山黧豆还田与氮肥减施对稻田土壤活性有机碳组分及酶活性的影响
为探明绿肥山黧豆(Lathyrus sativus)还田配施氮肥在改良土壤方面的效应,明确合适的绿肥配施氮肥比例,设置2 × 4双因素试验,研究绿肥的不同翻压量[15 000 (M1)、22 500 (M2)、30 000 (M3)、37 500 (M4) kg·hm−2]和氮肥的不同施氮量[常规施氮量的60% (N1)和80% (N2)配比]对土壤活性有机碳库各组分、碳库管理指数和酶活性等指标的影响。结果表明:与常规施肥(CF)处理相比,翻压一定量的绿肥并配施减量氮肥能有效提升稻田总有机碳、活性有机碳、可溶性有机碳、微生物生物量碳含量及碳库管理指数,提升效果随配施比例的不同存在差异,其中M4N1、M4N2处理提升效果最佳。在相同施氮水平下,有机碳各组分含量、碳库管理指数及总体酶活性均呈现出随翻压量增加而增加的趋势。与CF处理相比,翻压绿肥并配施氮肥对稻田土壤过氧化氢酶无显著影响(P > 0.05),对纤维素酶、蔗糖酶和β-葡萄糖甘酶活性均具有显著影响(P < 0.05)。总体酶活性均表现为M4N2 > M4N1 > M3N1 > M3N2 > M2N1 > M2N2 > M1N1 > M1N2 > CF > CK处理。各有机碳组分之间具有显著(P < 0.05)或极显著(P < 0.01)的相关性,β-葡萄糖甘酶、纤维素酶与土壤活性有机碳各组分均呈正相关关系(P < 0.05)。对土壤活性有机碳组分含量及土壤酶活性影响因素的灰色关联度综合分析结果表明,60%氮肥 + 37 500 kg·hm−2绿肥模式的综合评价效果最好。
English
-
参考文献
[1] 冯婷婷, 符云鹏, 李海江, 宋显峰, 张晓娟. 不同有机物料对土壤有机碳库及烤烟品质的影响. 山东农业科学, 2017, 49(3): 89-93. FENG T T, FU Y P, LI H J, SONG X F, ZHANG X J. Effects of different organic materials on quality of flue-cured tobacco and organic carbon pool in soils. Shandong Agricultural Sciences, 2017, 49(3): 89-93.
[2] SHAUNA M, ROBERT G, RICHARD B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil, 2000, 222(1/2): 191-202. doi: 10.1023/A:1004705416108
[3] SHARROW S H, ISMAIL S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 2004, 60(2): 123-130. doi: 10.1023/B:AGFO.0000013267.87896.41
[4] VANOTTI M B, BUNGY L G, PETERSON A E. Nitrogen Fertilizer and Legumecereal Rotation Effects on Soil Productivity and Organicmatter Dynamics in Wisconsin. Boca Raton: CRC Press, 1997, 105-119.
[5] 马艳芹, 钱晨晨, 孙丹平, 邓丽萍, 黄国勤, 陆卫斌. 施氮水平对稻田土壤温室气体排放的影响. 农业工程学报, 2016, 32(S2): 128-134. MA Y Q, QIAN C C, SUN D P, DENG L P, HUANG G Q, LU W B. Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 128-134.
[6] 杨滨娟, 黄国勤, 兰延, 陈洪俊, 王淑彬. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响. 应用生态学报, 2014, 25(10): 2907-2913. YANG B J, HUANG G Q, LAN Y, CHEN H J, WANG S B. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.
[7] 马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响. 生态学杂志, 2019, 38(1): 129-135. MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool. Chinese Journal of Ecology, 2019, 38(1): 129-135.
[8] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响. 植物营养与肥料学报, 2019, 25(4): 525-534. LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525-534.
[9] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 紫云英施用量对土壤活性有机碳和碳转化酶活性的影响. 中国土壤与肥料, 2018 (4): 14-20. LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effects of Chinese milk vetch (Astragalus sinicus L.)application rate on soil labile organic carbon and Ctransformation enzyme activities. Soils and Fertilizers Sciences in China, 2018(4):14-20.
[10] 胡启良. 紫云英油菜混播与氮肥减施对双季稻田土壤碳氮和微生物群落多样性的影响. 南昌: 江西农业大学硕士学位论文, 2022. HU Q L. Effects of mixed copping of chinese milk vetch and rape seed and reduced application of nitrogen fertilizer carbon and nitrogen in soil and microbial community diversity on double cropping rice field. Master Thesis. Nanchang: Jiangxi Agricultural University, 2022.
[11] 王晋龙, 孙崇凤, 程永钢, 郑普山, 洪坚平. 不同绿肥对复垦地土壤化学性状及酶活性的影响. 中国土壤与肥料, 2022(9): 85-93. WANG J L, SUN C F, CHENG Y G, DENG P S, HONG J P. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soil and Fertilizer Sciences in China, 2022(9): 85-93.
[12] 冯晓玲, 王俊, 高媛, 豆莹, 方震文. 绿肥和施氮对旱作冬小麦农田土壤酶活性的影响. 干旱地区农业研究, 2022, 40(3): 129-135. FENG X L, WANG J, GAO Y, DOU Y, FANG Z W. Effects of green manure and nitrogen application on soil enzyme activities in a drylang winter wheat field. Agricultural Research in the Arid Areas, 2022, 40(3): 129-135.
[13] LI S, ZHANG S R, PU Y L, LI T, XU X X, JIA Y X, DENG O G, GUO S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 2016, 155: 289-297. doi: 10.1016/j.still.2015.07.019
[14] 张黎明, 邓小华, 周米良, 田峰, 赵炯平, 江智敏, 菅攀锋, 张明发. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响. 中国烟草科学, 2016, 37(4): 13-18. ZHANG L M, DENG X H, ZHOU M L, TIAN F, ZHAO J P, JIANG Z M, JIAN P F, ZHANG M F. Effects of different green manures on microbial biomass and enzyme activities of tobaccoplanting Soil. Chinese Tobacco Science, 2016, 37(4): 13-18.
[15] 陈利云, 汪之波, 呼丽萍. 6种豆科绿肥植物与苹果树套种对果园土壤碳氮特征的影响. 草地学报, 2021, 29(4): 671-676. CHEN L Y, WANG Z B, HU L P. Effects of interplanting six leguminous green manure plants in apple orchard on soil carbon and nitrogen characteristics. Acta Agrestia Sinica, 2021, 29(4): 671-676.
[16] SIX J, ELLIOTT E T, PAUSTIAN K, DORAN W J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x
[17] 徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006(4): 459-465. XU M G, YU R, SUN X F, LIU Y, WANG B R, LI J M. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutrition and Fertilizer Science, 2006(4): 459-465.
[18] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. GUAN S Y. Soil Enzyme and Study Method. Beijing: Agricultural Press, 1986.
[19] SHI W, DELL E, BOWMAN D, LYYEMPERUMALK. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288-296.
[20] GARCIA R R, OCHOA V, HINOJOSA M B, CARREIRA J A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 2008, 40(9): 2137-2145. doi: 10.1016/j.soilbio.2008.03.023
[21] 和文祥, 谭向平, 王旭东, 唐明, 郝明德. 土壤总体酶活性指标的初步研究. 土壤学报, 2010, 47(6): 1232-1236. HE W X, TAN X P, WANG X D, TANG M, HAO M D. Study on total enzyme activity index in soils. Acta Pedologica Sinica, 2010, 47(6): 1232-1236.
[22] 李梅, 许蕊淇, 陈德彬, 岳万勇, 尹雪, 张薇. 不同药剂拌种防治马铃薯晚疫病试验. 云南农业科技, 2019(6): 46-48. LI M, XU R Q, CHEN D B, YUE W Y, YIN X, ZHANG W. Experiment on controlling potato late blight by seed dressing with different chemicals. Yunnan Agricultural Science and Technology, 2019(6): 46-48.
[23] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627. doi: 10.1126/science.1097396
[24] 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响. 中国农业科学, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004 ZHOU G P, CAO W D, BAI J S, NIE J, XU C X, ZENG N H, GAO S J, WANG Y Q, Shimizu Katsuyoshi. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004
[25] 常单娜. 我国主要绿肥种植体系中土壤可溶性有机物特性研究. 北京: 中国农业科学院硕士学位论文, 2015. CHANG D N. Characteristics of soil dissolved organic matter in main green manure plantation systems in China. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[26] HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 2005, 85: 221-268.
[27] 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014, 51(1): 150-157. YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014, 51(1): 150-157.
[28] SHAH Z, AHMAD S R, RAHMAN H U. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system. Pakistan Journal of Botany, 2010, 42(4): 2589-2598.
[29] 吕茂奎, 谢锦升, 周艳翔, 曾宏达, 江军, 陈细香, 胥超, 陈坦, 付林池. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化. 应用生态学报, 2014, 25(1): 37-44. LYU M K, XIE J S, ZHOU Y X, ZENG H D, JIANG J, CHEN X X, XU C, CHEN T, FU L C. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area. Chinese Journal of Applied Ecology, 2014, 25(1): 37-44.
[30] 张贵龙, 赵建宁, 宋晓龙, 刘红梅, 张瑞, 姬艳艳, 杨殿林. 施肥对土壤有机碳含量及碳库管理指数的影响. 植物营养与肥料学报, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209 ZHANG G L, ZHAO J N, SONG X L, LIU H M, ZHANG R, JI Y Y, YANG D L. Effects of fertilization on soil organic carbon and carbon pool management index. Plant Nutrition and Fertilizer Science, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209
[31] BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459. doi: 10.1071/AR9951459
[32] 陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675. CHEN J, MA Z M, LIU L L, LYU X D. Effect of tillage system on suil organic carbon, microbial biomass and enzyme activities. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667-675.
[33] STRATEN P T, GULDBERG P, SCHRAMA D, ANDERSEN M H, MOERCH U, SEREMET T, SIEDEL C, REISFELD R A, BECKER J C. In situcytokine therapy: Redistribution of clonally expanded T cells. European Journal of Immunology, 2001, 31(1): 250-258. doi: 10.1002/1521-4141(200101)31:1<250::AID-IMMU250>3.0.CO;2-8
[34] 王峥宇, 廉宏利, 孙悦, 马梓淇, 田平, 齐华, 姜英. 秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响. 农业资源与环境学报, 2021, 38(4): 636-646. WANG Z Y, LIAN H L, SUN Y, MA Z Q, TIAN P, QI H, JIANG Y. Effects of straw return depth on soil organic carbon, nitrogen content, and soil enzyme activity of spring maize field. Journal of Agricultural Resources and Environment, 2021, 38(4): 636-646.
[35] 荆佳强, 萨仁其力莫格, 秦洁, 张海芳, 李明, 杨殿林. 利用方式对贝加尔针茅草原土壤微生物群落结构与土壤酶活性的影响. 中国草地学报, 2022, 44(2): 33-40. JING J Q, Sarenqilimoge, QIN J, ZHANG H F, LI M, YANG D L. Effects of utilization methods on soil microbial community structure and soil enzyme activity in Stipa baicalensis steppe. Chenese Journal of Grassland, 2022, 44(2): 33-40.
[36] 王鹏, 郑学博, 梁洪波, 宋文静, 季璇, 徐艳丽, 况帅, 董建新. 不同施肥模式对植烟棕壤活性有机碳组分和酶活性的影响. 华北农学报, 2021, 36(1): 187-196. WANG P, ZHENG X B, LIANG H B, SONG W J, JI X, XU Y L, KUANG S, DONG J X. Effects of different fertilization models on active organic carbon components and enzyme activities of tobacco-growing brown soil. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 187-196.
[37] WICKINGS K, GRANDY A S, REED S C, CLEVELAND C C. The origin of litter chemical complexity during decomposition. Ecology Letter, 2012, 15(10): 1180-1188. doi: 10.1111/j.1461-0248.2012.01837.x
[38] 韩召强, 陈效民, 曲成闯, 张晓玲, 张俊, 黄春燕, 刘云梅. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应. 植物营养与肥料学报, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016 HAN Z Q, CHEN X M, QU C C, ZHANG X L, ZHANG J, HUANG C Y, LIU Y M. Sustained effects of biochar application on physico-chemical properties, enzyme activities and quality of soil with continuous planting of cucumber. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016
-
表 1 试验设计
Table 1 Experimental design
kg·hm−2 处理
Treatment施氮水平
Nitrogen application
level紫云英翻压量
Plowed milk
vetch amountCK 0 0 CF 150 (100%) 0 M1N1 90 (60%) 15 000 M2N1 22 500 M3N1 30 000 M4N1 37 500 M1N2 120 (80%) 15 000 M2N2 22 500 M3N2 30 000 M4N2 37 500 表 2 不同处理下土壤碳库各组分碳素有效率
Table 2 Different soil carbon component utilization ratios upon different treatments
% 处理
TreatmentAOC有效率
AOC efficiencyDOC有效率
DOC efficiency微生物熵
Microbial quotientCK 12.44 ± 0.57ab 1.11 ± 0.07c 1.79 ± 0.05d CF 12.01 ± 0.12b 1.32 ± 0.04ab 2.11 ± 0.02abc M1N1 11.73 ± 0.32b 1.26 ± 0.02bc 1.64 ± 0.03d M2N1 12.00 ± 0.23b 1.28 ± 0.01ab 2.08 ± 0.02bc M3N1 12.57 ± 0.17ab 1.28 ± 0.02ab 2.09 ± 0.05abc M4N1 13.47 ± 0.60a 1.33 ± 0.03ab 2.20 ± 0.05a M1N2 12.91 ± 0.37ab 1.24 ± 0.08bc 2.03 ± 0.07c M2N2 12.31 ± 0.86ab 1.29 ± 0.09ab 2.12 ± 0.02abc M3N2 13.02 ± 0.40ab 1.35 ± 0.01ab 2.18 ± 0.03ab M4N2 13.49 ± 0.21a 1.41 ± 0.04a 2.18 ± 0.03ab 处理处理参见表1;同列不同小写字母表示处理间差异显著(P < 0.05);下表同。
Treatment for Table 1; Different lowercase letters indicate significant differences among the treatments at the 0.05 level. This is applicable for the following tables as well.表 3 不同处理对土壤碳库管理指数的影响
Table 3 Different treatment effects on the soil carbon management index
处理
Treatment非活性有机碳
NOAC/(g·kg−1)碳库指数
CPI碳库活度
A碳库活度指数
AI碳库管理指数
CMPICK 12.93 ± 0.56e 0.89 ± 0.04e 0.14 ± 0.01ab 0.89 ± 0.05ab 79.34 ± 3.20f CF 15.13 ± 0.07d 1.04 ± 0.01d 0.14 ± 0.00b 0.85 ± 0.01b 88.96 ± 1.56ef M1N1 15.80 ± 0.15cd 1.08 ± 0.01cd 0.13 ± 0.00b 0.83 ± 0.03b 90.14 ± 2.79ef M2N1 16.13 ± 0.12bc 1.11 ± 0.01c 0.14 ± 0.00b 0.85 ± 0.02b 94.70 ± 2.73de M3N1 16.47 ± 0.03bc 1.14 ± 0.00bc 0.14 ± 0.00ab 0.90 ± 0.01ab 102.54 ± 1.64bcd M4N1 17.60 ± 0.56a 1.23 ± 0.03a 0.16 ± 0.01a 0.97 ± 0.05a 119.70 ± 3.64a M1N2 15.10 ± 0.55d 1.05 ± 0.03d 0.15 ± 0.00ab 0.93 ± 0.03ab 97.14 ± 1.48cde M2N2 16.13 ± 0.13bc 1.12 ± 0.01c 0.14 ± 0.01ab 0.88 ± 0.07ab 98.08 ± 8.64cde M3N2 16.27 ± 0.15bc 1.13 ± 0.01bc 0.15 ± 0.01ab 0.94 ± 0.03ab 105.99 ± 3.37bc M4N2 16.90 ± 0.26ab 1.18 ± 0.02ab 0.16 ± 0.00a 0.97 ± 0.02a 115.30 ± 1.63ab NAOC: no active organic carbon; CPI: carbon pool index; A: activity; AI: activity index; CPMI: carbon pool management index. 表 4 不同处理的土壤酶活性
Table 4 Soil enzyme activities upon different treatments
处理
Treatment纤维素酶
Cellulase/
[mg·(d·g)−1]蔗糖酶
Urease/
[mg·(d·g)−1]过氧化氢酶
Catalase/
[mg·(d·g)−1]β-葡萄糖甘酶
β-glucosidase/
[mg·(d·g)−1]总体酶活性
Total enzyme
activityCK 35.62 ± 0.78b 23.40 ± 1.04f 70.98 ± 0.85a 26.55 ± 0.34d 3.52 ± 0.02f CF 36.00 ± 0.41b 29.03 ± 0.39de 71.37 ± 0.29a 30.37 ± 0.27c 3.84 ± 0.03e M1N1 38.48 ± 0.44a 29.20 ± 0.41de 71.01 ± 0.37a 31.90 ± 1.00abc 3.95 ± 0.06d M2N1 38.43 ± 0.43a 30.73 ± 0.13cd 71.90 ± 0.10a 31.37 ± 0.53abc 4.00 ± 0.02cd M3N1 38.54 ± 0.21a 33.72 ± 0.27ab 71.13 ± 0.07a 31.58 ± 0.64abc 4.09 ± 0.03bc M4N1 38.32 ± 0.68a 35.28 ± 0.33a 71.04 ± 0.28a 32.76 ± 0.49a 4.17 ± 0.02ab M1N2 38.42 ± 0.34a 28.33 ± 1.24e 70.98 ± 0.56a 30.80 ± 0.26bc 3.89 ± 0.04de M2N2 38.68 ± 0.54a 29.55 ± 0.79de 71.57 ± 0.14a 31.39 ± 0.56abc 3.96 ± 0.03d M3N2 38.58 ± 0.10a 32.43 ± 0.43bc 71.68 ± 0.20a 32.47 ± 0.84ab 4.09 ± 0.02bc M4N2 39.97 ± 0.92a 35.13 ± 0.58a 71.28 ± 0.10a 32.80 ± 0.32a 4.22 ± 0.03a 表 5 土壤有机碳库与酶活性之间的相关分析
Table 5 Pearson’s correlation analysis of the soil organic carbon pool and enzyme activities
指标 Index X1 X2 X3 X4 X5 X6 X7 X8 X1 1.000 X2 0.838** 1.000 X3 0.877** 0.815** 1.000 X4 0.848** 0.840* 0.819** 1.000 X5 0.622* 0.573* 0.653** 0.522** 1.000 X6 0.901* 0.858* 0.914** 0.864** 0.624** 1.000 X7 0.252 0.056 0.101 0.219 −0.022 0.164 1.000 X8 0.798** 0.712** 0.743** 0.721** 0.660** 0.751** 0.154 1.000 X1:总有机碳;X2:活性有机碳;X3:可溶性有机碳;X4:微生物生物量碳;X5:纤维素酶;X6:蔗糖酶;X7:过氧化氢酶;X8:β-葡萄糖甘酶。* 表示显著相关(P < 0.05),** 表示极显著相关(P < 0.01)。
X1: soil total organic carbon;X2: soil active organic carbon;X3: dissolved organic carbon;X4: microbial biomass carbon;X5: cellulase;X6: invertase;X7: peroxidase;X8: β-glucosidase. * indicated significant correlation at the 0.05 level, ** indicated extremely significant correlation at the 0.01 level.表 6 不同施肥模式的综合分析
Table 6 Comprehensive analysis of the different fertilization modes
处理
Treatment等权关联度(排序)
Equal relational grade
analysis (Rank)加权关联度(排序)
Weighted relational grade
analysis (Rank)CK 0.5228 (10) 0.5307 (10) CF 0.6040 (8) 0.6142 (8) M1N1 0.6012 (9) 0.6046 (9) M2N1 0.6382 (6) 0.6523 (6) M3N1 0.6660 (4) 0.6784 (4) M4N1 0.7607 (1) 0.7749 (1) M1N2 0.6093 (7) 0.6217 (7) M2N2 0.6460 (5) 0.6619 (5) M3N2 0.6838 (3) 0.6977 (3) M4N2 0.7486 (2) 0.7606 (2) -
[1] 冯婷婷, 符云鹏, 李海江, 宋显峰, 张晓娟. 不同有机物料对土壤有机碳库及烤烟品质的影响. 山东农业科学, 2017, 49(3): 89-93. FENG T T, FU Y P, LI H J, SONG X F, ZHANG X J. Effects of different organic materials on quality of flue-cured tobacco and organic carbon pool in soils. Shandong Agricultural Sciences, 2017, 49(3): 89-93.
[2] SHAUNA M, ROBERT G, RICHARD B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant and Soil, 2000, 222(1/2): 191-202. doi: 10.1023/A:1004705416108
[3] SHARROW S H, ISMAIL S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 2004, 60(2): 123-130. doi: 10.1023/B:AGFO.0000013267.87896.41
[4] VANOTTI M B, BUNGY L G, PETERSON A E. Nitrogen Fertilizer and Legumecereal Rotation Effects on Soil Productivity and Organicmatter Dynamics in Wisconsin. Boca Raton: CRC Press, 1997, 105-119.
[5] 马艳芹, 钱晨晨, 孙丹平, 邓丽萍, 黄国勤, 陆卫斌. 施氮水平对稻田土壤温室气体排放的影响. 农业工程学报, 2016, 32(S2): 128-134. MA Y Q, QIAN C C, SUN D P, DENG L P, HUANG G Q, LU W B. Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 128-134.
[6] 杨滨娟, 黄国勤, 兰延, 陈洪俊, 王淑彬. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响. 应用生态学报, 2014, 25(10): 2907-2913. YANG B J, HUANG G Q, LAN Y, CHEN H J, WANG S B. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.
[7] 马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响. 生态学杂志, 2019, 38(1): 129-135. MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool. Chinese Journal of Ecology, 2019, 38(1): 129-135.
[8] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响. 植物营养与肥料学报, 2019, 25(4): 525-534. LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525-534.
[9] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东. 紫云英施用量对土壤活性有机碳和碳转化酶活性的影响. 中国土壤与肥料, 2018 (4): 14-20. LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D. Effects of Chinese milk vetch (Astragalus sinicus L.)application rate on soil labile organic carbon and Ctransformation enzyme activities. Soils and Fertilizers Sciences in China, 2018(4):14-20.
[10] 胡启良. 紫云英油菜混播与氮肥减施对双季稻田土壤碳氮和微生物群落多样性的影响. 南昌: 江西农业大学硕士学位论文, 2022. HU Q L. Effects of mixed copping of chinese milk vetch and rape seed and reduced application of nitrogen fertilizer carbon and nitrogen in soil and microbial community diversity on double cropping rice field. Master Thesis. Nanchang: Jiangxi Agricultural University, 2022.
[11] 王晋龙, 孙崇凤, 程永钢, 郑普山, 洪坚平. 不同绿肥对复垦地土壤化学性状及酶活性的影响. 中国土壤与肥料, 2022(9): 85-93. WANG J L, SUN C F, CHENG Y G, DENG P S, HONG J P. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soil and Fertilizer Sciences in China, 2022(9): 85-93.
[12] 冯晓玲, 王俊, 高媛, 豆莹, 方震文. 绿肥和施氮对旱作冬小麦农田土壤酶活性的影响. 干旱地区农业研究, 2022, 40(3): 129-135. FENG X L, WANG J, GAO Y, DOU Y, FANG Z W. Effects of green manure and nitrogen application on soil enzyme activities in a drylang winter wheat field. Agricultural Research in the Arid Areas, 2022, 40(3): 129-135.
[13] LI S, ZHANG S R, PU Y L, LI T, XU X X, JIA Y X, DENG O G, GUO S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 2016, 155: 289-297. doi: 10.1016/j.still.2015.07.019
[14] 张黎明, 邓小华, 周米良, 田峰, 赵炯平, 江智敏, 菅攀锋, 张明发. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响. 中国烟草科学, 2016, 37(4): 13-18. ZHANG L M, DENG X H, ZHOU M L, TIAN F, ZHAO J P, JIANG Z M, JIAN P F, ZHANG M F. Effects of different green manures on microbial biomass and enzyme activities of tobaccoplanting Soil. Chinese Tobacco Science, 2016, 37(4): 13-18.
[15] 陈利云, 汪之波, 呼丽萍. 6种豆科绿肥植物与苹果树套种对果园土壤碳氮特征的影响. 草地学报, 2021, 29(4): 671-676. CHEN L Y, WANG Z B, HU L P. Effects of interplanting six leguminous green manure plants in apple orchard on soil carbon and nitrogen characteristics. Acta Agrestia Sinica, 2021, 29(4): 671-676.
[16] SIX J, ELLIOTT E T, PAUSTIAN K, DORAN W J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x
[17] 徐明岗, 于荣, 孙小凤, 刘骅, 王伯仁, 李菊梅. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响. 植物营养与肥料学报, 2006(4): 459-465. XU M G, YU R, SUN X F, LIU Y, WANG B R, LI J M. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China. Plant Nutrition and Fertilizer Science, 2006(4): 459-465.
[18] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. GUAN S Y. Soil Enzyme and Study Method. Beijing: Agricultural Press, 1986.
[19] SHI W, DELL E, BOWMAN D, LYYEMPERUMALK. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 2006, 288-296.
[20] GARCIA R R, OCHOA V, HINOJOSA M B, CARREIRA J A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 2008, 40(9): 2137-2145. doi: 10.1016/j.soilbio.2008.03.023
[21] 和文祥, 谭向平, 王旭东, 唐明, 郝明德. 土壤总体酶活性指标的初步研究. 土壤学报, 2010, 47(6): 1232-1236. HE W X, TAN X P, WANG X D, TANG M, HAO M D. Study on total enzyme activity index in soils. Acta Pedologica Sinica, 2010, 47(6): 1232-1236.
[22] 李梅, 许蕊淇, 陈德彬, 岳万勇, 尹雪, 张薇. 不同药剂拌种防治马铃薯晚疫病试验. 云南农业科技, 2019(6): 46-48. LI M, XU R Q, CHEN D B, YUE W Y, YIN X, ZHANG W. Experiment on controlling potato late blight by seed dressing with different chemicals. Yunnan Agricultural Science and Technology, 2019(6): 46-48.
[23] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627. doi: 10.1126/science.1097396
[24] 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响. 中国农业科学, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004 ZHOU G P, CAO W D, BAI J S, NIE J, XU C X, ZENG N H, GAO S J, WANG Y Q, Shimizu Katsuyoshi. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice. Scientia Agricultura Sinica, 2016, 49(21): 4096-4106. doi: 10.3864/j.issn.0578-1752.2016.21.004
[25] 常单娜. 我国主要绿肥种植体系中土壤可溶性有机物特性研究. 北京: 中国农业科学院硕士学位论文, 2015. CHANG D N. Characteristics of soil dissolved organic matter in main green manure plantation systems in China. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[26] HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 2005, 85: 221-268.
[27] 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014, 51(1): 150-157. YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014, 51(1): 150-157.
[28] SHAH Z, AHMAD S R, RAHMAN H U. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice-wheat system. Pakistan Journal of Botany, 2010, 42(4): 2589-2598.
[29] 吕茂奎, 谢锦升, 周艳翔, 曾宏达, 江军, 陈细香, 胥超, 陈坦, 付林池. 红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化. 应用生态学报, 2014, 25(1): 37-44. LYU M K, XIE J S, ZHOU Y X, ZENG H D, JIANG J, CHEN X X, XU C, CHEN T, FU L C. Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area. Chinese Journal of Applied Ecology, 2014, 25(1): 37-44.
[30] 张贵龙, 赵建宁, 宋晓龙, 刘红梅, 张瑞, 姬艳艳, 杨殿林. 施肥对土壤有机碳含量及碳库管理指数的影响. 植物营养与肥料学报, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209 ZHANG G L, ZHAO J N, SONG X L, LIU H M, ZHANG R, JI Y Y, YANG D L. Effects of fertilization on soil organic carbon and carbon pool management index. Plant Nutrition and Fertilizer Science, 2012, 18(2): 359-365. doi: 10.11674/zwyf.2012.11209
[31] BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459. doi: 10.1071/AR9951459
[32] 陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675. CHEN J, MA Z M, LIU L L, LYU X D. Effect of tillage system on suil organic carbon, microbial biomass and enzyme activities. Journal of Plant Nutrition and Fertilizer, 2016, 22(3): 667-675.
[33] STRATEN P T, GULDBERG P, SCHRAMA D, ANDERSEN M H, MOERCH U, SEREMET T, SIEDEL C, REISFELD R A, BECKER J C. In situcytokine therapy: Redistribution of clonally expanded T cells. European Journal of Immunology, 2001, 31(1): 250-258. doi: 10.1002/1521-4141(200101)31:1<250::AID-IMMU250>3.0.CO;2-8
[34] 王峥宇, 廉宏利, 孙悦, 马梓淇, 田平, 齐华, 姜英. 秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响. 农业资源与环境学报, 2021, 38(4): 636-646. WANG Z Y, LIAN H L, SUN Y, MA Z Q, TIAN P, QI H, JIANG Y. Effects of straw return depth on soil organic carbon, nitrogen content, and soil enzyme activity of spring maize field. Journal of Agricultural Resources and Environment, 2021, 38(4): 636-646.
[35] 荆佳强, 萨仁其力莫格, 秦洁, 张海芳, 李明, 杨殿林. 利用方式对贝加尔针茅草原土壤微生物群落结构与土壤酶活性的影响. 中国草地学报, 2022, 44(2): 33-40. JING J Q, Sarenqilimoge, QIN J, ZHANG H F, LI M, YANG D L. Effects of utilization methods on soil microbial community structure and soil enzyme activity in Stipa baicalensis steppe. Chenese Journal of Grassland, 2022, 44(2): 33-40.
[36] 王鹏, 郑学博, 梁洪波, 宋文静, 季璇, 徐艳丽, 况帅, 董建新. 不同施肥模式对植烟棕壤活性有机碳组分和酶活性的影响. 华北农学报, 2021, 36(1): 187-196. WANG P, ZHENG X B, LIANG H B, SONG W J, JI X, XU Y L, KUANG S, DONG J X. Effects of different fertilization models on active organic carbon components and enzyme activities of tobacco-growing brown soil. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 187-196.
[37] WICKINGS K, GRANDY A S, REED S C, CLEVELAND C C. The origin of litter chemical complexity during decomposition. Ecology Letter, 2012, 15(10): 1180-1188. doi: 10.1111/j.1461-0248.2012.01837.x
[38] 韩召强, 陈效民, 曲成闯, 张晓玲, 张俊, 黄春燕, 刘云梅. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应. 植物营养与肥料学报, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016 HAN Z Q, CHEN X M, QU C C, ZHANG X L, ZHANG J, HUANG C Y, LIU Y M. Sustained effects of biochar application on physico-chemical properties, enzyme activities and quality of soil with continuous planting of cucumber. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1227-1236. doi: 10.11674/zwyf.18016