金花菜叶绿体基因组特征及密码子偏好性分析
本研究对金花菜(Medicago polymorpha, JHC, 江苏)叶绿体基因组进行BGISEQ-500平台测序,对其基因进行Noveplastys组装和GeSeq注释,最后通过MISA、REPuter、Gview、VISTA tools、IRscope和DNADnaSP6.0等软件对其序列特征、基因种类、密码子偏好性以及系统发育进行分析。结果表明,JHC叶绿体基因组大小为124 163 bp,无四分体结构,基因组总GC含量为34.09%,共注释出111个基因(76个CDS 基因、30个tRNA基因、4个rRNA基因、1个假基因)、91个SSR位点和148个长重复序列;JHC叶绿体基因组的第三位密码子偏好以A和U作为末尾碱基,UUA、GCU、UAA、ACU、CCU、GAA、GUA、AUU、UGU、GGU、UUU、CUU为JHC叶绿体基因组的最优密码子;JHC与MZ772862 (云南)亲缘关系较近,与MW971560 (美国)、NC_042848 (美国)关系较远,表明中国金花菜与美国金花菜的起源存在差异。
-
关键词:
- 金花菜 /
- 叶绿体基因组 /
- 中性绘图分析 /
- ENC-plot分析 /
- PR2-plot分析 /
- 最优密码子 /
- 系统发育分析
English
-
参考文献
[1] 陈莉敏, 李达旭, 白史且, 张玉, 毛德才, 廖兴勇, 杨晓玲. 60Co-γ 射线辐射对金花菜种子生物学效应的影响. 核农学报, 2022, 36(9): 1701-1706. CHEN L M, LI D X, BAI S Q, ZHANG Y, MAO D C, LIAO X Y, YANG X L. The biological effect of 60Co-γ ray radiation on Medicago polymorpha L. seeds. Journal of Nuclear Agricultural Sciences, 2022, 36(9): 1701-1706.
[2] 刘晓云, 郭振国, 李乔仙, 刘桂霞, 薛世明, 王易鹏. 南苜蓿高效共生根瘤菌土壤的筛选. 生态学报, 2011, 31(14): 4034-4041. LIU X Y, GUO Z G, LI Q X, LIU G X, XUE S M, WANG Y P. Screening of highly effective rhizobial strains on Alfalfa (Medicago polymorpha) in soil. Acta Ecologica Sinica, 2011, 31(14): 4034-4041.
[3] 中国科学院植物研究所. 中国植物志. 北京: 科学出版社, 1998. Institute of Botany, Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1998.
[4] 董磊, 王栋麟, 王琳, 刘大林. 外源水杨酸缓解金花菜高温胁迫的生理响应. 扬州大学学报(农业与生命科学版), 2022, 43(4): 129-136. DONG L, WANG D L, WANG L, LIU D L. Physiological effects of exogenous salicylic acid on relatively high-temperature stress in Jinhua. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(4): 129-136.
[5] DENTON M D, HILL C R, BELLOTTI W D, COVENTRY D R. Nodulation of Medicago truncatula and Medicago polymorpha in two pastures of contrasting soil pH and rhizobial populations. Applied Soil Ecology, 2007, 35(2): 441-448. doi: 10.1016/j.apsoil.2006.08.001
[6] 贾雪杰, 游明鸿, 李达旭, 雷雄, 任小英, 熊晓兰, 杜静, 陈丽敏, 董志晓, 张建波, 马啸. 减量施肥对金花菜-水稻轮作系统中产量和土壤养分的影响. 草地学报, 2023, 31(3): 876-883. JIA X J, YOU M H, LI D X, LEI X, REN X Y, XIONG X L, DU J, CHEN L M, DONG Z X, ZHANG J B, MA X. Effects of nutrient coordination on yield and soil nutrients in a burclover-rice rotation system. Acta Agrestia Sinica, 2023, 31(3): 876-883.
[7] 魏臻武, 任海龙, 武自念, 刘国志, 陈祥, 乔志宏. 金花菜新品种“淮扬金花菜”. 园艺学报, 2015, 42(11): 2335-2336. WEI Z W, REN H L, WU Z N, LIU G Z, CHEN X, QIAO Z H. New Medicago polymorpha cultivar, Huaiyang Jinhuacai. Acta Horticulturae Sinica, 2015, 42(11): 2335-2336.
[8] 洪森荣, 朱盈盈, 李紫莹, 胡明艳, 欧阳克蕙. 盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选. 中国农学通报, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235 HONG S R, ZHU Y Y, LI Z Y HU M Y, OUYANG K H. Plantlets of Medicago polymorpha and Medicago sativa under salt stress: transcriptome analysis and salt tolerance gene screening. Chinese Agricultural Science Bulletin, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235
[9] TANG D F, WEI F, KASHIF M H, KHAN A, LI Z Q, SHI Q Q, JIA R X, XIE H Y, ZHANG L, LI B, CHEN P, ZHOU R Y. Analysis of chloroplast differences in the leaves of rice isonuclear alloplasmic lines. Protoplasma, 2018, 255(3): 863-871. doi: 10.1007/s00709-017-1189-6
[10] LI G L, PAN Z L, GAO S C, HE Y Y, XIA Q Y, JIN Y, YAO H P. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Genes & Genomics, 2019, 41(10): 1173-1181.
[11] DURET L. Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 2002, 12(6): 640-649.
[12] HERSHBERG R, PETROV D. Selection of codon bias. Annual Review of Genetics, 2008, 42: 287-299.
[13] WANG H J, MENG T, WEI W Q. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes & Genomics, 2018, 40(7): 767-780.
[14] LONG S Y, YAO H P, WU Q, LI G L. Analysis of compositional bias and codon usage pattern of the coding sequence in the Banna virus genome. Virus Research, 2018, 258: 68-72. doi: 10.1016/j.virusres.2018.10.006
[15] FITTER J T, THOMAS M R, ROSE R J, SCOTT N S. Heteroplasmy of the chloroplast genome ofMedicago sativa L. ‘Regen S’ was confirmed by sequence analysis. Theoretical and Applied Genetics, 1996, 93(5-6): 685-690.
[16] 杨国锋, 苏昆龙, 赵怡然, 宋智斌, 孙娟. 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016 YANG G F, SU K L, ZHAO Y R, SONG Z B, SUN J. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016
[17] 喻凤, 韩明. 紫花苜蓿叶绿体基因组密码子偏好性分析. 广西植物, 2021, 41(12): 2069-2076. YU F, HAN M. Analysis of codon usage bias in alfalfa chloroplast genome of alfalfa (Medicago sativa). Guihaia, 2021, 41(12): 2069-2076.
[18] 孙志轩, 敖平星, 毕玉芬, 赵雁. ‘德钦’紫花苜蓿叶绿体基因组序列及特征分析. 草地学报, 2022, 30(2): 320-328. SUN Z X, AO P X, BI Y F, ZHAO Y. Complete chloroplast genome sequence and characteristics analysis of Medicago sativa ‘Deqin’. Acta Agrestia Sinica, 2022, 30(2): 320-328.
[19] 田春育, 李志勇, 刘倩, 于林清, 武自念. 苜蓿属不同物种叶绿体基因组结构比较及亲缘关系分析. 中国草地学报, 2021, 43(10): 1-8. TIAN C Y, LI Z Y, LIU Q, YU L Q, WU Z N. Comparison of chloroplast genome structure and phylogenetic analysis of different species of Medicago. Chinese Journal of Grassland, 2021, 43(10): 1-8.
[20] 赵嫚, 陈仕勇, 李亚萍, 周青平, 陈有军, 常馨丹. 外源 GABA 对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响. 江苏农业学报, 2021, 37(2): 310-316. ZHAO M, CHEN S Y, LI Y P, ZHOU Q P, CHEN Y J, CHANG X D. Influence of exogenous γ-aminobutyric acid ( GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 310-316.
[21] 江舟, 陈丰, 王东军, 魏臻武, 唐晨阳. 金花菜与燕麦间作对牧草产量与品质的影响. 中国草地学报, 2020, 42(5): 127-135. JIANG Z, CHEN F, WANG D J, WEI Z W, TANG C Y. Effects of intercropping burr medics with oats on foyield and quality. Chinese Journal of Grassland, 2020, 42(5): 127-135.
[22] 周克友, 李争艳, 陈祥, 任海龙, 江舟, 魏臻武. 不同光周期条件下金花菜F2代农艺性状的变异特征. 草地学报, 2017, 25(6): 1300-1307. ZHOU K Y, LI Z Y, CHEN X, REN H L, JIANG Z, WEI Z W. Study on variation characteristics of Medicago polymorpha F2 generation under different photoperiods. Acta Agrestia Sinica, 2017, 25(6): 1300-1307.
[23] JANSEN R K, RUHLMAN T A. Plastid genomes of seed plants. //BOCK R, KOOP V. Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer Netherlands, 2012: 103-126.
[24] MOWER J P, VICKREY T L. Structural Diversity Amongplastid Genomes of Land Plants. //CHAW S M, JANSEN R K. Advances in Botanical Research. London: Academic Press, 2018: 263-292.
[25] BRUNEAU A, DOYLE J J PALMER J. Chloroplast DNA inversion is a subtribal characteristic in Phaseoleae (Leguminosae). Systematic Botany, 1990, 15(3): 378-386. doi: 10.2307/2419351
[26] KOLODNER R, TEWARI K K. Inverted repeats in chloroplast DNA from higher plants. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(1): 41-45.
[27] SCHWARZ E N, RUHLMAN T A, WENG M L, KHIYAMI M A, SABIR J S M, HAJARAH N H, ALHARBI N S, RABAH S O, JANSEN R K. Plastome-wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. Journal of Molecular Evolution, 2017, 84(4): 187-203. doi: 10.1007/s00239-017-9792-x
[28] 王晓娟, 董文攀, 周世良. 基于叶绿体基因组分析我国苜蓿属植物演化路径. 生态学报, 2022, 42(15): 6125-6136. WANG X J, DONG W P, ZHOU S L. The evolutionary path of Medicago in China was based on chloroplast genome analysis. Acta Ecologica Sinica, 2022, 42(15): 6125-6136.
[29] HONG C P, PARK J, LEE Y, LEE M, PARK S G, UHM Y, LEE J, KIM C. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics, 2017, 18(1): 1-13. doi: 10.1186/s12864-016-3406-7
[30] MILLEN R S, OLMSTEAD R G, ADAMS K L, PALMER J D, LAO N T, HEGGIE L, KAVANAGH T A, HIBBERD J M, GRAY J C, MORDEN C W, CALIE P J, JERMIIN L S, WOLFE K H. Many parallel losses of infA from chloroplast DNA occur during angiosperm evolution, with multiple independent transfers to the nucleus. Plant Cell, 2001, 13(3): 645-658. doi: 10.1105/tpc.13.3.645
[31] SASKI C, LEE S B, DANIELL H, WOOD T C, TOMKINS J, KIM H G, JANSEN R K. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Molecular Biology, 2005, 59(2): 309-322. doi: 10.1007/s11103-005-8882-0
[32] LI B, ZHENG Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Scientific Reports, 2018, 8(1): 9285. doi: 10.1038/s41598-018-27453-7
[33] SALTONSTALL K, LAMBERTINI C. Value of repetitive sequences in chloroplast DNA for phylogeographic inference: A comment on Vachon and Freeland (2011). Molecular Ecology Resources, 2012, 12(4): 581-589.
[34] 曾令霜, 张晨晨, 张敬, 徐彬. 多年生黑麦草种质SSR分子标记遗传多样性分析. 草业科学, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364 ZENG L S, ZHANG C C, ZHANG J, XU B. Genetic diversity analysis of perennial ryegrass germplasm using SSR molecular markers. Pratacultural Science, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364
[35] 张婷婷, 张鹤山, 宋康杰, 赵泽宇, 许本波, 刘洋. 白三叶转录组 SSR 位点特征分析及引物开发. 草业科学, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841 ZHANG T T, ZHANG H S, SONG K J, ZHAO Z Y, XU B B, LIU Y. Analysis of SSR site characteristics of Trifolium repens transcriptome and primer development. Pratacultural Science, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841
[36] JIANG Y, DENG F, WANG H L. Extensive analysis of global codon usage patterns in baculoviruses. Archives of Virology, 2008, 153(12): 2273-2282. doi: 10.1007/s00705-008-0260-1
[37] QUAX T F, CLAASSENS N, SÖLL D, OOST J. Codon bias as a means to fine-tune gene expression. Molecular Cell, 2015, 59(2): 149-161. doi: 10.1016/j.molcel.2015.05.035
[38] WANG L, ROOSSINCK M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Molecular Biology, 2006, 61(4-5): 699-710. doi: 10.1007/s11103-006-0041-8
-
图 2 金花菜及其9个近缘种叶绿体基因组变异圈图
物种从内向外第3圈开始依次为:Medicago radiata NC_042854、花苜MW703984、刺果苜蓿NC_042851、南苜蓿MW971560、金花菜JHC、蒺藜苜蓿JX512022、木本苜蓿NC_042856、Medicago marina NC_042845、野苜蓿MW271003、紫花苜蓿MN218692。右上角GC和GC skew是最内两圈,CDS、rRNA、tRNA圆圈中心位置。
Figure 2. Chloroplast genome variation circle diagram for Medicago polymorpha and nine closely related species
Species start from inner to outer ring: Medicago radiata NC_042854, M. ruthenica MW703984, M. intertexta NC_042851, M. polymorpha MW971560, M. polymorpha (JHC), M. truncatula JX512022, M. arborea NC_042856, M. marina NC_042845, M. falcata MW271003, M. sativa MN218692. GC and GC skew are the two innermost circles in the upper right corner; CDS, rRNA, and tRNA circles are in the center.
图 4 金花菜及其9个近缘种叶绿体基因组密码子的偏性分析
物种同图2。密码子第1、2、3位的GC含量分别用GC1、GC2、GC3表示;密码子总GC含量用GCall表示。表4同。
Figure 4. Partial chloroplast genome codon analysis for Medicago polymorpha and nine closely related species
The species are the same as Figure 2. GC content at first, second, and third codon positions are represented as GC1, GC2, and GC3, respectively; Total codon GC content is represented by GCall. This is applicable for Table 4 as well.
表 1 金花菜45个近缘种和2个外类群物种的产地或来源
Table 1 Origin or source of 45 closely related species and 2 species level taxa of Medicago polymorpha
序号
Number近缘种或外
类群物种
Related species or
outgroup species产地或来源
Origin or
source序号
Number近缘种或外
类群物种
Related species or
outgroup species产地或来源
Origin or
source序号
Number近缘种或外
类群物种
Related species or
outgroup species产地或来源
Origin or
source1 紫花苜蓿
Medicago sativa KU321683中国
China17 蒺藜苜蓿
Medicago truncatula JX512023美国
USA33 Medicago intertexta NC_042851 美国
USA2 紫花苜蓿
Medicago sativa MN218692云南省德钦县
Deqin County, Yunnan Province18 蒺藜苜蓿
Medicago truncatula JX512024美国
USA34 Medicago orbicularis NC_042850 美国
USA3 紫花苜蓿
Medicago sativa NC_042841美国
USA19 蒺藜苜蓿
Medicago truncatula JX512022美国
USA35 天蓝苜蓿
Medicago lupulina NC_042847美国
USA4 紫花苜蓿
Medicago sativa MZ983396中国
China20 蒺藜苜蓿
Medicago truncatula f. tricycla KF241982美国
USA36 Medicago tenoreana NC_057658 美国
USA5 野苜蓿
Medicago falcata MW271002中国
China21 Medicago scutellata MZ895077 中国
China37 Medicago disciformis NC_057655 美国
USA6 野苜蓿
Medicago falcata NC_032066中国
China22 早花苜蓿
Medicago praecox NC_057657美国
USA38 小苜蓿
Medicago minima NC_042849美国
USA7 野苜蓿
Medicago falcata MK460490美国
USA23 金花菜
Medicago polymorpha MZ772862中国
China39 Medicago coronata NC_057660 美国
USA8 野苜蓿
Medicago falcata MW271003中国
China24 金花菜
Medicago polymorpha MW971560美国
USA40 Medicago suffruticosa NC_042843 美国
USA9 Medicago tetraprostra NC_042844 美国
USA25 金花菜
Medicago polymorpha NC_042848美国
USA41 Medicago biflora NC_042415 美国
USA10 紫花苜蓿
Medicago sativa subsp. Glomerata MK460494美国
USA26 褐斑苜蓿
Medicago arabica MT584354美国
USA42 毛荚苜蓿
Medicago edgeworthii NC_042415中国
China11 Medicago hybrida NC_027153 加拿大
Canada27 褐斑苜蓿
Medicago arabica NC_057661美国
USA43 花苜蓿
Medicago ruthenica NC_053371中国
China12 Medicago papillosa NC_027154 加拿大
Canada28 褐斑苜蓿
Medicago arabica MZ905469中国
China44 Medicago radiata NC_042854 美国
USA13 Medicago cretacea NC_042842 美国
USA29 Medicago secundiflora NC_057656 美国
USA45 Medicago monspeliaca NC_042855 美国
USA14 Medicago marina NC_042845 美国
USA30 Medicago blancheana NC_042852 美国
USA46 白花草木樨
Melilotus albus NC_041419中国
China15 木本苜蓿
Medicago arborea NC_042856美国
USA31 Medicago laciniata NC_042853 美国
USA47 胡卢巴
Trigonella foenum-graecum NC_042857美国
USA16 Medicago pironae NC_042846 美国
USA32 Medicago sauvagei NC_057659 美国
USA表 2 金花菜叶绿体基因的类型分析
Table 2 Type analysis of chloroplast genes in Medicago polymorpha
基因功能
Gene function基因类型
Gene type基因名
Gene name基因数量
Number of genes光合作用
Photosynthesis光系统Ⅰ photosystem Ⅰ psaA, psaB, psaC, psaI, psaJ 5 光系统Ⅱ photosystem Ⅱ psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbK, psbL, psbM, psbT, psbZ, psbN 15 NADH 脱氢酶
NADH dehydrogenasendhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 11 细胞色素b /f 复合体
cytochrome b/f complexpetA, petB, petD, petG, petL, petN 6 ATP 合成酶 ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 6 自我复制
Self-replication核糖体大亚基蛋白质
Proteins of large ribosomal subunitrpl14, rpl16, rpl2, rpl20, rpl23, rpl32, rpl33, rpl36 8 核糖体小亚基蛋白质
Proteins of small ribosomal subunitrps11, rps12, rps14, rps15, rps18, rps19, rps2, rps3, rps4, rps7, rps8 11 核糖体大亚基 Large subunit of rubisco rbcL 1 RNA 聚合酶 RNA polymerase rpoA, rpoB, rpoC1, rpoC2 4 核糖体 RNA Ribosomal RNAs rrn16, rrn23, rrn4.5, rrn5 4 转运
RNA Transfer RNAstrnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU, trnI-GAU, trnK-UUU, trnL-CAA, trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnV-UAC, trnW-CCA, trnY-GUA, trnfM-CAU 30 其他基因
Other genes成熟酶 Maturase matK 1 蛋白酶
ProteaseclpP1 1 囊膜蛋白 Envelope membrane protein cemA 1 乙酰辅酶A 羧化酶 Acetyl-CoA carboxylase accD 1 c-型细胞色素合成基因
c-type cytochrome synthesis geneccsA 1 翻译起始因子
Translation initiation factorinfA 1 未知功能基因
Unknown function
gene保守假设叶绿体阅读框架
Conserved hypothetical chloroplast
Reading Framesycf1, ycf2, ycf3, ycf4 4 表 3 金花菜叶绿体基因组中简单重复序列的类型及分布
Table 3 Type and distribution of simple repeat sequences within the Medicago polymorpha chloroplast genome
重复单元碱基类型
Repetitive unit
base type重复单元重复次数 Repeat number of repeat units 总数
Total5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A/T − − − − − 33 15 10 8 5 − 2 − 1 1 75 C/G − − − − − − − 1 − − − − − − − 1 AT/AT − 11 1 1 − − − − − − − − − − − 13 AAT/ATT 1 − − − − − − − − − − − − − − 1 ATC/ATG 1 − − − − − − − − − − − − − − 1 表 4 金花菜叶绿体基因组GCall、GC1、GC2、GC3和ENC的相关性分析
Table 4 Correlation analysis of the chloroplast genome GCall, GC1, GC2, GC3, and ENC in Medicago polymorpha
指标 Parameter GCall GC1 GC2 GC3 ENC GCall 1 GC1 0.807 080 845** 1 GC2 0.751 657 748** 0.379 814 149* 1 GC3 0.453 207 251* 0.124 498 687 0.072 925 809 1 ENC 0.002 157 050 −0.074 635 309 −0.074 619 818 0.239 857 869* 1 *和**分别表示相关性在0.05和0.01水平上显著相关;ENC 表示有效密码子数。
* and ** indicate significant correlation at the 0.05 and 0.01 levels, respectively; ENC indicates the number of valid codons.表 5 金花菜叶绿体基因组密码子的相对同义密码子使用度
Table 5 Relative synonymouscodon usagec (RSCU) of chloroplast genome codons in Medicago polymorpha
密码子
Codon氨基酸
Amino acid相对同义密码子使用度
Relative synonymous
codon usage (RSCU)密码子
Codon氨基酸
Amino acid相对同义密码子使用度
Relative synonymous
codon usage (RSCU)频度
Frequency数量
Number频度
Frequency数量
NumberGCA Ala 1.143 330 349 AAA Lys 1.556 100 957 GCC Ala 0.573 301 175 AAG Lys 0.443 902 273 GCG Ala 0.412 776 126 AUG Met 1.992 030 500 GCU Ala 1.870 600 571 GUG Met 0.007 968 2 AGA Arg 1.768 370 369 UUC Phe 0.588 417 381 AGG Arg 0.666 134 139 UUU Phe 1.411 580 914 CGA Arg 1.389 780 290 CCA Pro 1.280 700 292 CGC Arg 0.383 387 80 CCC Pro 0.671 053 153 CGG Arg 0.388 179 81 CCG Pro 0.447 368 102 CGU Arg 1.404 150 293 CCU Pro 1.600 880 365 AAC Asn 0.445 076 235 AGC Ser 0.314 803 84 AAU Asn 1.554 920 821 AGU Ser 1.315 430 351 GAC Asp 0.388 708 179 UCA Ser 1.195 500 319 GAU Asp 1.611 290 742 UCC Ser 0.824 485 220 UGC Cys 0.489 627 59 UCG Ser 0.520 924 139 UGU Cys 1.510 370 182 UCU Ser 1.828 860 488 CAA Gln 1.613 070 617 UAA Ter 1.815 790 46 CAG Gln 0.386 928 148 UAG Ter 0.434 211 11 GAA Glu 1.560 400 930 UGA Ter 0.750 000 19 GAG Glu 0.439 597 262 ACA Thr 1.231 600 343 GGA Gly 1.645 470 608 ACC Thr 0.667 864 186 GGC Gly 0.341 001 126 ACG Thr 0.445 242 124 GGG Gly 0.581 867 215 ACU Thr 1.655 300 461 GGU Gly 1.431 660 529 UGG Trp 1.000 000 383 CAC His 0.453 441 112 UAC Tyr 0.335 749 139 CAU His 1.546 560 382 UAU Tyr 1.664 250 689 AUA Ile 0.952 549 629 GUA Val 1.530 180 469 AUC Ile 0.519 435 343 GUC Val 0.440 457 135 AUU Ile 1.528 020 1 009 GUG Val 0.486 134 149 CUA Leu 0.834 693 324 GUU Val 1.543 230 473 CUC Leu 0.314 298 122 CUG Leu 0.350 365 136 CUU Leu 1.231 430 478 UUA Leu 2.060 970 800 UUG Leu 1.208 240 469 表 6 金花菜叶绿体基因组密码子ENC比值频数分布
Table 6 Codon ENC ratio frequency distribution in the Medicago polymorpha chloroplast genome
区间
Section组限
Group limit频数
Number频率
Frequency−0.1~0.0 −0.1 4 0.533 3 0.0~0.1 0 6 0.080 0 0.1~0.2 0.1 38 0.506 7 0.2~0.3 0.2 20 0.266 7 0.3~0.4 0.3 3 0.040 0 > 0.4 0.4 4 0.053 3 合计 Total 75 1.000 0 表 7 金花菜叶绿体基因的最优密码子
Table 7 Optimal codons in the Medicago polymorpha chloroplast genome
密码子
Codon氨基酸
Amino acid相对同义密码子使用度
Relative synonymous
codon usage (RSCU)RSCU高表达
RSCU high
expressionRSCU低表达
RSCU low
expressionRSCU差值
ΔRSCU频度
Frequency数量
Number频度
Frequency数量
Number频度
Frequency数量
NumberUUA* Leu 2.060 970 800 1.370 080 58 1.615 380 7 0.245 300 AUG Met 1.992 030 500 1.000 000 45 1.000 000 6 0.000 000 GCU* Ala 1.870 600 571 1.600 000 26 1.875 000 5 0.275 000 UCU Ser 1.828 860 488 1.631 070 56 1.166 670 7 −0.464 400 UAA* Ter 1.815 790 46 1.200 000 3 1.800 000 3 0.600 000 AGA Arg 1.768 370 369 1.808 820 41 1.200 000 3 −0.608 820 UAU Tyr 1.664 250 689 1.674 420 72 1.500 000 3 −0.174 420 ACU* Thr 1.655 300 461 1.234 040 29 1.714 290 8 0.480 250 GGA Gly 1.645 470 608 1.706 670 32 0.857 143 9 −0.849 527 CAA Gln 1.613 070 617 1.371 430 48 1.000 000 2 −0.371 430 GAU Asp 1.611 290 742 1.639 340 100 1.000 000 6 −0.639 340 CCU* Pro 1.600 880 365 1.292 930 32 2.142 860 5 0.849 930 GAA* Glu 1.560 400 930 1.292 310 84 1.666 670 5 0.374 360 AAA Lys 1.556 100 957 1.364 160 118 1.166 670 7 −0.197 490 AAU Asn 1.554 920 821 1.594 200 110 1.000 000 8 −0.594 200 CAU His 1.546 560 382 1.489 360 35 0.666 667 1 −0.822 693 GUU Val 1.543 230 473 1.733 330 39 1.666 670 10 −0.066 660 GUA* Val 1.530 180 469 0.933 333 21 1.666 670 10 0.733 337 AUU* Ile 1.528 020 1 009 1.411 760 80 1.560 000 13 0.148 240 UGU* Cys 1.510 370 182 1.153 850 15 1.600 000 4 0.446 150 GGU* Gly 1.431 660 529 1.013 330 19 1.142 860 12 0.129 530 UUU* Phe 1.411 580 914 1.182 390 94 1.294 120 11 0.111 730 CGU Arg 1.404 150 293 0.750 000 17 0.800 000 2 0.050 000 CGA Arg 1.389 780 290 1.235 290 28 1.200 000 3 −0.035 290 AGU Ser 1.315 430 351 1.135 920 39 −1.135 920 CCA Pro 1.280 700 292 1.535 350 38 0.428 571 1 −1.106 779 ACA Thr 1.231 600 343 1.361 700 32 0.857 143 4 −0.504 557 CUU* Leu 1.231 430 478 1.417 320 60 1.615 380 7 0.198 060 UUG Leu 1.208 240 469 1.322 830 56 1.153 850 5 −0.168 980 UCA Ser 1.195 500 319 1.368 930 47 1.000 000 6 −0.368 930 GCA Ala 1.143 330 349 1.230 770 20 0.375 000 1 −0.855 770 *表示最优密码子。
* represents the optimal codon. -
[1] 陈莉敏, 李达旭, 白史且, 张玉, 毛德才, 廖兴勇, 杨晓玲. 60Co-γ 射线辐射对金花菜种子生物学效应的影响. 核农学报, 2022, 36(9): 1701-1706. CHEN L M, LI D X, BAI S Q, ZHANG Y, MAO D C, LIAO X Y, YANG X L. The biological effect of 60Co-γ ray radiation on Medicago polymorpha L. seeds. Journal of Nuclear Agricultural Sciences, 2022, 36(9): 1701-1706.
[2] 刘晓云, 郭振国, 李乔仙, 刘桂霞, 薛世明, 王易鹏. 南苜蓿高效共生根瘤菌土壤的筛选. 生态学报, 2011, 31(14): 4034-4041. LIU X Y, GUO Z G, LI Q X, LIU G X, XUE S M, WANG Y P. Screening of highly effective rhizobial strains on Alfalfa (Medicago polymorpha) in soil. Acta Ecologica Sinica, 2011, 31(14): 4034-4041.
[3] 中国科学院植物研究所. 中国植物志. 北京: 科学出版社, 1998. Institute of Botany, Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1998.
[4] 董磊, 王栋麟, 王琳, 刘大林. 外源水杨酸缓解金花菜高温胁迫的生理响应. 扬州大学学报(农业与生命科学版), 2022, 43(4): 129-136. DONG L, WANG D L, WANG L, LIU D L. Physiological effects of exogenous salicylic acid on relatively high-temperature stress in Jinhua. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(4): 129-136.
[5] DENTON M D, HILL C R, BELLOTTI W D, COVENTRY D R. Nodulation of Medicago truncatula and Medicago polymorpha in two pastures of contrasting soil pH and rhizobial populations. Applied Soil Ecology, 2007, 35(2): 441-448. doi: 10.1016/j.apsoil.2006.08.001
[6] 贾雪杰, 游明鸿, 李达旭, 雷雄, 任小英, 熊晓兰, 杜静, 陈丽敏, 董志晓, 张建波, 马啸. 减量施肥对金花菜-水稻轮作系统中产量和土壤养分的影响. 草地学报, 2023, 31(3): 876-883. JIA X J, YOU M H, LI D X, LEI X, REN X Y, XIONG X L, DU J, CHEN L M, DONG Z X, ZHANG J B, MA X. Effects of nutrient coordination on yield and soil nutrients in a burclover-rice rotation system. Acta Agrestia Sinica, 2023, 31(3): 876-883.
[7] 魏臻武, 任海龙, 武自念, 刘国志, 陈祥, 乔志宏. 金花菜新品种“淮扬金花菜”. 园艺学报, 2015, 42(11): 2335-2336. WEI Z W, REN H L, WU Z N, LIU G Z, CHEN X, QIAO Z H. New Medicago polymorpha cultivar, Huaiyang Jinhuacai. Acta Horticulturae Sinica, 2015, 42(11): 2335-2336.
[8] 洪森荣, 朱盈盈, 李紫莹, 胡明艳, 欧阳克蕙. 盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选. 中国农学通报, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235 HONG S R, ZHU Y Y, LI Z Y HU M Y, OUYANG K H. Plantlets of Medicago polymorpha and Medicago sativa under salt stress: transcriptome analysis and salt tolerance gene screening. Chinese Agricultural Science Bulletin, 2023, 39(3): 111-118. doi: 10.11924/j.issn.1000-6850.casb2022-0235
[9] TANG D F, WEI F, KASHIF M H, KHAN A, LI Z Q, SHI Q Q, JIA R X, XIE H Y, ZHANG L, LI B, CHEN P, ZHOU R Y. Analysis of chloroplast differences in the leaves of rice isonuclear alloplasmic lines. Protoplasma, 2018, 255(3): 863-871. doi: 10.1007/s00709-017-1189-6
[10] LI G L, PAN Z L, GAO S C, HE Y Y, XIA Q Y, JIN Y, YAO H P. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis. Genes & Genomics, 2019, 41(10): 1173-1181.
[11] DURET L. Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 2002, 12(6): 640-649.
[12] HERSHBERG R, PETROV D. Selection of codon bias. Annual Review of Genetics, 2008, 42: 287-299.
[13] WANG H J, MENG T, WEI W Q. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes & Genomics, 2018, 40(7): 767-780.
[14] LONG S Y, YAO H P, WU Q, LI G L. Analysis of compositional bias and codon usage pattern of the coding sequence in the Banna virus genome. Virus Research, 2018, 258: 68-72. doi: 10.1016/j.virusres.2018.10.006
[15] FITTER J T, THOMAS M R, ROSE R J, SCOTT N S. Heteroplasmy of the chloroplast genome ofMedicago sativa L. ‘Regen S’ was confirmed by sequence analysis. Theoretical and Applied Genetics, 1996, 93(5-6): 685-690.
[16] 杨国锋, 苏昆龙, 赵怡然, 宋智斌, 孙娟. 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016 YANG G F, SU K L, ZHAO Y R, SONG Z B, SUN J. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 2015, 24(12): 171-179. doi: 10.11686/cyxb2015016
[17] 喻凤, 韩明. 紫花苜蓿叶绿体基因组密码子偏好性分析. 广西植物, 2021, 41(12): 2069-2076. YU F, HAN M. Analysis of codon usage bias in alfalfa chloroplast genome of alfalfa (Medicago sativa). Guihaia, 2021, 41(12): 2069-2076.
[18] 孙志轩, 敖平星, 毕玉芬, 赵雁. ‘德钦’紫花苜蓿叶绿体基因组序列及特征分析. 草地学报, 2022, 30(2): 320-328. SUN Z X, AO P X, BI Y F, ZHAO Y. Complete chloroplast genome sequence and characteristics analysis of Medicago sativa ‘Deqin’. Acta Agrestia Sinica, 2022, 30(2): 320-328.
[19] 田春育, 李志勇, 刘倩, 于林清, 武自念. 苜蓿属不同物种叶绿体基因组结构比较及亲缘关系分析. 中国草地学报, 2021, 43(10): 1-8. TIAN C Y, LI Z Y, LIU Q, YU L Q, WU Z N. Comparison of chloroplast genome structure and phylogenetic analysis of different species of Medicago. Chinese Journal of Grassland, 2021, 43(10): 1-8.
[20] 赵嫚, 陈仕勇, 李亚萍, 周青平, 陈有军, 常馨丹. 外源 GABA 对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响. 江苏农业学报, 2021, 37(2): 310-316. ZHAO M, CHEN S Y, LI Y P, ZHOU Q P, CHEN Y J, CHANG X D. Influence of exogenous γ-aminobutyric acid ( GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 310-316.
[21] 江舟, 陈丰, 王东军, 魏臻武, 唐晨阳. 金花菜与燕麦间作对牧草产量与品质的影响. 中国草地学报, 2020, 42(5): 127-135. JIANG Z, CHEN F, WANG D J, WEI Z W, TANG C Y. Effects of intercropping burr medics with oats on foyield and quality. Chinese Journal of Grassland, 2020, 42(5): 127-135.
[22] 周克友, 李争艳, 陈祥, 任海龙, 江舟, 魏臻武. 不同光周期条件下金花菜F2代农艺性状的变异特征. 草地学报, 2017, 25(6): 1300-1307. ZHOU K Y, LI Z Y, CHEN X, REN H L, JIANG Z, WEI Z W. Study on variation characteristics of Medicago polymorpha F2 generation under different photoperiods. Acta Agrestia Sinica, 2017, 25(6): 1300-1307.
[23] JANSEN R K, RUHLMAN T A. Plastid genomes of seed plants. //BOCK R, KOOP V. Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer Netherlands, 2012: 103-126.
[24] MOWER J P, VICKREY T L. Structural Diversity Amongplastid Genomes of Land Plants. //CHAW S M, JANSEN R K. Advances in Botanical Research. London: Academic Press, 2018: 263-292.
[25] BRUNEAU A, DOYLE J J PALMER J. Chloroplast DNA inversion is a subtribal characteristic in Phaseoleae (Leguminosae). Systematic Botany, 1990, 15(3): 378-386. doi: 10.2307/2419351
[26] KOLODNER R, TEWARI K K. Inverted repeats in chloroplast DNA from higher plants. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(1): 41-45.
[27] SCHWARZ E N, RUHLMAN T A, WENG M L, KHIYAMI M A, SABIR J S M, HAJARAH N H, ALHARBI N S, RABAH S O, JANSEN R K. Plastome-wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. Journal of Molecular Evolution, 2017, 84(4): 187-203. doi: 10.1007/s00239-017-9792-x
[28] 王晓娟, 董文攀, 周世良. 基于叶绿体基因组分析我国苜蓿属植物演化路径. 生态学报, 2022, 42(15): 6125-6136. WANG X J, DONG W P, ZHOU S L. The evolutionary path of Medicago in China was based on chloroplast genome analysis. Acta Ecologica Sinica, 2022, 42(15): 6125-6136.
[29] HONG C P, PARK J, LEE Y, LEE M, PARK S G, UHM Y, LEE J, KIM C. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics, 2017, 18(1): 1-13. doi: 10.1186/s12864-016-3406-7
[30] MILLEN R S, OLMSTEAD R G, ADAMS K L, PALMER J D, LAO N T, HEGGIE L, KAVANAGH T A, HIBBERD J M, GRAY J C, MORDEN C W, CALIE P J, JERMIIN L S, WOLFE K H. Many parallel losses of infA from chloroplast DNA occur during angiosperm evolution, with multiple independent transfers to the nucleus. Plant Cell, 2001, 13(3): 645-658. doi: 10.1105/tpc.13.3.645
[31] SASKI C, LEE S B, DANIELL H, WOOD T C, TOMKINS J, KIM H G, JANSEN R K. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Molecular Biology, 2005, 59(2): 309-322. doi: 10.1007/s11103-005-8882-0
[32] LI B, ZHENG Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Scientific Reports, 2018, 8(1): 9285. doi: 10.1038/s41598-018-27453-7
[33] SALTONSTALL K, LAMBERTINI C. Value of repetitive sequences in chloroplast DNA for phylogeographic inference: A comment on Vachon and Freeland (2011). Molecular Ecology Resources, 2012, 12(4): 581-589.
[34] 曾令霜, 张晨晨, 张敬, 徐彬. 多年生黑麦草种质SSR分子标记遗传多样性分析. 草业科学, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364 ZENG L S, ZHANG C C, ZHANG J, XU B. Genetic diversity analysis of perennial ryegrass germplasm using SSR molecular markers. Pratacultural Science, 2022, 39(1): 75-84. doi: 10.11829/j.issn.1001-0629.2021-0364
[35] 张婷婷, 张鹤山, 宋康杰, 赵泽宇, 许本波, 刘洋. 白三叶转录组 SSR 位点特征分析及引物开发. 草业科学, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841 ZHANG T T, ZHANG H S, SONG K J, ZHAO Z Y, XU B B, LIU Y. Analysis of SSR site characteristics of Trifolium repens transcriptome and primer development. Pratacultural Science, 2023, 40(9): 2266-2275. doi: 10.11829/j.issn.1001-0629.2022-0841
[36] JIANG Y, DENG F, WANG H L. Extensive analysis of global codon usage patterns in baculoviruses. Archives of Virology, 2008, 153(12): 2273-2282. doi: 10.1007/s00705-008-0260-1
[37] QUAX T F, CLAASSENS N, SÖLL D, OOST J. Codon bias as a means to fine-tune gene expression. Molecular Cell, 2015, 59(2): 149-161. doi: 10.1016/j.molcel.2015.05.035
[38] WANG L, ROOSSINCK M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Molecular Biology, 2006, 61(4-5): 699-710. doi: 10.1007/s11103-006-0041-8
-
其他相关附件