欢迎访问 草业科学,今天是2025年4月12日 星期六!

金花菜叶绿体基因组特征及密码子偏好性分析

尹明华, 胡佳欣, 李瑶瑶, 刘曼情, 欧阳克蕙

尹明华,胡佳欣,李瑶瑶,刘曼情,欧阳克蕙. 金花菜叶绿体基因组特征及密码子偏好性分析. 草业科学, 2024, 41(4): 884-898. DOI: 10.11829/j.issn.1001-0629.2022-0992
引用本文: 尹明华,胡佳欣,李瑶瑶,刘曼情,欧阳克蕙. 金花菜叶绿体基因组特征及密码子偏好性分析. 草业科学, 2024, 41(4): 884-898. DOI: 10.11829/j.issn.1001-0629.2022-0992
YIN M H, HU J X, LI Y Y, LIU M Q, OUYANG K H. Sequence characteristic analyses of the Medicago polymorpha complete chloroplast genome and its codon usage bias. Pratacultural Science, 2024, 41(4): 884-898. DOI: 10.11829/j.issn.1001-0629.2022-0992
Citation: YIN M H, HU J X, LI Y Y, LIU M Q, OUYANG K H. Sequence characteristic analyses of the Medicago polymorpha complete chloroplast genome and its codon usage bias. Pratacultural Science, 2024, 41(4): 884-898. DOI: 10.11829/j.issn.1001-0629.2022-0992

金花菜叶绿体基因组特征及密码子偏好性分析

基金项目: 国家自然科学基金资助目(31860084、31960079、32060092);江西省科技厅重点研发计划一般项目(20202BBG73010);江西省教育厅科学技术研究项目(GJJ201704、GJJ211729);江西省现代农业产业技术体系建设专项(JXARS-13-赣东站);上饶市科技局平台载体建设项目(2020J001)
摘要:

本研究对金花菜(Medicago polymorpha, JHC, 江苏)叶绿体基因组进行BGISEQ-500平台测序,对其基因进行Noveplastys组装和GeSeq注释,最后通过MISA、REPuter、Gview、VISTA tools、IRscope和DNADnaSP6.0等软件对其序列特征、基因种类、密码子偏好性以及系统发育进行分析。结果表明,JHC叶绿体基因组大小为124 163 bp,无四分体结构,基因组总GC含量为34.09%,共注释出111个基因(76个CDS 基因、30个tRNA基因、4个rRNA基因、1个假基因)、91个SSR位点和148个长重复序列;JHC叶绿体基因组的第三位密码子偏好以A和U作为末尾碱基,UUA、GCU、UAA、ACU、CCU、GAA、GUA、AUU、UGU、GGU、UUU、CUU为JHC叶绿体基因组的最优密码子;JHC与MZ772862 (云南)亲缘关系较近,与MW971560 (美国)、NC_042848 (美国)关系较远,表明中国金花菜与美国金花菜的起源存在差异。

 

English

  • [1] 陈莉敏, 李达旭, 白史且, 张玉, 毛德才, 廖兴勇, 杨晓玲. 60Co-γ 射线辐射对金花菜种子生物学效应的影响. 核农学报, 2022, 36(9): 1701-1706.

    CHEN L M, LI D X, BAI S Q, ZHANG Y, MAO D C, LIAO X Y, YANG X L. The biological effect of 60Co-γ ray radiation on Medicago polymorpha L. seeds. Journal of Nuclear Agricultural Sciences, 2022, 36(9): 1701-1706.

    [2] 刘晓云, 郭振国, 李乔仙, 刘桂霞, 薛世明, 王易鹏. 南苜蓿高效共生根瘤菌土壤的筛选. 生态学报, 2011, 31(14): 4034-4041.

    LIU X Y, GUO Z G, LI Q X, LIU G X, XUE S M, WANG Y P. Screening of highly effective rhizobial strains on Alfalfa (Medicago polymorpha) in soil. Acta Ecologica Sinica, 2011, 31(14): 4034-4041.

    [3] 中国科学院植物研究所. 中国植物志. 北京: 科学出版社, 1998.

    Institute of Botany, Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1998.

    [4] 董磊, 王栋麟, 王琳, 刘大林. 外源水杨酸缓解金花菜高温胁迫的生理响应. 扬州大学学报(农业与生命科学版), 2022, 43(4): 129-136.

    DONG L, WANG D L, WANG L, LIU D L. Physiological effects of exogenous salicylic acid on relatively high-temperature stress in Jinhua. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(4): 129-136.

    [5]

    DENTON M D, HILL C R, BELLOTTI W D, COVENTRY D R. Nodulation of Medicago truncatula and Medicago polymorpha in two pastures of contrasting soil pH and rhizobial populations. Applied Soil Ecology, 2007, 35(2): 441-448. doi: 10.1016/j.apsoil.2006.08.001

    [6] 贾雪杰, 游明鸿, 李达旭, 雷雄, 任小英, 熊晓兰, 杜静, 陈丽敏, 董志晓, 张建波, 马啸. 减量施肥对金花菜-水稻轮作系统中产量和土壤养分的影响. 草地学报, 2023, 31(3): 876-883.

    JIA X J, YOU M H, LI D X, LEI X, REN X Y, XIONG X L, DU J, CHEN L M, DONG Z X, ZHANG J B, MA X. Effects of nutrient coordination on yield and soil nutrients in a burclover-rice rotation system. Acta Agrestia Sinica, 2023, 31(3): 876-883.

    [7] 魏臻武, 任海龙, 武自念, 刘国志, 陈祥, 乔志宏. 金花菜新品种“淮扬金花菜”. 园艺学报, 2015, 42(11): 2335-2336.

    WEI Z W, REN H L, WU Z N, LIU G Z, CHEN X, QIAO Z H. New Medicago polymorpha cultivar, Huaiyang Jinhuacai. Acta Horticulturae Sinica, 2015, 42(11): 2335-2336.

    [8] 洪森荣, 朱盈盈, 李紫莹, 胡明艳, 欧阳克蕙. 盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选. 中国农学通报, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235

    HONG S R, ZHU Y Y, LI Z Y HU M Y, OUYANG K H. Plantlets of Medicago polymorpha and Medicago sativa under salt stress: transcriptome analysis and salt tolerance gene screening. Chinese Agricultural Science Bulletin, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235

    [9]

    TANG D F, WEI F, KASHIF M H, KHAN A, LI Z Q, SHI Q Q, JIA R X, XIE H Y, ZHANG L, LI B, CHEN P, ZHOU R Y. Analysis of chloroplast differences in the leaves of rice isonuclear alloplasmic lines. Protoplasma, 2018, 255(3): 863-871. doi: 10.1007/s00709-017-1189-6

    [10]

    LI G L, PAN Z L, GAO S C, HE Y Y, XIA Q Y, JIN Y, YAO H P. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Genes & Genomics, 2019, 41(10): 1173-1181.

    [11]

    DURET L. Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 2002, 12(6): 640-649.

    [12]

    HERSHBERG R, PETROV D. Selection of codon bias. Annual Review of Genetics, 2008, 42: 287-299.

    [13]

    WANG H J, MENG T, WEI W Q. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes & Genomics, 2018, 40(7): 767-780.

    [14]

    LONG S Y, YAO H P, WU Q, LI G L. Analysis of compositional bias and codon usage pattern of the coding sequence in the Banna virus genome. Virus Research, 2018, 258: 68-72. doi: 10.1016/j.virusres.2018.10.006

    [15]

    FITTER J T, THOMAS M R, ROSE R J, SCOTT N S. Heteroplasmy of the chloroplast genome ofMedicago sativa L. ‘Regen S’ was confirmed by sequence analysis. Theoretical and Applied Genetics, 1996, 93(5-6): 685-690.

    [16] 杨国锋, 苏昆龙, 赵怡然, 宋智斌, 孙娟. 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016

    YANG G F, SU K L, ZHAO Y R, SONG Z B, SUN J. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016

    [17] 喻凤, 韩明. 紫花苜蓿叶绿体基因组密码子偏好性分析. 广西植物, 2021, 41(12): 2069-2076.

    YU F, HAN M. Analysis of codon usage bias in alfalfa chloroplast genome of alfalfa (Medicago sativa). Guihaia, 2021, 41(12): 2069-2076.

    [18] 孙志轩, 敖平星, 毕玉芬, 赵雁. ‘德钦’紫花苜蓿叶绿体基因组序列及特征分析. 草地学报, 2022, 30(2): 320-328.

    SUN Z X, AO P X, BI Y F, ZHAO Y. Complete chloroplast genome sequence and characteristics analysis of Medicago sativa ‘Deqin’. Acta Agrestia Sinica, 2022, 30(2): 320-328.

    [19] 田春育, 李志勇, 刘倩, 于林清, 武自念. 苜蓿属不同物种叶绿体基因组结构比较及亲缘关系分析. 中国草地学报, 2021, 43(10): 1-8.

    TIAN C Y, LI Z Y, LIU Q, YU L Q, WU Z N. Comparison of chloroplast genome structure and phylogenetic analysis of different species of Medicago. Chinese Journal of Grassland, 2021, 43(10): 1-8.

    [20] 赵嫚, 陈仕勇, 李亚萍, 周青平, 陈有军, 常馨丹. 外源 GABA 对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响. 江苏农业学报, 2021, 37(2): 310-316.

    ZHAO M, CHEN S Y, LI Y P, ZHOU Q P, CHEN Y J, CHANG X D. Influence of exogenous γ-aminobutyric acid ( GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 310-316.

    [21] 江舟, 陈丰, 王东军, 魏臻武, 唐晨阳. 金花菜与燕麦间作对牧草产量与品质的影响. 中国草地学报, 2020, 42(5): 127-135.

    JIANG Z, CHEN F, WANG D J, WEI Z W, TANG C Y. Effects of intercropping burr medics with oats on foyield and quality. Chinese Journal of Grassland, 2020, 42(5): 127-135.

    [22] 周克友, 李争艳, 陈祥, 任海龙, 江舟, 魏臻武. 不同光周期条件下金花菜F2代农艺性状的变异特征. 草地学报, 2017, 25(6): 1300-1307.

    ZHOU K Y, LI Z Y, CHEN X, REN H L, JIANG Z, WEI Z W. Study on variation characteristics of Medicago polymorpha F2 generation under different photoperiods. Acta Agrestia Sinica, 2017, 25(6): 1300-1307.

    [23]

    JANSEN R K, RUHLMAN T A. Plastid genomes of seed plants. //BOCK R, KOOP V. Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer Netherlands, 2012: 103-126.

    [24]

    MOWER J P, VICKREY T L. Structural Diversity Amongplastid Genomes of Land Plants. //CHAW S M, JANSEN R K. Advances in Botanical Research. London: Academic Press, 2018: 263-292.

    [25]

    BRUNEAU A, DOYLE J J PALMER J. Chloroplast DNA inversion is a subtribal characteristic in Phaseoleae (Leguminosae). Systematic Botany, 1990, 15(3): 378-386. doi: 10.2307/2419351

    [26]

    KOLODNER R, TEWARI K K. Inverted repeats in chloroplast DNA from higher plants. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(1): 41-45.

    [27]

    SCHWARZ E N, RUHLMAN T A, WENG M L, KHIYAMI M A, SABIR J S M, HAJARAH N H, ALHARBI N S, RABAH S O, JANSEN R K. Plastome-wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. Journal of Molecular Evolution, 2017, 84(4): 187-203. doi: 10.1007/s00239-017-9792-x

    [28] 王晓娟, 董文攀, 周世良. 基于叶绿体基因组分析我国苜蓿属植物演化路径. 生态学报, 2022, 42(15): 6125-6136.

    WANG X J, DONG W P, ZHOU S L. The evolutionary path of Medicago in China was based on chloroplast genome analysis. Acta Ecologica Sinica, 2022, 42(15): 6125-6136.

    [29]

    HONG C P, PARK J, LEE Y, LEE M, PARK S G, UHM Y, LEE J, KIM C. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics, 2017, 18(1): 1-13. doi: 10.1186/s12864-016-3406-7

    [30]

    MILLEN R S, OLMSTEAD R G, ADAMS K L, PALMER J D, LAO N T, HEGGIE L, KAVANAGH T A, HIBBERD J M, GRAY J C, MORDEN C W, CALIE P J, JERMIIN L S, WOLFE K H. Many parallel losses of infA from chloroplast DNA occur during angiosperm evolution, with multiple independent transfers to the nucleus. Plant Cell, 2001, 13(3): 645-658. doi: 10.1105/tpc.13.3.645

    [31]

    SASKI C, LEE S B, DANIELL H, WOOD T C, TOMKINS J, KIM H G, JANSEN R K. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Molecular Biology, 2005, 59(2): 309-322. doi: 10.1007/s11103-005-8882-0

    [32]

    LI B, ZHENG Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Scientific Reports, 2018, 8(1): 9285. doi: 10.1038/s41598-018-27453-7

    [33]

    SALTONSTALL K, LAMBERTINI C. Value of repetitive sequences in chloroplast DNA for phylogeographic inference: A comment on Vachon and Freeland (2011). Molecular Ecology Resources, 2012, 12(4): 581-589.

    [34] 曾令霜, 张晨晨, 张敬, 徐彬. 多年生黑麦草种质SSR分子标记遗传多样性分析. 草业科学, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364

    ZENG L S, ZHANG C C, ZHANG J, XU B. Genetic diversity analysis of perennial ryegrass germplasm using SSR molecular markers. Pratacultural Science, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364

    [35] 张婷婷, 张鹤山, 宋康杰, 赵泽宇, 许本波, 刘洋. 白三叶转录组 SSR 位点特征分析及引物开发. 草业科学, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841

    ZHANG T T, ZHANG H S, SONG K J, ZHAO Z Y, XU B B, LIU Y. Analysis of SSR site characteristics of Trifolium repens transcriptome and primer development. Pratacultural Science, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841

    [36]

    JIANG Y, DENG F, WANG H L. Extensive analysis of global codon usage patterns in baculoviruses. Archives of Virology, 2008, 153(12): 2273-2282. doi: 10.1007/s00705-008-0260-1

    [37]

    QUAX T F, CLAASSENS N, SÖLL D, OOST J. Codon bias as a means to fine-tune gene expression. Molecular Cell, 2015, 59(2): 149-161. doi: 10.1016/j.molcel.2015.05.035

    [38]

    WANG L, ROOSSINCK M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Molecular Biology, 2006, 61(4-5): 699-710. doi: 10.1007/s11103-006-0041-8

  • 图  1   金花菜叶绿体基因组图谱

    Figure  1.   Medicago polymorpha chloroplast genome map

    图  2   金花菜及其9个近缘种叶绿体基因组变异圈图

    物种从内向外第3圈开始依次为:Medicago radiata NC_042854、花苜MW703984、刺果苜蓿NC_042851、南苜蓿MW971560、金花菜JHC、蒺藜苜蓿JX512022、木本苜蓿NC_042856、Medicago marina NC_042845、野苜蓿MW271003、紫花苜蓿MN218692。右上角GC和GC skew是最内两圈,CDS、rRNA、tRNA圆圈中心位置。

    Figure  2.   Chloroplast genome variation circle diagram for Medicago polymorpha and nine closely related species

    Species start from inner to outer ring: Medicago radiata NC_042854, M. ruthenica MW703984, M. intertexta NC_042851, M. polymorpha MW971560, M. polymorpha (JHC), M. truncatula JX512022, M. arborea NC_042856, M. marina NC_042845, M. falcata MW271003, M. sativa MN218692. GC and GC skew are the two innermost circles in the upper right corner; CDS, rRNA, and tRNA circles are in the center.

    图  3   金花菜及其9个近缘种叶绿体基因组Pi多样性指数分析

    Figure  3.   Pi diversity index analysis of the chloroplast genomes of Medicago polymorpha and nine related species

    图  4   金花菜及其9个近缘种叶绿体基因组密码子的偏性分析

    物种同图2。密码子第1、2、3位的GC含量分别用GC1、GC2、GC3表示;密码子总GC含量用GCall表示。表4同。

    Figure  4.   Partial chloroplast genome codon analysis for Medicago polymorpha and nine closely related species

    The species are the same as Figure 2. GC content at first, second, and third codon positions are represented as GC1, GC2, and GC3, respectively; Total codon GC content is represented by GCall. This is applicable for Table 4 as well.

    图  5   基于叶绿体基因组的金花菜(JHC)及其45个近缘种和2个外类群物种的系统发育树

    Figure  5.   Phylogenetic tree of Medicago polymorpha (JHC) and its 45 closely related species and 2 species level taxa based on their chloroplast genomes

    表  1   金花菜45个近缘种和2个外类群物种的产地或来源

    Table  1   Origin or source of 45 closely related species and 2 species level taxa of Medicago polymorpha

    序号
    Number
    近缘种或外
    类群物种
    Related species or
    outgroup species
    产地或来源
    Origin or
    source
    序号
    Number
    近缘种或外
    类群物种
    Related species or
    outgroup species
    产地或来源
    Origin or
    source
    序号
    Number
    近缘种或外
    类群物种
    Related species or
    outgroup species
    产地或来源
    Origin or
    source
    1紫花苜蓿
    Medicago sativa KU321683
    中国
    China
    17蒺藜苜蓿
    Medicago truncatula JX512023
    美国
    USA
    33Medicago intertexta NC_042851美国
    USA
    2紫花苜蓿
    Medicago sativa MN218692
    云南省德钦县
    Deqin County, Yunnan Province
    18蒺藜苜蓿
    Medicago truncatula JX512024
    美国
    USA
    34Medicago orbicularis NC_042850美国
    USA
    3紫花苜蓿
    Medicago sativa NC_042841
    美国
    USA
    19蒺藜苜蓿
    Medicago truncatula JX512022
    美国
    USA
    35天蓝苜蓿
    Medicago lupulina NC_042847
    美国
    USA
    4紫花苜蓿
    Medicago sativa MZ983396
    中国
    China
    20蒺藜苜蓿
    Medicago truncatula f. tricycla KF241982
    美国
    USA
    36Medicago tenoreana NC_057658美国
    USA
    5野苜蓿
    Medicago falcata MW271002
    中国
    China
    21Medicago scutellata MZ895077中国
    China
    37Medicago disciformis NC_057655美国
    USA
    6野苜蓿
    Medicago falcata NC_032066
    中国
    China
    22早花苜蓿
    Medicago praecox NC_057657
    美国
    USA
    38小苜蓿
    Medicago minima NC_042849
    美国
    USA
    7野苜蓿
    Medicago falcata MK460490
    美国
    USA
    23金花菜
    Medicago polymorpha MZ772862
    中国
    China
    39Medicago coronata NC_057660美国
    USA
    8野苜蓿
    Medicago falcata MW271003
    中国
    China
    24金花菜
    Medicago polymorpha MW971560
    美国
    USA
    40Medicago suffruticosa NC_042843美国
    USA
    9Medicago tetraprostra NC_042844美国
    USA
    25金花菜
    Medicago polymorpha NC_042848
    美国
    USA
    41Medicago biflora NC_042415美国
    USA
    10紫花苜蓿
    Medicago sativa subsp. Glomerata MK460494
    美国
    USA
    26褐斑苜蓿
    Medicago arabica MT584354
    美国
    USA
    42毛荚苜蓿
    Medicago edgeworthii NC_042415
    中国
    China
    11Medicago hybrida NC_027153加拿大
    Canada
    27褐斑苜蓿
    Medicago arabica NC_057661
    美国
    USA
    43花苜蓿
    Medicago ruthenica NC_053371
    中国
    China
    12Medicago papillosa NC_027154加拿大
    Canada
    28褐斑苜蓿
    Medicago arabica MZ905469
    中国
    China
    44Medicago radiata NC_042854美国
    USA
    13Medicago cretacea NC_042842美国
    USA
    29Medicago secundiflora NC_057656美国
    USA
    45Medicago monspeliaca NC_042855美国
    USA
    14Medicago marina NC_042845美国
    USA
    30Medicago blancheana NC_042852美国
    USA
    46白花草木樨
    Melilotus albus NC_041419
    中国
    China
    15木本苜蓿
    Medicago arborea NC_042856
    美国
    USA
    31Medicago laciniata NC_042853美国
    USA
    47胡卢巴
    Trigonella foenum-graecum NC_042857
    美国
    USA
    16Medicago pironae NC_042846美国
    USA
    32Medicago sauvagei NC_057659美国
    USA
    下载: 导出CSV

    表  2   金花菜叶绿体基因的类型分析

    Table  2   Type analysis of chloroplast genes in Medicago polymorpha

    基因功能
    Gene function
    基因类型
    Gene type
    基因名
    Gene name
    基因数量
    Number of genes
    光合作用
    Photosynthesis
    光系统Ⅰ photosystem Ⅰ psaA, psaB, psaC, psaI, psaJ 5
    光系统Ⅱ photosystem Ⅱ psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbK, psbL, psbM, psbT, psbZ, psbN 15
    NADH 脱氢酶
    NADH dehydrogenase
    ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 11
    细胞色素b /f 复合体
    cytochrome b/f complex
    petA, petB, petD, petG, petL, petN 6
    ATP 合成酶 ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 6
    自我复制
    Self-replication
    核糖体大亚基蛋白质
    Proteins of large ribosomal subunit
    rpl14, rpl16, rpl2, rpl20, rpl23, rpl32, rpl33, rpl36 8
    核糖体小亚基蛋白质
    Proteins of small ribosomal subunit
    rps11, rps12, rps14, rps15, rps18, rps19, rps2, rps3, rps4, rps7, rps8 11
    核糖体大亚基 Large subunit of rubisco rbcL 1
    RNA 聚合酶 RNA polymerase rpoA, rpoB, rpoC1, rpoC2 4
    核糖体 RNA Ribosomal RNAs rrn16, rrn23, rrn4.5, rrn5 4
    转运
    RNA Transfer RNAs
    trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU, trnI-GAU, trnK-UUU, trnL-CAA, trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnV-UAC, trnW-CCA, trnY-GUA, trnfM-CAU 30
    其他基因
    Other genes
    成熟酶 Maturase matK 1
    蛋白酶
    Protease
    clpP1 1
    囊膜蛋白 Envelope membrane protein cemA 1
    乙酰辅酶A 羧化酶 Acetyl-CoA carboxylase accD 1
    c-型细胞色素合成基因
    c-type cytochrome synthesis gene
    ccsA 1
    翻译起始因子
    Translation initiation factor
    infA 1
    未知功能基因
    Unknown function
    gene
    保守假设叶绿体阅读框架
    Conserved hypothetical chloroplast
    Reading Frames
    ycf1, ycf2, ycf3, ycf4 4
    下载: 导出CSV

    表  3   金花菜叶绿体基因组中简单重复序列的类型及分布

    Table  3   Type and distribution of simple repeat sequences within the Medicago polymorpha chloroplast genome

    重复单元碱基类型
    Repetitive unit
    base type
    重复单元重复次数 Repeat number of repeat units 总数
    Total
    5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
    A/T 33 15 10 8 5 2 1 1 75
    C/G 1 1
    AT/AT 11 1 1 13
    AAT/ATT 1 1
    ATC/ATG 1 1
    下载: 导出CSV

    表  4   金花菜叶绿体基因组GCall、GC1、GC2、GC3和ENC的相关性分析

    Table  4   Correlation analysis of the chloroplast genome GCall, GC1, GC2, GC3, and ENC in Medicago polymorpha

    指标 Parameter GCall GC1 GC2 GC3 ENC
    GCall 1
    GC1 0.807 080 845** 1
    GC2 0.751 657 748** 0.379 814 149* 1
    GC3 0.453 207 251* 0.124 498 687 0.072 925 809 1
    ENC 0.002 157 050 −0.074 635 309 −0.074 619 818 0.239 857 869* 1
     *和**分别表示相关性在0.05和0.01水平上显著相关;ENC 表示有效密码子数。
     * and ** indicate significant correlation at the 0.05 and 0.01 levels, respectively; ENC indicates the number of valid codons.
    下载: 导出CSV

    表  5   金花菜叶绿体基因组密码子的相对同义密码子使用度

    Table  5   Relative synonymouscodon usagec (RSCU) of chloroplast genome codons in Medicago polymorpha

    密码子
    Codon
    氨基酸
    Amino acid
    相对同义密码子使用度
    Relative synonymous
    codon usage (RSCU)
    密码子
    Codon
    氨基酸
    Amino acid
    相对同义密码子使用度
    Relative synonymous
    codon usage (RSCU)
    频度
    Frequency
    数量
    Number
    频度
    Frequency
    数量
    Number
    GCA Ala 1.143 330 349 AAA Lys 1.556 100 957
    GCC Ala 0.573 301 175 AAG Lys 0.443 902 273
    GCG Ala 0.412 776 126 AUG Met 1.992 030 500
    GCU Ala 1.870 600 571 GUG Met 0.007 968 2
    AGA Arg 1.768 370 369 UUC Phe 0.588 417 381
    AGG Arg 0.666 134 139 UUU Phe 1.411 580 914
    CGA Arg 1.389 780 290 CCA Pro 1.280 700 292
    CGC Arg 0.383 387 80 CCC Pro 0.671 053 153
    CGG Arg 0.388 179 81 CCG Pro 0.447 368 102
    CGU Arg 1.404 150 293 CCU Pro 1.600 880 365
    AAC Asn 0.445 076 235 AGC Ser 0.314 803 84
    AAU Asn 1.554 920 821 AGU Ser 1.315 430 351
    GAC Asp 0.388 708 179 UCA Ser 1.195 500 319
    GAU Asp 1.611 290 742 UCC Ser 0.824 485 220
    UGC Cys 0.489 627 59 UCG Ser 0.520 924 139
    UGU Cys 1.510 370 182 UCU Ser 1.828 860 488
    CAA Gln 1.613 070 617 UAA Ter 1.815 790 46
    CAG Gln 0.386 928 148 UAG Ter 0.434 211 11
    GAA Glu 1.560 400 930 UGA Ter 0.750 000 19
    GAG Glu 0.439 597 262 ACA Thr 1.231 600 343
    GGA Gly 1.645 470 608 ACC Thr 0.667 864 186
    GGC Gly 0.341 001 126 ACG Thr 0.445 242 124
    GGG Gly 0.581 867 215 ACU Thr 1.655 300 461
    GGU Gly 1.431 660 529 UGG Trp 1.000 000 383
    CAC His 0.453 441 112 UAC Tyr 0.335 749 139
    CAU His 1.546 560 382 UAU Tyr 1.664 250 689
    AUA Ile 0.952 549 629 GUA Val 1.530 180 469
    AUC Ile 0.519 435 343 GUC Val 0.440 457 135
    AUU Ile 1.528 020 1 009 GUG Val 0.486 134 149
    CUA Leu 0.834 693 324 GUU Val 1.543 230 473
    CUC Leu 0.314 298 122
    CUG Leu 0.350 365 136
    CUU Leu 1.231 430 478
    UUA Leu 2.060 970 800
    UUG Leu 1.208 240 469
    下载: 导出CSV

    表  6   金花菜叶绿体基因组密码子ENC比值频数分布

    Table  6   Codon ENC ratio frequency distribution in the Medicago polymorpha chloroplast genome

    区间
    Section
    组限
    Group limit
    频数
    Number
    频率
    Frequency
    −0.1~0.0 −0.1 4 0.533 3
    0.0~0.1 0 6 0.080 0
    0.1~0.2 0.1 38 0.506 7
    0.2~0.3 0.2 20 0.266 7
    0.3~0.4 0.3 3 0.040 0
    > 0.4 0.4 4 0.053 3
    合计 Total 75 1.000 0
    下载: 导出CSV

    表  7   金花菜叶绿体基因的最优密码子

    Table  7   Optimal codons in the Medicago polymorpha chloroplast genome

    密码子
    Codon
    氨基酸
    Amino acid
    相对同义密码子使用度
    Relative synonymous
    codon usage (RSCU)
    RSCU高表达
    RSCU high
    expression
    RSCU低表达
    RSCU low
    expression
    RSCU差值
    ΔRSCU
    频度
    Frequency
    数量
    Number
    频度
    Frequency
    数量
    Number
    频度
    Frequency
    数量
    Number
    UUA* Leu 2.060 970 800 1.370 080 58 1.615 380 7 0.245 300
    AUG Met 1.992 030 500 1.000 000 45 1.000 000 6 0.000 000
    GCU* Ala 1.870 600 571 1.600 000 26 1.875 000 5 0.275 000
    UCU Ser 1.828 860 488 1.631 070 56 1.166 670 7 −0.464 400
    UAA* Ter 1.815 790 46 1.200 000 3 1.800 000 3 0.600 000
    AGA Arg 1.768 370 369 1.808 820 41 1.200 000 3 −0.608 820
    UAU Tyr 1.664 250 689 1.674 420 72 1.500 000 3 −0.174 420
    ACU* Thr 1.655 300 461 1.234 040 29 1.714 290 8 0.480 250
    GGA Gly 1.645 470 608 1.706 670 32 0.857 143 9 −0.849 527
    CAA Gln 1.613 070 617 1.371 430 48 1.000 000 2 −0.371 430
    GAU Asp 1.611 290 742 1.639 340 100 1.000 000 6 −0.639 340
    CCU* Pro 1.600 880 365 1.292 930 32 2.142 860 5 0.849 930
    GAA* Glu 1.560 400 930 1.292 310 84 1.666 670 5 0.374 360
    AAA Lys 1.556 100 957 1.364 160 118 1.166 670 7 −0.197 490
    AAU Asn 1.554 920 821 1.594 200 110 1.000 000 8 −0.594 200
    CAU His 1.546 560 382 1.489 360 35 0.666 667 1 −0.822 693
    GUU Val 1.543 230 473 1.733 330 39 1.666 670 10 −0.066 660
    GUA* Val 1.530 180 469 0.933 333 21 1.666 670 10 0.733 337
    AUU* Ile 1.528 020 1 009 1.411 760 80 1.560 000 13 0.148 240
    UGU* Cys 1.510 370 182 1.153 850 15 1.600 000 4 0.446 150
    GGU* Gly 1.431 660 529 1.013 330 19 1.142 860 12 0.129 530
    UUU* Phe 1.411 580 914 1.182 390 94 1.294 120 11 0.111 730
    CGU Arg 1.404 150 293 0.750 000 17 0.800 000 2 0.050 000
    CGA Arg 1.389 780 290 1.235 290 28 1.200 000 3 −0.035 290
    AGU Ser 1.315 430 351 1.135 920 39 −1.135 920
    CCA Pro 1.280 700 292 1.535 350 38 0.428 571 1 −1.106 779
    ACA Thr 1.231 600 343 1.361 700 32 0.857 143 4 −0.504 557
    CUU* Leu 1.231 430 478 1.417 320 60 1.615 380 7 0.198 060
    UUG Leu 1.208 240 469 1.322 830 56 1.153 850 5 −0.168 980
    UCA Ser 1.195 500 319 1.368 930 47 1.000 000 6 −0.368 930
    GCA Ala 1.143 330 349 1.230 770 20 0.375 000 1 −0.855 770
     *表示最优密码子。
     * represents the optimal codon.
    下载: 导出CSV
  • [1] 陈莉敏, 李达旭, 白史且, 张玉, 毛德才, 廖兴勇, 杨晓玲. 60Co-γ 射线辐射对金花菜种子生物学效应的影响. 核农学报, 2022, 36(9): 1701-1706.

    CHEN L M, LI D X, BAI S Q, ZHANG Y, MAO D C, LIAO X Y, YANG X L. The biological effect of 60Co-γ ray radiation on Medicago polymorpha L. seeds. Journal of Nuclear Agricultural Sciences, 2022, 36(9): 1701-1706.

    [2] 刘晓云, 郭振国, 李乔仙, 刘桂霞, 薛世明, 王易鹏. 南苜蓿高效共生根瘤菌土壤的筛选. 生态学报, 2011, 31(14): 4034-4041.

    LIU X Y, GUO Z G, LI Q X, LIU G X, XUE S M, WANG Y P. Screening of highly effective rhizobial strains on Alfalfa (Medicago polymorpha) in soil. Acta Ecologica Sinica, 2011, 31(14): 4034-4041.

    [3] 中国科学院植物研究所. 中国植物志. 北京: 科学出版社, 1998.

    Institute of Botany, Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1998.

    [4] 董磊, 王栋麟, 王琳, 刘大林. 外源水杨酸缓解金花菜高温胁迫的生理响应. 扬州大学学报(农业与生命科学版), 2022, 43(4): 129-136.

    DONG L, WANG D L, WANG L, LIU D L. Physiological effects of exogenous salicylic acid on relatively high-temperature stress in Jinhua. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(4): 129-136.

    [5]

    DENTON M D, HILL C R, BELLOTTI W D, COVENTRY D R. Nodulation of Medicago truncatula and Medicago polymorpha in two pastures of contrasting soil pH and rhizobial populations. Applied Soil Ecology, 2007, 35(2): 441-448. doi: 10.1016/j.apsoil.2006.08.001

    [6] 贾雪杰, 游明鸿, 李达旭, 雷雄, 任小英, 熊晓兰, 杜静, 陈丽敏, 董志晓, 张建波, 马啸. 减量施肥对金花菜-水稻轮作系统中产量和土壤养分的影响. 草地学报, 2023, 31(3): 876-883.

    JIA X J, YOU M H, LI D X, LEI X, REN X Y, XIONG X L, DU J, CHEN L M, DONG Z X, ZHANG J B, MA X. Effects of nutrient coordination on yield and soil nutrients in a burclover-rice rotation system. Acta Agrestia Sinica, 2023, 31(3): 876-883.

    [7] 魏臻武, 任海龙, 武自念, 刘国志, 陈祥, 乔志宏. 金花菜新品种“淮扬金花菜”. 园艺学报, 2015, 42(11): 2335-2336.

    WEI Z W, REN H L, WU Z N, LIU G Z, CHEN X, QIAO Z H. New Medicago polymorpha cultivar, Huaiyang Jinhuacai. Acta Horticulturae Sinica, 2015, 42(11): 2335-2336.

    [8] 洪森荣, 朱盈盈, 李紫莹, 胡明艳, 欧阳克蕙. 盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选. 中国农学通报, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235

    HONG S R, ZHU Y Y, LI Z Y HU M Y, OUYANG K H. Plantlets of Medicago polymorpha and Medicago sativa under salt stress: transcriptome analysis and salt tolerance gene screening. Chinese Agricultural Science Bulletin, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235

    [9]

    TANG D F, WEI F, KASHIF M H, KHAN A, LI Z Q, SHI Q Q, JIA R X, XIE H Y, ZHANG L, LI B, CHEN P, ZHOU R Y. Analysis of chloroplast differences in the leaves of rice isonuclear alloplasmic lines. Protoplasma, 2018, 255(3): 863-871. doi: 10.1007/s00709-017-1189-6

    [10]

    LI G L, PAN Z L, GAO S C, HE Y Y, XIA Q Y, JIN Y, YAO H P. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Genes & Genomics, 2019, 41(10): 1173-1181.

    [11]

    DURET L. Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 2002, 12(6): 640-649.

    [12]

    HERSHBERG R, PETROV D. Selection of codon bias. Annual Review of Genetics, 2008, 42: 287-299.

    [13]

    WANG H J, MENG T, WEI W Q. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes & Genomics, 2018, 40(7): 767-780.

    [14]

    LONG S Y, YAO H P, WU Q, LI G L. Analysis of compositional bias and codon usage pattern of the coding sequence in the Banna virus genome. Virus Research, 2018, 258: 68-72. doi: 10.1016/j.virusres.2018.10.006

    [15]

    FITTER J T, THOMAS M R, ROSE R J, SCOTT N S. Heteroplasmy of the chloroplast genome ofMedicago sativa L. ‘Regen S’ was confirmed by sequence analysis. Theoretical and Applied Genetics, 1996, 93(5-6): 685-690.

    [16] 杨国锋, 苏昆龙, 赵怡然, 宋智斌, 孙娟. 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016

    YANG G F, SU K L, ZHAO Y R, SONG Z B, SUN J. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016

    [17] 喻凤, 韩明. 紫花苜蓿叶绿体基因组密码子偏好性分析. 广西植物, 2021, 41(12): 2069-2076.

    YU F, HAN M. Analysis of codon usage bias in alfalfa chloroplast genome of alfalfa (Medicago sativa). Guihaia, 2021, 41(12): 2069-2076.

    [18] 孙志轩, 敖平星, 毕玉芬, 赵雁. ‘德钦’紫花苜蓿叶绿体基因组序列及特征分析. 草地学报, 2022, 30(2): 320-328.

    SUN Z X, AO P X, BI Y F, ZHAO Y. Complete chloroplast genome sequence and characteristics analysis of Medicago sativa ‘Deqin’. Acta Agrestia Sinica, 2022, 30(2): 320-328.

    [19] 田春育, 李志勇, 刘倩, 于林清, 武自念. 苜蓿属不同物种叶绿体基因组结构比较及亲缘关系分析. 中国草地学报, 2021, 43(10): 1-8.

    TIAN C Y, LI Z Y, LIU Q, YU L Q, WU Z N. Comparison of chloroplast genome structure and phylogenetic analysis of different species of Medicago. Chinese Journal of Grassland, 2021, 43(10): 1-8.

    [20] 赵嫚, 陈仕勇, 李亚萍, 周青平, 陈有军, 常馨丹. 外源 GABA 对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响. 江苏农业学报, 2021, 37(2): 310-316.

    ZHAO M, CHEN S Y, LI Y P, ZHOU Q P, CHEN Y J, CHANG X D. Influence of exogenous γ-aminobutyric acid ( GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 310-316.

    [21] 江舟, 陈丰, 王东军, 魏臻武, 唐晨阳. 金花菜与燕麦间作对牧草产量与品质的影响. 中国草地学报, 2020, 42(5): 127-135.

    JIANG Z, CHEN F, WANG D J, WEI Z W, TANG C Y. Effects of intercropping burr medics with oats on foyield and quality. Chinese Journal of Grassland, 2020, 42(5): 127-135.

    [22] 周克友, 李争艳, 陈祥, 任海龙, 江舟, 魏臻武. 不同光周期条件下金花菜F2代农艺性状的变异特征. 草地学报, 2017, 25(6): 1300-1307.

    ZHOU K Y, LI Z Y, CHEN X, REN H L, JIANG Z, WEI Z W. Study on variation characteristics of Medicago polymorpha F2 generation under different photoperiods. Acta Agrestia Sinica, 2017, 25(6): 1300-1307.

    [23]

    JANSEN R K, RUHLMAN T A. Plastid genomes of seed plants. //BOCK R, KOOP V. Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer Netherlands, 2012: 103-126.

    [24]

    MOWER J P, VICKREY T L. Structural Diversity Amongplastid Genomes of Land Plants. //CHAW S M, JANSEN R K. Advances in Botanical Research. London: Academic Press, 2018: 263-292.

    [25]

    BRUNEAU A, DOYLE J J PALMER J. Chloroplast DNA inversion is a subtribal characteristic in Phaseoleae (Leguminosae). Systematic Botany, 1990, 15(3): 378-386. doi: 10.2307/2419351

    [26]

    KOLODNER R, TEWARI K K. Inverted repeats in chloroplast DNA from higher plants. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(1): 41-45.

    [27]

    SCHWARZ E N, RUHLMAN T A, WENG M L, KHIYAMI M A, SABIR J S M, HAJARAH N H, ALHARBI N S, RABAH S O, JANSEN R K. Plastome-wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. Journal of Molecular Evolution, 2017, 84(4): 187-203. doi: 10.1007/s00239-017-9792-x

    [28] 王晓娟, 董文攀, 周世良. 基于叶绿体基因组分析我国苜蓿属植物演化路径. 生态学报, 2022, 42(15): 6125-6136.

    WANG X J, DONG W P, ZHOU S L. The evolutionary path of Medicago in China was based on chloroplast genome analysis. Acta Ecologica Sinica, 2022, 42(15): 6125-6136.

    [29]

    HONG C P, PARK J, LEE Y, LEE M, PARK S G, UHM Y, LEE J, KIM C. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics, 2017, 18(1): 1-13. doi: 10.1186/s12864-016-3406-7

    [30]

    MILLEN R S, OLMSTEAD R G, ADAMS K L, PALMER J D, LAO N T, HEGGIE L, KAVANAGH T A, HIBBERD J M, GRAY J C, MORDEN C W, CALIE P J, JERMIIN L S, WOLFE K H. Many parallel losses of infA from chloroplast DNA occur during angiosperm evolution, with multiple independent transfers to the nucleus. Plant Cell, 2001, 13(3): 645-658. doi: 10.1105/tpc.13.3.645

    [31]

    SASKI C, LEE S B, DANIELL H, WOOD T C, TOMKINS J, KIM H G, JANSEN R K. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Molecular Biology, 2005, 59(2): 309-322. doi: 10.1007/s11103-005-8882-0

    [32]

    LI B, ZHENG Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Scientific Reports, 2018, 8(1): 9285. doi: 10.1038/s41598-018-27453-7

    [33]

    SALTONSTALL K, LAMBERTINI C. Value of repetitive sequences in chloroplast DNA for phylogeographic inference: A comment on Vachon and Freeland (2011). Molecular Ecology Resources, 2012, 12(4): 581-589.

    [34] 曾令霜, 张晨晨, 张敬, 徐彬. 多年生黑麦草种质SSR分子标记遗传多样性分析. 草业科学, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364

    ZENG L S, ZHANG C C, ZHANG J, XU B. Genetic diversity analysis of perennial ryegrass germplasm using SSR molecular markers. Pratacultural Science, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364

    [35] 张婷婷, 张鹤山, 宋康杰, 赵泽宇, 许本波, 刘洋. 白三叶转录组 SSR 位点特征分析及引物开发. 草业科学, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841

    ZHANG T T, ZHANG H S, SONG K J, ZHAO Z Y, XU B B, LIU Y. Analysis of SSR site characteristics of Trifolium repens transcriptome and primer development. Pratacultural Science, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841

    [36]

    JIANG Y, DENG F, WANG H L. Extensive analysis of global codon usage patterns in baculoviruses. Archives of Virology, 2008, 153(12): 2273-2282. doi: 10.1007/s00705-008-0260-1

    [37]

    QUAX T F, CLAASSENS N, SÖLL D, OOST J. Codon bias as a means to fine-tune gene expression. Molecular Cell, 2015, 59(2): 149-161. doi: 10.1016/j.molcel.2015.05.035

    [38]

    WANG L, ROOSSINCK M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Molecular Biology, 2006, 61(4-5): 699-710. doi: 10.1007/s11103-006-0041-8

图(5)  /  表(7)
计量
  • PDF下载量:  26
  • 文章访问数:  109
  • HTML全文浏览量:  11
  • 被引次数: 0
文章相关
  • 通讯作者: 欧阳克蕙
  • 收稿日期:  2022-12-24
  • 接受日期:  2023-05-15
  • 网络出版日期:  2024-03-20
  • 刊出日期:  2024-04-14

目录

/

返回文章
返回