, 53: 101087. doi: 10.1016/j.funeco.2021.101087
[33] BZDYK R M, OLCHOWIK J, STUDNICKI M, OSZAKo T, SIKORA K, SZMIDLA H, HILSZCZANSKA D. The impact of effective microorganisms (EM) and organic and mineral fertilizers on the growth and mycorrhizal colonization of Fagus sylvatica and Quercus robur seedlings in a bare-root nursery experiment. Forests, 2018, 9(10): 597. doi: 10.3390/f9100597
[34] MADSEN A M, CROOK B. Occupational exposure to fungi on recyclable paper pots and growing media and associated health effects: A review of the literature. Science of the Total Environment, 2021, 788: 147832. doi: 10.1016/j.scitotenv.2021.147832
[35] CROOK B, LACEY J. Airborne allergenic microorganisms associated with mushroom cultivation. Grana, 1991, 30(2): 446-449. doi: 10.1080/00173139109432006
[36] GUO J X, BOWATTE S, HOU F J. Diversity of endophytic bacteria and fungi in seeds of Elymus nutans growing in four locations of Qinghai Tibet Plateau, China. Plant and Soil, 2020, 459(1-2): 49-63.
[37] YANG Y J, WU P F. Soil bacterial community varies but fungal community stabilizes along five vertical climate zones. Catena, 2020, 195: 104841. doi: 10.1016/j.catena.2020.104841
[38] FENG H Y, WANG C Y, JIA P L, GAI J P, YANG Z F. Molecular diversity of arbuscular mycorrhizal fungi associated with two alpine plant species in the Tibetan Plateau. Rhizosphere, 2021, 19: 100384. doi: 10.1016/j.rhisph.2021.100384
[39] 郑佳华, 赵萌莉, 王琪, 张峰, 张彬, 张军. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响. 生态学报, 2022, 42(12): 4998-5008. ZHEN J H, ZHAO M L, WANG Q, ZHANG F, ZHANG B, ZHANG J. Effects of management regime on soil microbial community structure and diversity of Stipa grandis grassland. Acta Ecologica Sinica, 2022, 42(12): 4998-5008.
[40] CHE R X, WANG Y F, LI K X, XU Z H, HU J M, WANG F, RUI Y C, LI L F, PANG Z, CUI X Y. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil & Tillage Research, 2019, 195: 104426.
[41] VILLA-RIVERA M G, CONEJO-SAUCEDO U, LARA-MARQUEZ A, CANO-CAMACHO H, LOPEZ-ROMERO E, ZAVALA-PARAMO M G. The role of virulence factors in the pathogenicity of Colletotrichum sp. Current Protein & Peptide Science, 2017, 18(10): 1005-1018.
[42] HUSSAIN H, ROOT N, JABEEN F, AL-HARRASI A, AL-RAWAHI A, AHMAD M, HASSAN Z, ABBAS G, MABOOD F, SHAH A, BADSHAH A, KHAN A, AHMAD R, GREEN I R, DRAEGER S, SCHULZ B, KROHN K. Seimatoric acid and colletonoic acid: Two new compounds from the endophytic fungi, Seimatosporium sp. and Colletotrichum sp. Chinese Chemical Letters, 2014, 25(12): 1577-1579. doi: 10.1016/j.cclet.2014.06.006
[43] CHEN, Z K, XU X L, REN J W, WANG W Z, LIU X Z, LI E W. Trichopeptides A and B, trichocyclodipeptides A–C, new peptides from the ascomycete fungus Stagonospora trichophoricola. The Journal of Antibiotics, 2017, 70(9): 923-928. doi: 10.1038/ja.2017.76
[44] GÓRZYŃSKA K, RYSZKA P, ANIELSKA T, TURNAU K, LEMBICZ M. Effect of Epichloë typhina fungal endophyte on the diversity and incidence of other fungi in Puccinellia distans wild grass seeds. Flora, 2017, 228: 60-64. doi: 10.1016/j.flora.2017.01.008
[45] 张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青. 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性. 生态学报, 2022, 42(7): 2542-2558. ZHANG J H, WANG J Y, MEN Z X, HE J, DONG Z H, LIU K Q, CHEN W Q. Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow. Acta Ecologica Sinica, 2022, 42(7): 2542-2558.
[46] GAN X L, CAO D, ZHANG Z Y, CHENG S, WEI L, LI S M, LIU B L. Draft genome assembly of Floccularia luteovirens, an edible and symbiotic mushroom on Qinghai-Tibet Plateau. G3-Genes Genomes Genetics, 2020, 10(4): 1167-1173. doi: 10.1534/g3.120.401037
[47] MARI T, CASTANO C, RODRIGUEZ A, IBANEZ M, LOBO A, SEBASTIA M T. Fairy rings harbor distinct soil fungal communities and high fungal diversity in a montane grassland. Fungal Ecology, 2020, 47: 100962. doi: 10.1016/j.funeco.2020.100962
-
图 2 黄绿卷毛菇蘑菇圈上植物内生真菌的宿主和组织差异
a、c分别为不同植物和不同组织可培养内生真菌的相对丰度(属水平);b、d分别为不同宿主和不同组织部位中可培养内生真菌共有属和特有属的韦恩图。
Figure 2. Host variation and tissue-specificity of endophytic fungi on the fairy ring of Floccularia luteovirens
a, c: Relative abundance of endophytic fungi in different host plants (a) and organs (c). b, d: Venn diagrams of shared and exclusive fungal genera of host plants (b) and organs (d).
图 3 黄绿卷毛菇蘑菇圈上植物内生真菌共现网络分析
每个节点表示内生真菌和植物分类,不同颜色表示不同模块。
Figure 3. Co-occurrence network analysis of endophytic fungi on the fairy ring of Floccularia luteovirens
Each node represents taxa at the genus level of fungi and plants, and the nodes are colored according to the class of the modules to which they belong for a clearer display.
表 1 采样点信息及黄绿卷毛菇蘑菇圈上植物分布
Table 1 Sampling information and plant species on the fairy ring of Floccularia luteovirens
样方
Quadrat海拔
Elevation/m经度
Longitude (E)纬度
Latitude (N)植物 Plant 1 3 400 100°56′22″ 37°57′60″ 矮嵩草 Kobresia humilis, 火绒草 Leontopodium leontopodioides 2 3 450 100°56′26″ 37°58′04″ 麻花艽 Gentiana straminea, 鹅绒萎陵菜 Potentilla anserina 3 3 450 100°56′26″ 37°58′04″ 黄芪 Astragalus membranaceus, 米尔克棘豆 Oxytropis merkensis 表 2 黄绿卷毛菇蘑菇圈上植物内生真菌种类
Table 2 Endophytic fungi on the fairy ring of Floccularia luteovirens
序号
Code属
Genus分类
Taxa登录号
Accession No.分离率
Isolation rate/%分离频率
Isolation frequency/%1 Peziza sp. Peziza ostracoderma ON175946 28.70 44.29 2 Peziza ostracoderma ON175949 3 Peziza ostracoderma ON175950 4 Peziza ostracoderma ON175951 5 Peziza ostracoderma ON175953 6 Peziza sp. MAB-2010a ON175947 7 Peziza sp. MAB-2010a ON175948 8 Stagonospora sp. Stagonospora pseudoperfecta ON175952 22.22 31.75 9 Stagonospora sp. TS1-rh ON175954 10 Stagonospora trichophoricola ON175955 11 Stagonospora sp. ON175957 12 Ascomycota sp. Ascomycota sp. G47 ON175956 3.70 5.29 13 Penicillium sp. Penicillium camemberti ON175958 1.85 2.65 14 Colletotrichum sp. Colletotrichum sp. ON175959 3.70 5.29 15 Cladosporium sp. Cladosporium sp. SM13-7-1 ON175960 4.63 6.61 表 3 不同植物及不同组织内生真菌的定殖率和分离率
Table 3 Colonization and isolation rates of endophytic fungi of different plants and tissues
项目
Item组织块数
Number of tissues
detected分离菌株数 Number of isolates 分离率
Isolation
rate/%根 Root 茎 Stem 叶 Leaf 火绒草 Leontopodium leontopodioides 18 11 6 0 94.44 米尔克棘豆 Oxytropis merkensis 18 2 0 0 11.11 麻花艽 Gentiana straminea 18 6 0 2 44.44 矮嵩草 Kobresia humilis 18 16 10 6 177.78 鹅绒萎陵菜 Potentilla anserina 18 8 0 3 61.11 黄芪 Astragalus membranaceus 18 0 0 0 0.00 组织块数 Number of tissues detected − 36 36 36 − 有菌组织块数 Number of tissues colonized by fungi − 23 8 5 − 定殖率 Colonization rate/% − 63.89 22.22 13.89 − 分离率 Isolation rate/% − 119.44 44.44 30.56 − 每一植物的结果表示该植物中所有组织部位的总和,每一组织的结果表示该组织中所有植物的总和。下同。
Results for each plant are presented as the sum of organs for that plant, while for organ is the sum of all plant for each organ. This is applicable for the following tables as well.表 6 不同植物中内生真菌的多样性指数
Table 6 Diversity index of endophytic fungi in different plant species
项目
Item根
Root茎
Stem叶
Leaf物种数 Species number 8 4 2 丰富度指数 Margalef richness index (R) 1.86 1.08 0.42 辛普森指数 Simpson index (D) 0.79 0.72 0.50 多样性指数 Shannon–Wiener index (H′) 1.78 1.32 0.69 均匀度指数 Pielou index (Ju) 0.47 0.48 0.29 表 5 不同植物、组织中内生真菌的相似性系数
Table 5 Similarity coefficients of endophytic fungi in different plant and tissues
相似性系数
Similarity
coefficient项目
Item火绒草
Leontopodium
leontopodioides米尔克棘豆
Oxytropis
merkensis麻花艽
Gentiana
straminea矮嵩草
Kobresia
humilis鹅绒萎陵菜
Potentilla
anserina根
Root茎
Stem叶
LeafCs 火绒草 Leontopodium leontopodioides 1 0.8 0.4 0.2 0 米尔克棘豆 Oxytropis merkensis 1 0.5 0.22 0 麻花艽 Gentiana straminea 1 0.22 0.50 矮嵩草 Kobresia humilis 1 0.22 鹅绒萎陵菜 Potentilla anserina 1 根 Root 1 0.50 0.20 茎 Stem 1 0.33 叶 Leaf 1 Cj 火绒草 Leontopodium leontopodioides 1 0.67 0.25 0.11 0 米尔克棘豆 Oxytropis merkensis 1 0.33 0.13 0 麻花艽 Gentiana straminea 1 0.13 0.33 矮嵩草 Kobresia humilis 1 0.13 鹅绒萎陵菜 Potentilla anserina 1 根 Root 1 0.33 0.11 茎 Stem 1 0.20 叶 Leaf 1 表 4 不同组织中内生真菌的多样性指数
Table 4 Diversity index of endophytic fungi in different plant tissues
项目
Item火绒草
Leontopodium
leontopodioides米尔克棘豆
Oxytropis
merkensis麻花艽
Gentiana
straminea矮嵩草
Kobresia
humilis鹅绒萎陵菜
Potentilla
anserina物种数 Species number 3 2 1 7 2 丰富度指数 Margalef richness index (R) 0.71 1.44 0.48 1.73 0.42 辛普森指数 Simpson index (D) 0.46 0.50 0.38 0.83 0.40 多样性指数 Shannon–Weiner index (H′) 0.80 0.69 0.56 1.86 0.59 均匀度指数 Pielou index (Ju) 0.28 1.00 0.27 0.28 0.24 -
[1] 赵吉, 邵玉琴, 包青海. 草原蘑菇圈的土壤-植物系统研究. 生态学杂志, 2003, 22(5): 43-46. ZHAO J, SHAO Y Q, BAO Q H. Soil-vegetation system surround the fairy ring in steppe. Chinese Journal of Ecology, 2003, 22(5): 43-46.
[2] 宋超, 图力古尔. 蘑菇圈形成机理及其生态学意义. 中国食用菌, 2007, 26(6): 9-13. doi: 10.3969/j.issn.1003-8310.2007.06.002 SONG C, Tuliguer. Fairy ring formation mechanism and its ecological significance. Edible Fungi of China, 2007, 26(6): 9-13. doi: 10.3969/j.issn.1003-8310.2007.06.002
[3] 佟旭泽, 范凯凯, 闫玉春, 辛晓平, 王旭. 草原蘑菇圈生态学研究进展. 中国农业资源与区划, 2022, 43(3): 222-229. TONG X Z, FAN K K, YAN Y C, XIN X P, WANG X. Advance in ecological research of fairy rings in grassland ecosystem. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 222-229.
[4] 陈立红, 阎伟, 刘建. 草原蘑菇圈对牧草长势影响的初步分析. 西北植物学报, 2002, 22(6): 141-145. CHEN L H, YAN W, LIU J. Preliminary study of the effects of fairy ring of grassland on the growth of herbage. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(6): 141-145.
[5] 张灏, 杨超. 草地蘑菇圈对植被及土壤真菌的影响. 草业科学, 2019, 36(7): 1774-1780. ZHANG H, YANG C. Effects of grassland fairy rings on vegetation and soil fungi. Pratacultural Science, 2019, 36(7): 1774-1780.
[6] 刘振魁. 高寒草甸白蘑菇圈与圈外植物及土壤的比较. 草业科学, 1997, 14(3): 69-71. LIU Z K. A comparison between mushroom sphere and plants outside the sphere and soil in alpine meadow. Pratacultural Science, 1997, 14(3): 69-71.
[7] 范凯凯, 佟旭泽, 闫玉春, 辛晓平, 王旭. 呼伦贝尔草原蘑菇圈对土壤呼吸作用的影响. 中国农业科学, 2020, 53(13): 2595-2603. doi: 10.3864/j.issn.0578-1752.2020.13.008 FAN K K, TONG Z X, YAN Y C, XIN X P, WANG X. Effect of fairy rings on soil respiration in Hulunber meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2595-2603. doi: 10.3864/j.issn.0578-1752.2020.13.008
[8] 王芳, 鲁铁, 图力古尔. 蒙古白丽蘑蘑菇圈土壤真菌多样性. 菌物研究, 2015, 13(2): 115-121. WANG F, LU T, Tuliguer. The diversity of soil fungi on Leucocalocybe mongolicum fairy ring. Journal of Fungal Research, 2015, 13(2): 115-121.
[9] YANG C, LI J J, LIU N, ZHANG Y J. Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. Plant and Soil, 2019, 441: 499-510. doi: 10.1007/s11104-019-04141-7
[10] 李佳琪, 赵敏, 魏斌, 胡廷花, 于应文. 蘑菇圈形成对高寒草甸群落植被结构及稳定性的作用. 草业学报, 2018, 27(4): 1-9. LI J Q, ZHAO M, WEI W, HU Y H, YU Y W. Effects of fairy ring formation on community vegetation structures and stability in alpine meadows. Acta Prataculturae Sinica, 2018, 27(4): 1-9.
[11] 戴大日, 谢占玲, 郭璟, 毛玉晶, 孟清. 黄绿卷毛菇优良菌株筛选及其发酵特性. 食用菌学报, 2020, 27(4): 115-119. DAI D R, XIE Z L, GUO J, MAO Y J, MENG Q. Strain screening and growth characteristics of Floccularia luteovirens. Acta Edulis Fungi, 2020, 27(4): 115-119.
[12] 谢占玲, 赵联正, 李椰, 雷洁琼, 张凤梅. 青藏高原特有种黄绿卷毛菇的地理分布与生态环境的相关性. 生态学报, 2016, 36(10): 2851-2857. XIE Z L, ZHAO L Z, LI Y, LEI J Q, ZHANG F M. The correlation of geographic distribution and ecological environment of endemic species Floccularia luteovirens on Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2016, 36(10): 2851-2857.
[13] 刘西周, 王润楠. 黄绿蜜环菌的研究进展. 中国食用菌, 2021, 40(1): 1-6. LIU X Z, WANG R N. Research progress on the Armillaria luteo-virens. Edible Fungi of China, 2021, 40(1): 1-6.
[14] 刘昆, 蒋俊, 郑巧平, 何捷. 黄绿卷毛菇研究进展. 中国食用菌, 2019, 38(5): 1-5, 12. LIU K, JIANG J, ZHENG Q P, HE J. Research progress on Floccularia luteoviren. Edible Fungi of China, 2019, 38(5): 1-5, 12.
[15] GAN X, BAO X, LIU B, LI Y, CAO D, ZHANG H, ZONG Y. Chemical constituents and molecular mechanism of the yellow phenotype of yellow mushroom (Floccularia luteovirens). Journal of Fungi, 2022, 8(3): 314. doi: 10.3390/jof8030314
[16] LIU Z J, JIAO Y C, LU H Y, SHU X L, CHEN Q H. Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydrate Polymers, 2020, 229: 115432. doi: 10.1016/j.carbpol.2019.115432
[17] 雷茜, 王文颖. 野生黄蘑菇圈对草地植被及土壤的影响. 西北民族学院学报(自然科学版), 2000, 21(35): 42-46. LEI Q, WANG W Y. The growth of fairy rings of Armillaria luteo-virens and their effect upon grassland vegetation and soil. Journal of Northwest Minorities University (Natural Science Edition), 2000, 21(35): 42-46.
[18] 邢睿, 徐明行, 王久利, 陈世龙. 基于核基因的黄绿卷毛菇系统发育与谱系地理学分析. 基因组学与应用生物学, 2019, 38(7): 3057-3064. XIN R, XU M X, WANG J L, CHEN S L. Phylogenetic and phylogeographic analysis of Floccularia luteovirens based on rDNA fragments. Genomics and Applied Biology, 2019, 38(7): 3057-3064.
[19] 郭璟, 谢占玲, 罗涛, 薛治峰, 郭建娟, 李发雄, 张秀娟. 黄绿卷毛菇生境中矮嵩草内生真菌多样性比较研究. 生物技术通报, 2019, 35(11): 109-117. GUO J, XIE Z L, LUO T, XUE Z F, GUO J J, LI F X, ZHANG X J. Comparative study on endophytic fungi diversity of Kobresia humilis in Floccularia luteovirens. Biotechnology Bulletin, 2019, 35(11): 109-117.
[20] 任丽莹, 白玛央宗, 丹增晋美, 刘晓玲, 宗同铠, 刘淑艳, 刘小勇, 普布多吉. 西藏黄绿卷毛菇生境土壤微生物群落组成. 菌物学报, 2022, 41(6): 906-917. REN L Y, Baimayangzong, Danzengjinmei, LIU X L, ZONG T K, LIU S Y, LIU X Y, Pubuduoji. Composition of soil microbial community in the habitat of Floccularia luteovirens in Tibet, southwest China. Mycosystema, 2022, 41(6): 906-917.
[21] 毛玉晶, 谢占玲, 徐鸿雁, 孟清, 郭璟, 戴大日, 王晓芳, 孙占清, 周晓雨. 不同海拔梯度下黄绿卷毛菇群落植物多样性研究. 青海大学学报, 2022, 40(1): 1-9. MAO Y J, XIE Z L, XU H Y, MENG Q, GUO J, DAI D R, WANG X F, SUN Z Q, ZHOU X Y. Study on the plant diversity of Floccularia luteovirens community under different altitude gradients. Journal of Qinghai University, 2022, 40(1): 1-9.
[22] 王启兰, 姜文波, 陈波. 黄绿蜜环菌蘑菇圈生长对土壤及植物群落的影响. 生态学杂志, 2005, 24(3): 269-272. doi: 10.3321/j.issn:1000-4890.2005.03.008 WANG Q L, JIANG W B, CHEN B. Effects of fairy ring growth of Armillaria luteovirens on soil fertility and plant community. Chinese Journal of Ecology, 2005, 24(3): 269-272. doi: 10.3321/j.issn:1000-4890.2005.03.008
[23] XING R, YAN H Y, GAO Q B, ZHANG F Q, WANG J L, CHEN S L. Microbial communities inhabiting the fairy ring of Floccularia luteovirens and isolation of potential mycorrhiza helper bacteria. Journal of Basic Microbiology, 2018, 58: 554-563. doi: 10.1002/jobm.201700579
[24] 刘尚武. 青海植物志(1-4卷). 青海: 青海人民出版社, 1996-1999. LIU S W. Flora of Qinghai (Volume 1-4). Qinghai: Qinghai People’s Publishing House, 1996-1999.
[25] 陈梦, 陈敬忠, 刘济明, 武梦瑶, 颜强, 李鹏, 黄路婷, 肖雪峰. 小蓬竹根际土壤微生物及内生真菌多样性分析. 生态学报, 2021, 41(10): 4120-4130. CHEN M, CHEN J Z, LIU J M, WU M Y, YAN Q, LI P, HUANG L T, XIAO X F. Diversity analysis of rhizosphere soil fungi and endophytic fungi in Ampelocalamus luodianensis. Acta Ecologica Sinica, 2021, 41(10): 4120-4130.
[26] 旦巴, 何燕, 卓嘎, 孟霞, 王建林. SDS法和CTAB法提取西藏黄籽油菜干种子DNA用于SSR分析. 西藏科技, 2011, 8(8): 9-11. Danba, HE Y, Zhuoga, MENG X, WANG J L. SDS and CTAB methods were used to extract DNA from yellow-seed rapeseed of Tibet for SSR analysis. Tibet’s Science and Technology, 2011, 8(8): 9-11.
[27] 罗鑫, 于存. 贵州马尾松内生真菌多样性. 菌物学报, 2021, 40(3): 531-546. LUO X, YU C. Diversity of endophytic fungi from Pinus massoniana in Guizhou Province, southwestern China. Mycosystema, 2021, 40(3): 531-546.
[28] 石丹, 倪九派, 倪呈圣, 刘锦春. 巫山高山移民迁出区不同弃耕年限对植物物种多样性的影响. 生态学报, 2019, 39(15): 5584-5593. SHI D, NI J P, NI C S, LIU J C. The effects of different restoration years on plant diversity in Wushan′s alpine emigrant region. Acta Ecologica Sinica, 2019, 39(15): 5584-5593.
[29] 张红芳, 何刚, 孙启彪, 季晓红, 欧阳建萍, 何贞英, 康美如, 陈晔. 中国江西龙虎山崖顶植物根中深色有隔内生菌多样性. 菌物学报, 2021, 40(10): 2700-2715. ZHANG H F, HE G, SUN Q B, JI X H, OUYANG J P, HE Z Y, KANG M R, CHEN Y. Diversity of dark septate endophytes in cliff-top plant roots in Longhu Mountain, Jiangxi Province, East China. Mycosystema, 2021, 40(10): 2700-2715.
[30] HANSEN D L, SHNEIDERMAN B, SMITH M A, HIMELBOIM I. Analyzing Social Media Networks with NodeXL (Second Edition). San Francisco: Morgan Kaufmann, 2020: 79-94.
[31] LI M, TAO X, LI B, DU Q, ZHU X Q, HUANG D M, YAN S Z, CHEN S L. Spatiotemporal distribution and dynamic changes of myxomycetes in subtropical forests of China. Fungal Ecology, 2021, 53: 101078. doi: 10.1016/j.funeco.2021.101078
[32] RUEDA-ALMAZÁN J E, HERNÁNDEZ V M, ALCALÁ-MARTÍNEZ J R, FERNÁNDEZ-DUQUE A, RUIZ-AGUILAR M, ALCALÁ R E. Spatial and temporal differences in the community structure of endophytic fungi in the carnivorous plant Pinguicula moranensis (Lentibulariaceae). Fungal Ecology, 2021, 53: 101087. doi: 10.1016/j.funeco.2021.101087
[33] BZDYK R M, OLCHOWIK J, STUDNICKI M, OSZAKo T, SIKORA K, SZMIDLA H, HILSZCZANSKA D. The impact of effective microorganisms (EM) and organic and mineral fertilizers on the growth and mycorrhizal colonization of Fagus sylvatica and Quercus robur seedlings in a bare-root nursery experiment. Forests, 2018, 9(10): 597. doi: 10.3390/f9100597
[34] MADSEN A M, CROOK B. Occupational exposure to fungi on recyclable paper pots and growing media and associated health effects: A review of the literature. Science of the Total Environment, 2021, 788: 147832. doi: 10.1016/j.scitotenv.2021.147832
[35] CROOK B, LACEY J. Airborne allergenic microorganisms associated with mushroom cultivation. Grana, 1991, 30(2): 446-449. doi: 10.1080/00173139109432006
[36] GUO J X, BOWATTE S, HOU F J. Diversity of endophytic bacteria and fungi in seeds of Elymus nutans growing in four locations of Qinghai Tibet Plateau, China. Plant and Soil, 2020, 459(1-2): 49-63.
[37] YANG Y J, WU P F. Soil bacterial community varies but fungal community stabilizes along five vertical climate zones. Catena, 2020, 195: 104841. doi: 10.1016/j.catena.2020.104841
[38] FENG H Y, WANG C Y, JIA P L, GAI J P, YANG Z F. Molecular diversity of arbuscular mycorrhizal fungi associated with two alpine plant species in the Tibetan Plateau. Rhizosphere, 2021, 19: 100384. doi: 10.1016/j.rhisph.2021.100384
[39] 郑佳华, 赵萌莉, 王琪, 张峰, 张彬, 张军. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响. 生态学报, 2022, 42(12): 4998-5008. ZHEN J H, ZHAO M L, WANG Q, ZHANG F, ZHANG B, ZHANG J. Effects of management regime on soil microbial community structure and diversity of Stipa grandis grassland. Acta Ecologica Sinica, 2022, 42(12): 4998-5008.
[40] CHE R X, WANG Y F, LI K X, XU Z H, HU J M, WANG F, RUI Y C, LI L F, PANG Z, CUI X Y. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil & Tillage Research, 2019, 195: 104426.
[41] VILLA-RIVERA M G, CONEJO-SAUCEDO U, LARA-MARQUEZ A, CANO-CAMACHO H, LOPEZ-ROMERO E, ZAVALA-PARAMO M G. The role of virulence factors in the pathogenicity of Colletotrichum sp. Current Protein & Peptide Science, 2017, 18(10): 1005-1018.
[42] HUSSAIN H, ROOT N, JABEEN F, AL-HARRASI A, AL-RAWAHI A, AHMAD M, HASSAN Z, ABBAS G, MABOOD F, SHAH A, BADSHAH A, KHAN A, AHMAD R, GREEN I R, DRAEGER S, SCHULZ B, KROHN K. Seimatoric acid and colletonoic acid: Two new compounds from the endophytic fungi, Seimatosporium sp. and Colletotrichum sp. Chinese Chemical Letters, 2014, 25(12): 1577-1579. doi: 10.1016/j.cclet.2014.06.006
[43] CHEN, Z K, XU X L, REN J W, WANG W Z, LIU X Z, LI E W. Trichopeptides A and B, trichocyclodipeptides A–C, new peptides from the ascomycete fungus Stagonospora trichophoricola. The Journal of Antibiotics, 2017, 70(9): 923-928. doi: 10.1038/ja.2017.76
[44] GÓRZYŃSKA K, RYSZKA P, ANIELSKA T, TURNAU K, LEMBICZ M. Effect of Epichloë typhina fungal endophyte on the diversity and incidence of other fungi in Puccinellia distans wild grass seeds. Flora, 2017, 228: 60-64. doi: 10.1016/j.flora.2017.01.008
[45] 张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青. 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性. 生态学报, 2022, 42(7): 2542-2558. ZHANG J H, WANG J Y, MEN Z X, HE J, DONG Z H, LIU K Q, CHEN W Q. Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow. Acta Ecologica Sinica, 2022, 42(7): 2542-2558.
[46] GAN X L, CAO D, ZHANG Z Y, CHENG S, WEI L, LI S M, LIU B L. Draft genome assembly of Floccularia luteovirens, an edible and symbiotic mushroom on Qinghai-Tibet Plateau. G3-Genes Genomes Genetics, 2020, 10(4): 1167-1173. doi: 10.1534/g3.120.401037
[47] MARI T, CASTANO C, RODRIGUEZ A, IBANEZ M, LOBO A, SEBASTIA M T. Fairy rings harbor distinct soil fungal communities and high fungal diversity in a montane grassland. Fungal Ecology, 2020, 47: 100962. doi: 10.1016/j.funeco.2020.100962