草地植被生产力模拟及其影响因素
English
-
参考文献
[1] 张新时. 草地的气候−植被关系及其优化生态−生产范式. 中国高等科学技术中心. 2000(8): 3-7. ZHANG X S. Ecological and economic function of grassland and its paradigm. Science and Technology Report, 2000(8): 3-7.
[2] 郭燕云, 刘艳, 李秋月, 陈辰, 王森. Century模型在新疆天山山区的适用性分析. 草地学报, 2020, 28(1): 252-258. GUO Y Y, LIU Y, LI Q Y, CHEN C, WANG S. Validation and adaptability evalauation of grassland ecosystem model Century in the Tianshan moutain area. Acta Agrestia Sinica, 2020, 28(1): 252-258.
[3] 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测. 遥感学报, 2002(2): 129-135, 164. CHEN L J, LIU G H, LI H G. Estimating net primary productivity of terrestrial vegetation in China using remote sensing. National Remote Sensing Bulletin, 2002(2): 129-135, 164.
[4] WANG W Y, WANG Q J, WANG H C. The effect of land management on plant community composition, species diversity, and productivity of alpine kobersia steppe meadow. Ecological Research, 2005, 21(2): 181-187.
[5] HWANG B C, LAUENROTH W K. Effect of nitrogen, water and neighbor density on the growth of hesperis matronalis and two native perennials. Biological Invasions, 2007, 10(5): 771-779.
[6] GONG L S, HARAZONO Y, OIKAWA T, ZHAO H L, YING H Z, CHANG X L. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 2000, 102(2): 125-137.
[7] SHAN Y M, CHEN D M, GUAN X X, ZHENG S X, CHEN H J, WANG M J, BAI Y F. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology and Biochemistry, 2011, 43(9): 1943-1954. doi: 10.1016/j.soilbio.2011.06.002
[8] ALTESOR A, OESTERHELD M, LEONI E, LEZAMA F, RODRíGUEZ C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecology, 2005, 179(1): 83-91. doi: 10.1007/s11258-004-5800-5
[9] MARION B, BONIS A, BOUZILLÉ J-B. How much does grazing-induced heterogeneity impact plant diversity in wet grasslands. Écoscience, 2015, 17(3): 229-239.
[10] WU Z T, DIJKSTRA P, KOCH G W, PEÑUELAS J, HUNGATE B A. Responses of terrestrial ecosystems to temperature and precipitation change: A Meta-analysis of experimental manipulation. Global Change Biology, 2011, 17(2): 927-942. doi: 10.1111/j.1365-2486.2010.02302.x
[11] AERTS R, CORNELISSEN J H C, DORREPAAL E. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 2006, 182(1): 65-77.
[12] HUDSON J M G, HENRY G H R. Increased plant biomass in a high arctic heath community from 1981 to 2008. Ecology, 2009, 90(10): 2657-2663. doi: 10.1890/09-0102.1
[13] WU H H, DANNENMANN M, FANSELOW N, WOLF B, YAO Z, WU X, BRÜGGEMANN N, ZHENG X H, HAN X G, DITTERT K, KLAUS B B. Feedback of grazing on gross rates of n mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2010, 340(1/2): 127-139.
[14] WANG S P, DUAN J C, XU G P, WANG Y F, ZHANG Z H, RUI Y C, LUO C Y, XU B R B Y, ZHU X C, CHANG X F, CUI X Y, NIU H S, ZHAO X Q, WANG W Y. Effects of warming and grazing on soil N availability, species composition, and anpp in an alpine meadow. Ecology, 2012, 93(11): 2365-2376. doi: 10.1890/11-1408.1
[15] HOVENDEN M J, NEWTON P C D, WILLS K E, JANES J K, WILLIAMS A L, VANDER SCHOOR J K, NOLAN M J. Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytologist, 2008, 180 (1): 143-152. 期刊名不简写. HOVENDEN M J, NEWTON P C D, WILLS K E, JANES J K, WILLIAMS A L, VANDER SCHOOR J K, NOLAN M J. Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytologist, 2008, 180(1): 143-152.
[16] 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟. 草业学报, 2018, 27(1): 1-13. GENG Y B, WANG S, HU X D. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: Simulations based on the CENTURY Model. Acta Prataculturae Sinica, 2018, 27(1): 1-13.
[17] 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟. 草业学报, 2016, 25(12): 4-13. doi: 10.11686/cyxb2016044 WANG S, GENG Y B, MU Y. Responses of aboveground net primary productivity of the typical steppe to climate change: A simulation based on the CENTURY Model. Acta Prataculturae Sinica, 2016, 25(12): 4-13. doi: 10.11686/cyxb2016044
[18] 李英年, 赵新全, 曹广民, 赵亮, 王勤学. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 2004(4): 558-567. LI Y N, ZHAO X Q, CAO G M, ZHAO L, WANG Q X. Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station. Plateau Meteorology, 2004(4): 558-567.
[19] 张仁平, 郭靖, 张云玲. 新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应. 生态学报, 2020, 40(15): 5318-5326. ZHANG R P, GUO J, ZHANG Y L. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic changes. Acta Ecologica Sinica, 2020, 40(15): 5318-5326.
[20] 穆少杰, 李建龙, 杨红飞, 刚成诚, 陈奕兆. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系. 草业学报, 2013, 22(3): 6-15. MU S J, LI J L, YANG H F, GANG C C, CHEN Y Z. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15.
[21] ZHOU W, GANG C C, ZHOU F C, LI J L, DONG X G, ZHAO C Z. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest china using net primary productivity as an indicator. Ecological Indicators, 2015, 48: 560-569. 补充卷期信息 ZHOU W, GANG C C, ZHOU F C, LI J L, DONG X G, ZHAO C Z. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest china using net primary productivity as an indicator. Ecological Indicators, 2015, 48: 560-569.
[22] WANG H, LIU G H, LI Z S, YE X, WANG M, GONG L. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chinese Geographical Science, 2015, 26(1): 35-47.
[23] ANDERSON L J, MAHERALI H, JOHNSON H B, POLLEY H W, JACKSON R B. Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3–C4 grassland. Global Change Biology, 2001, 7(6): 693-707. doi: 10.1046/j.1354-1013.2001.00438.x
[24] MORGAN J A, PATAKI D E, KÖRNER C, CLARK H, DEL GROSSO S J, GRÜNZWEIG J M, KNAPP A K, MOSIER A R, NEWTON P C, NIKLAUS P A, NIPPERT J B, NOWAK R S, PARTON W J, POLLEY H W, SHAW M R. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 2004, 140(1): 11-25. doi: 10.1007/s00442-004-1550-2
[25] 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和Co2浓度变化响应的模拟. 草业学报, 2018, 27(2): 1-14. GUO D, GUO W F, ZHAO J, Temuqiletu, LI X D, FU H, LUO Y Q. Modeled effects of precipitation, temperature, and CO2 changes on carbon dynamics in grassland and cropland on the Loess Plateau. Acta Prataculturae Sinica, 2018, 27(2): 1-14.
[26] 郭建平, 高素华. 高CO2浓度和土壤干旱对贝加尔针茅C, N积累和分配的影响. 水土保持学报, 2005(2): 118-121. GUO J P, GAO S H. Impacts of CO2 enrichment and soil drought on C, N accumulation and distribution in Stipa baicalensis. Journal of Soil and Water Conservation, 2005(2): 118-121.
[27] OTTMAN M J, KIMBALL B A, PINTER P J, WALL G W, VANDERLIP R L, LEAVITT S W, LAMORTE R L, MATTHIAS A D, BROOKS T J. Elevated CO2 increases sorghum biomass under drought conditions. New Phytologist, 2001, 150(2): 261-273. doi: 10.1046/j.1469-8137.2001.00110.x
[28] 韩其飞, 李莹莹, 彭开兵, 李超凡, 黄晓东, 许文强. 大气氮沉降对中亚草地生态系统净初级生产力的影响. 生态学报, 2021, 41(21): 8545-8555. HAN Q F, LI Y Y, PENG K B, LI C F, HUANG X D, XU W Q. Effects of atmospheric nitrogen deposition on net primary productivity of grassland ecosystem in Central Asia. Acta Ecologica Sinica, 2021, 41(21): 8545-8555.
[29] 周峻宇. 中国气态活性氮气候效应及氮沉降临界负荷研究. 北京: 中国农业大学博士学位论文, 2017. ZHOU J Y. Climate effect of gaseous reactive nitrogen and critical loads of nitrogen deposition in China. PhD Thesis. Beijing: China Agricultural University, 2017.
[30] BRUNING B, ROZEMA J. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany, 2013, 92: 134-143. 补充卷期信息 BRUNING B, ROZEMA J. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany, 2013, 92: 134-143.
[31] LEROUX S J, ALBERT C H, LAFUITE A-S, RAYFIELD B, WANG S, GRAVEL D. Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity. Ecography, 2017, 40(1): 36-47. doi: 10.1111/ecog.02542
[32] CHEN Q, HOOPER D U, LIN S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS One, 2011, 6 (3): e16909. 核实页码信息 CHEN Q, HOOPER D U, LIN S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS One, 2011, 6(3): e16909.
[33] 贾晓彤. 氮沉降模拟方式对草原生态系统生产力和多样性的影响. 北京: 中国农业科学院硕士学位论文, 2020. JIA X T. The effects of different N deposition simulation methods on productivity and biodiversity of grassland. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[34] 刘洪杰. Miami模型的生态学应用. 生态科学, 1997(1): 54-57. LIU H J. The ecological application of Miami model. Ecologic Science, 1997(1): 54-57.
[35] GAMO M, SHINODA M, MAEDA T. Classification of arid lands, including soil degradation and irrigated areas, based on vegetation and aridity indices. International Journal of Remote Sensing, 2013, 34: 6701-6722. doi: 10.1080/01431161.2013.805281
[36] SEINO H, UCHIJIMA Z. Global distribution of net primary productivity of terrestrial vegetation. Journal of Agricultural Meteorology, 1992, 48: 39-48. SEINO H, UCHIJIMA Z. Global distribution of net primary productivity of terrestrial vegetation. Journal of Agricultural Meteorology, 1992, 48: 39-48.
[37] REN J, HU Z, ZHAO J, ZHANG D, HOU F, LIN H, MU X. A grassland classification system and its application in China. Rangeland Journal, 2008, 30(2): 199-209. doi: 10.1071/RJ08002
[38] 孙淼, 徐柱, 柳剑丽. 内蒙古农牧交错区草地气候生产力对气候变化的响应. 草业科学, 2011, 28(6): 1085-1090. doi: 10.3969/j.issn.1001-0629.2011.06.041 SUN M, XU Z, LIU J L. Response of grassland climate productivity to climate change in farming-pastoral area of Inner Mongolia. Pratacultural Science, 2011, 28(6): 1085-1090. doi: 10.3969/j.issn.1001-0629.2011.06.041
[39] 林慧龙, 常生华, 李飞. 草地净初级生产力模型研究进展. 草业科学, 2007(12): 26-29. LIN H L, CHANG S H, LI F. Research progress on grassland net primary productivity (NPP) model. Pratacultural Science, 2007(12): 26-29.
[40] LIANG T G, FENG Q S, YU H, HUANG X D, LIN H L, AN S Z, REN J Z. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassland Science, 2012, 58(4): 208-220.
[41] POTTER C S, RANDERSON J T, FIELD C B, MATSON P A, VITOUSEK P M, MOONEY H A, KLOOSTER S A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. doi: 10.1029/93GB02725
[42] XIAO X M, HOLLINGER D, ABER J, GOLTZ M, DAVIDSON E A, ZHANG Q Y, MOORE B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89(4): 519-534. doi: 10.1016/j.rse.2003.11.008
[43] GOETZ S J, PRINCE S D, GOWARD S N, THAWLEY M M, SMALL J. Satellite remote sensing of primary production: An improved production efficiency modeling approach. Ecological Modelling, 1999, 122(3): 239-255. doi: 10.1016/S0304-3800(99)00140-4
[44] VERSTRAETEN W W, VEROUSTRAETE F, FEYEN J. On temperature and water limitation of net ecosystem productivity: Implementation in the c-fix model. Ecological Modelling, 2006, 199(1): 4-22. doi: 10.1016/j.ecolmodel.2006.06.008
[45] RUIMY A, DEDIEU G, SAUGIER B. Turc: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 1996, 10: 269-285. 补充卷期信息 RUIMY A, DEDIEU G, SAUGIER B. Turc: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 1996, 10: 269-285.
[46] SASAI T, ICHII K, YAMAGUCHI Y, NEMANI R. Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco-physiological and mechanistic approaches using satellite data” (beams). Journal of Geophysical Research: Biogeosciences, 2005, 110(G2). [47] 张美玲, 蒋文兰, 陈全功, 柳小妮. 基于CSCS改进CASA模型的中国草地净初级生产力模拟. 中国沙漠, 2014, 34(4): 1150-1160. doi: 10.7522/j.issn.1000-694X.2013.00414 ZHANG M L, JIANG W L, CHEN Q G, LIU X N. Estimation of grassland net primary production in China with improved CASA model based on the CSCS. Journal of Desert Research, 2014, 34(4): 1150-1160. doi: 10.7522/j.issn.1000-694X.2013.00414
[48] 杨红飞, 刚成诚, 穆少杰, 章超斌, 周伟, 李建龙. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究. 草业学报, 2014, 23(3): 39-50. doi: 10.11686/cyxb20140305 YANG H F, GANG C C, MU S J, ZHANG C B, ZHOU W, LI J L. Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang. Acta Prataculturae Sinica, 2014, 23(3): 39-50. doi: 10.11686/cyxb20140305
[49] 郑艺. 基于光能利用率模型的植被总初级生产力估算及其不确定性分析. 北京: 中国科学院大学硕士学位论文, 2017. ZHENG Y. Light use efficiency based gross primary productivity estimation and uncertainty analysis. Master Thesis. Beijing: University of Chinese Academy of Sciences, 2017.
[50] 张馨元. 锡林浩特市草地与农田生态系统GPP模拟. 北京: 中国地质大学(北京)硕士学位论文, 2021. ZHANG X Y. GPP simulation of grassland and farmland ecosystem in Xilinhot. Master Thesis. Beijing: China University of Geosciences (Beijing), 2021.
[51] WHITE M A, THORNTON P E, RUNNING S W, NEMANI R R. Parameterization and sensitivity analysis of the biome-bgc terrestrial ecosystem model: Net primary production controls. Earth Interactions, 2000, 4(3): 1-85. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
[52] PARTON W J, SCURLOCK J M O, OJIMA D S, GILMANOV T G, SCHOLES R J, SCHIMEL D S, KIRCHNER T, MENAUT J-C, SEASTEDT T, GARCIA MOYA E, KAMNALRUT A, KINYAMARIO J I. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7(4): 785-809. doi: 10.1029/93GB02042
[53] LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776. doi: 10.1029/92JD00509
[54] MCGUIRE A D, MELILLO J M, KICKLIGHTER D W, JOYCE L A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. Journal of Biogeography, 1995, 22(4/5): 785-796. doi: 10.2307/2845980
[55] CAO M K, WOODWARD F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 1998, 4(2): 185-198. doi: 10.1046/j.1365-2486.1998.00125.x
[56] ZHANG Y Q, TANG Y H, JIANG J, YANG Y H. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Science in China Series D: Earth Sciences, 2007, 50(1): 113-120. doi: 10.1007/s11430-007-2032-2
[57] CHIMNER R A, COOPER D J, PARTON W J. Modeling carbon accumulation in rocky mountain fens. Wetlands, 2002, 22(1): 100-110. doi: 10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2
[58] 李传华, 韩海燕, 范也平, 曹红娟, 王玉涛, 孙皓. 基于biome-bgc模型的青藏高原五道梁地区NPP变化及情景模拟. 地理科学, 2019, 39(8): 1330-1339. doi: 10.13249/j.cnki.sgs.2019.08.015 LI C H, HAN H Y, FAN Y P, CAO H J, WANG Y T, SUN H. NPP change and scenario simulation in Wudaoliang area of the Tibetan Plateau based on Biome-BGC model. Scientia Geographica Sinica, 2019, 39(8): 1330-1339. doi: 10.13249/j.cnki.sgs.2019.08.015
[59] 刘丽慧, 孙皓, 李传华. 基于改进土壤冻融水循环的biome-bgc模型估算青藏高原草地NPP. 地理研究, 2021, 40(5): 1253-1264. LIU L H, SUN H, LI C H. Estimation of grassland NPP in the Qinghai-Tibet Plateau based on the improved Biome-BGC model considering soil freeze-thaw water cycle. Geographical Research, 2021, 40(5): 1253-1264.
[60] 胡波, 孙睿, 陈永俊, 冯丽超, 孙亮. 遥感数据结合biome-bgc模型估算黄淮海地区生态系统生产力. 自然资源学报, 2011, 26(12): 2061-2071. doi: 10.11849/zrzyxb.2011.12.006 HU B, SUN R, CHEN Y J, FENG L C, SUN L. Estimation of the net ecosystem productivity in Huang-Huai Hai region combining with Biome-BGC model and remote sensing data. Journal of Natural Resources, 2011, 26(12): 2061-2071. doi: 10.11849/zrzyxb.2011.12.006
[61] 李长生. 生物地球化学的概念与方法: DNDC模型的发展. 第四纪研究, 2001(2): 89-99. LI C C. Biogeochemical concepts and methodologies: Development of the DNDC model. Quaternary Sciences, 2001(2): 89-99.
[62] ZHANG L, QIN R Z, CHAI N, WEI H H, YANG Y, WANG Y C, LI F M, ZHANG F. Optimum fertilizer application rate to ensure yield and decrease greenhouse gas emissions in rain-fed agriculture system of the loess plateau. Science of the Total Environment, 2022, 823: 153762. [63] YANG J J, QIN R Z, SHI X P, WEI H H, SUN G J, LI F M, ZHANG F. The effects of plastic film mulching and straw mulching on licorice root yield and soil organic carbon content in a dryland farming. Science of the Total Environment, 2022, 826: 154113. [64] QIN R Z, ZHANG F, YU C Q, ZHANG Q, QI J G, LI F M. Contributions made by rain-fed potato with mulching to food security in China. European Journal of Agronomy, 2022, 133: 126435. [65] CUI G T, WANG J Y. Improving the dndc biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions. Science of the Total Environment, 2019, 687: 61-70. 补充卷期信息 CUI G T, WANG J Y. Improving the dndc biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions. Science of the Total Environment, 2019, 687: 61-70.
[66] 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究. 草业学报, 2019, 28(12): 197-204. WANG D B, JI C T, LIN H L. A 'denitrification-decomposition'(DNDC) model evaluation of alpine meadow soil carbon response to climate change. Acta Prataculturae Sinica, 2019, 28(12): 197-204.
[67] WANG J Y, LI A N, BIAN J H. Simulation of the grazing effects on grassland aboveground net primary production using dndc model combined with time-series remote sensing data—A case study in zoige plateau, china. Remote Sensing, 2016, 8 (3): 168. 核实页码信息 WANG J Y, LI A N, BIAN J H. Simulation of the grazing effects on grassland aboveground net primary production using dndc model combined with time-series remote sensing data: A case study in Zoige Plateau, China. Remote Sensing, 2016, 8(3): 168.
[68] LIU J, CHEN J M, CIHLAR J, PARK W M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62(2): 158-175. doi: 10.1016/S0034-4257(97)00089-8
[69] WANG J B, LIU J Y, CAO M K, LIU Y F, YU G R, LI G C, QI S H, LI K R. Modelling carbon fluxes of different forests by coupling a remote-sensing model with an ecosystem process model. International Journal of Remote Sensing, 2011, 32(21): 6539-6567. doi: 10.1080/01431161.2010.512933
-
图 2 Biome-BGC模型结构
绿色的虚线方框表示模型以及子模型的组成模块,蓝色方框表示土壤和植被的生态过程,蓝色圆框表示植物器官以及生态系统组成部分,箭头表示组分之间的相互作用。
Figure 2. Structure of the Biome-BGC model
The green boxes represent the component modules of the model and sub-model. The blue boxes represent the ecological processes of soil and vegetation. The blue circle boxes represent plant organs and ecosystem components, and the arrows represent the interactions between components.
图 3 DNDC模型结构
虚线方框表示模型以及子模型的组成模块,实线方框表示模型的关键参数和过程,箭头表示模拟流程。
Figure 3. Structure of the DNDC model
The dotted line boxes represent the component modules of the model and sub-models. The solid line box represents the key parameters and processes of the model, and the arrows represent the simulation process.
表 1 不同统计模型的比较
Table 1 Comparison of different statistical models
模型
Model模型内容
Content of model参考文献
ReferenceMiami $NPP=\dfrac{3\;000}{1 + {{\rm{e}}}^{\left (1.315-0.119T\right)} } $
$NPP=3\;000\left (1-{{\rm{e}}}^{-0.000\;664P}\right) $[34] Thornthwaite Memoria $NP{P}_{E}=3\;000\left [1-{ {\rm{e} } }^{-0.000\;969\;5\left (E-20\right)}\right]$
$E= \dfrac{1.05P}{\sqrt{1 + \left (1 + 1.05P∕L\right)} } $
$L=3\;000 + 25T + 0.05T^{3}$[35] Chikugo $NPP=0.29{{\rm{e}}}^{-0.216RD{I}^{2} } \times{R}_{n}$
$RDI={R}_{n}/(l\times P)$[36] IOCSG $NPP={L}^{2}\left (K\right)\times \dfrac{0.1\times \displaystyle\sum \theta \times \left[{K}^{6} + L\left (K\right){K}^{3} + {L}^{2}\left (K\right)\right]}{\left [{K}^{6} + {L}^{2}\left (K\right)\right]\times \left [{K}^{5} + L\left (K\right){K}^{2}\right]}\times {e}^{-\sqrt{13.55 + 3. 17{K}^{-1}-0.16{K}^{-2} + 0.003\;2{K}^{-3} } }$
$L\left (K\right)=0.588\;02{K}^{3} + 0.506\;98{K}^{2}-0.025\;708\;1K + 0.000\;516\;387\;4$[37] $ T $表示温度,$ P $表示降水,$ E $表示实际蒸散量,$ L $表示最大蒸散量,$ RDI $表示辐射干燥度指数,$ {R}_{n} $表示净辐射量,$ l $表示蒸发潜热,$ \displaystyle\sum \theta $表示积温,$ K $表示湿度。
$ T $, temperature; $ P $, precipitation; $ E $, actual evapotranspiration; $ L $, maximum evapotranspiration; $ RDI $, radiation dryness index; $ {R}_{n} $, net radiation; $ l $, latent heat of evaporation; $ \displaystyle\sum \theta $, accumulated temperature; $ K $, humidity.表 2 不同光合辐射模型的比较
Table 2 Comparison of different models of photosynthetic radiation
模型
Model输入参数
Input parameter时间分辨率
Temporal resolution参考文献
ReferenceCASA $ {R}_{a} $,$ APAR $,$ T $,$ E $,$ L $ 月 Month [41] VPM $ {R}_{a} $,$ APAR $,$ \varepsilon $,$ {T}_{s} $,$ {W}_{s} $,$ {L}_{s} $ 月 Month [42] GLO-PEM $ {R}_{a} $,$ APAR $,$ T $,$ SW $,$ {V}_{c} $,$ {R}_{s} $,$ T $,$ P $ 10 d [43] C-Fix $ T $,${F}_{ {{\rm{CO}}}_{2} }$,$ APAR $,$ SW $,$ {E}_{r} $ 10 d [44] TURC $ {R}_{a} $,$ APAR $,$ {V}_{c} $,$ T $ 月 Month [45] BEAMS $ T $,$ W $,$ APAR $,$ SW $ 月 Month [46] $ {R}_{a} $表示太阳辐射,$ APAR $表示植物对入射光合有效辐射的吸收比例,T表示温度,P表示降水,E表示实际蒸散量,L表示潜在蒸散量,$ \varepsilon $表示最大光能利用率,$ {T}_{s} $表示温度胁迫,$ {W}_{s} $表示水分胁迫,$ {L}_{s} $表示叶片物候胁迫,$ SW $表示土壤含水量,$ {V}_{c} $表示植被碳含量,$ {R}_{s} $表示地表反射率,$ {E}_{r} $表示蒸发率,$ {F}_{{{\rm{CO}}}_{2}} $表示二氧化碳施肥效应因子,W表示相对湿度。
$ {R}_{a} $, solar radiation; $ APAR $, absorbed photosynthetically active radiation; T, temperature; P, precipitation; E, actual evapotranspiration; L, maximum evapotranspiration; $ \varepsilon $, efficiency for solar energy utilization; $ {T}_{s} $, temperature stress; $ {W}_{s} $, water stress; $ {L}_{s} $, leaf phenological stress; $ SW $, soil water; $ {V}_{c} $, vegetation carbon; $ {R}_{s} $, surface reflectance; $ {E}_{r} $, evaporation rate; $ {F}_{{{\rm{CO}}}_{2}} $, $ {{\rm{CO}}}_{2} $ fertilization effector; W, relative humidity.表 3 不同过程模型的比较
Table 3 Comparison of different process models
模型
Model输入参数
Input parameter时间分辨率
Temporal resolution来源
ReferenceBIOME-BGC $ {R}_{a} $,$ LAI $,T,$ SW $,$ {V}_{p} $,$ {Leaf}_{N} $,$F_{{\rm{CO}}_{2}} $,$ {V}_{c} $ 日 Day [51] CENTURY $ {V}_{c} $,T,$ SW $,P,$ \, L $,${S} {o}{i}{l}_{s}$ 月 Month [52] DNDC Biomass $ C/N $ ratio,Biomass fraction,$ \, T $,$ \, P $,${S} {o}{il}_{t}$,$ {N}_{fix} $ 日 Day [53] TEM $ {R}_{a} $,$ \, T $,$ \, E $,$ \, L $, $F_{{\rm{CO}}_{2}} $,$ {V}_{c} $ 日 Day [54] CEVSA $ LAI $,$ {G}_{s} $,Biomass $ C/N $ ratio,$ SW $,Litter 日 Day [55] $ {R}_{a} $表示太阳辐射,T表示温度,P表示降水,E表示实际蒸散量,L表示潜在蒸散量,$ SW $表示土壤含水量,$ {V}_{c} $表示植被碳含量,$ {R}_{s} $表示地表反射率,$ {E}_{r} $表示蒸发率,${F}_{ {{\rm{CO}}}_{2} }$表示二氧化碳施肥效应因子, $ LAI $表示叶面积指数,$ {V}_{p} $表示蒸气压差,$ {Leaf}_{N} $表示叶片氮含量,${S oil}_{s}$表示土壤无机硫,$ {G}_{s} $表示气孔导度,${S oil}_{t}$表示土壤质地,$ {N}_{fix} $表示固氮系数,Biomass C/N ratio表示生物量碳氮比,Biomass fraction表示生物器官比,Litter表示凋落物。。
$ {R}_{a} $, solar radiation; T, temperature; P, precipitation; E, actual evapotranspiration; L, maximum evapotranspiration; $ SW $, soil water; $ {V}_{c} $, vegetation carbon; $ {R}_{s} $, surface reflectance; $ {E}_{r} $, evaporation rate; ${F}_{ {{\rm{CO}}}_{2} }$, ${ {\rm{CO} } }_{2}$ fertilization effector; $ {V}_{p} $, vapor pressure difference; $ {Leaf}_{N} $, leaf nitrogen content; ${S oil}_{s}$, soil inorganic sulfur; ${S oil}_{t}$, soil texture; $ {N}_{fix} $, N fixation index; $ LAI $, leaf area index; $ {G}_{s} $, stomatal conductance; Biomass C/N ratio, ratio of C/N of the plant,Biomass fraction, proportion of an organ’s biomass in the total biomass; Litter, litter of the plant. -
[1] 张新时. 草地的气候−植被关系及其优化生态−生产范式. 中国高等科学技术中心. 2000(8): 3-7. ZHANG X S. Ecological and economic function of grassland and its paradigm. Science and Technology Report, 2000(8): 3-7.
[2] 郭燕云, 刘艳, 李秋月, 陈辰, 王森. Century模型在新疆天山山区的适用性分析. 草地学报, 2020, 28(1): 252-258. GUO Y Y, LIU Y, LI Q Y, CHEN C, WANG S. Validation and adaptability evalauation of grassland ecosystem model Century in the Tianshan moutain area. Acta Agrestia Sinica, 2020, 28(1): 252-258.
[3] 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测. 遥感学报, 2002(2): 129-135, 164. CHEN L J, LIU G H, LI H G. Estimating net primary productivity of terrestrial vegetation in China using remote sensing. National Remote Sensing Bulletin, 2002(2): 129-135, 164.
[4] WANG W Y, WANG Q J, WANG H C. The effect of land management on plant community composition, species diversity, and productivity of alpine kobersia steppe meadow. Ecological Research, 2005, 21(2): 181-187.
[5] HWANG B C, LAUENROTH W K. Effect of nitrogen, water and neighbor density on the growth of hesperis matronalis and two native perennials. Biological Invasions, 2007, 10(5): 771-779.
[6] GONG L S, HARAZONO Y, OIKAWA T, ZHAO H L, YING H Z, CHANG X L. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 2000, 102(2): 125-137.
[7] SHAN Y M, CHEN D M, GUAN X X, ZHENG S X, CHEN H J, WANG M J, BAI Y F. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biology and Biochemistry, 2011, 43(9): 1943-1954. doi: 10.1016/j.soilbio.2011.06.002
[8] ALTESOR A, OESTERHELD M, LEONI E, LEZAMA F, RODRíGUEZ C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecology, 2005, 179(1): 83-91. doi: 10.1007/s11258-004-5800-5
[9] MARION B, BONIS A, BOUZILLÉ J-B. How much does grazing-induced heterogeneity impact plant diversity in wet grasslands. Écoscience, 2015, 17(3): 229-239.
[10] WU Z T, DIJKSTRA P, KOCH G W, PEÑUELAS J, HUNGATE B A. Responses of terrestrial ecosystems to temperature and precipitation change: A Meta-analysis of experimental manipulation. Global Change Biology, 2011, 17(2): 927-942. doi: 10.1111/j.1365-2486.2010.02302.x
[11] AERTS R, CORNELISSEN J H C, DORREPAAL E. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 2006, 182(1): 65-77.
[12] HUDSON J M G, HENRY G H R. Increased plant biomass in a high arctic heath community from 1981 to 2008. Ecology, 2009, 90(10): 2657-2663. doi: 10.1890/09-0102.1
[13] WU H H, DANNENMANN M, FANSELOW N, WOLF B, YAO Z, WU X, BRÜGGEMANN N, ZHENG X H, HAN X G, DITTERT K, KLAUS B B. Feedback of grazing on gross rates of n mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2010, 340(1/2): 127-139.
[14] WANG S P, DUAN J C, XU G P, WANG Y F, ZHANG Z H, RUI Y C, LUO C Y, XU B R B Y, ZHU X C, CHANG X F, CUI X Y, NIU H S, ZHAO X Q, WANG W Y. Effects of warming and grazing on soil N availability, species composition, and anpp in an alpine meadow. Ecology, 2012, 93(11): 2365-2376. doi: 10.1890/11-1408.1
[15] HOVENDEN M J, NEWTON P C D, WILLS K E, JANES J K, WILLIAMS A L, VANDER SCHOOR J K, NOLAN M J. Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytologist, 2008, 180 (1): 143-152. 期刊名不简写. HOVENDEN M J, NEWTON P C D, WILLS K E, JANES J K, WILLIAMS A L, VANDER SCHOOR J K, NOLAN M J. Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytologist, 2008, 180(1): 143-152.
[16] 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟. 草业学报, 2018, 27(1): 1-13. GENG Y B, WANG S, HU X D. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: Simulations based on the CENTURY Model. Acta Prataculturae Sinica, 2018, 27(1): 1-13.
[17] 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟. 草业学报, 2016, 25(12): 4-13. doi: 10.11686/cyxb2016044 WANG S, GENG Y B, MU Y. Responses of aboveground net primary productivity of the typical steppe to climate change: A simulation based on the CENTURY Model. Acta Prataculturae Sinica, 2016, 25(12): 4-13. doi: 10.11686/cyxb2016044
[18] 李英年, 赵新全, 曹广民, 赵亮, 王勤学. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 2004(4): 558-567. LI Y N, ZHAO X Q, CAO G M, ZHAO L, WANG Q X. Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station. Plateau Meteorology, 2004(4): 558-567.
[19] 张仁平, 郭靖, 张云玲. 新疆草地净初级生产力(NPP)空间分布格局及其对气候变化的响应. 生态学报, 2020, 40(15): 5318-5326. ZHANG R P, GUO J, ZHANG Y L. Spatial distribution pattern of NPP of Xinjiang grassland and its response to climatic changes. Acta Ecologica Sinica, 2020, 40(15): 5318-5326.
[20] 穆少杰, 李建龙, 杨红飞, 刚成诚, 陈奕兆. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系. 草业学报, 2013, 22(3): 6-15. MU S J, LI J L, YANG H F, GANG C C, CHEN Y Z. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15.
[21] ZHOU W, GANG C C, ZHOU F C, LI J L, DONG X G, ZHAO C Z. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest china using net primary productivity as an indicator. Ecological Indicators, 2015, 48: 560-569. 补充卷期信息 ZHOU W, GANG C C, ZHOU F C, LI J L, DONG X G, ZHAO C Z. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest china using net primary productivity as an indicator. Ecological Indicators, 2015, 48: 560-569.
[22] WANG H, LIU G H, LI Z S, YE X, WANG M, GONG L. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chinese Geographical Science, 2015, 26(1): 35-47.
[23] ANDERSON L J, MAHERALI H, JOHNSON H B, POLLEY H W, JACKSON R B. Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3–C4 grassland. Global Change Biology, 2001, 7(6): 693-707. doi: 10.1046/j.1354-1013.2001.00438.x
[24] MORGAN J A, PATAKI D E, KÖRNER C, CLARK H, DEL GROSSO S J, GRÜNZWEIG J M, KNAPP A K, MOSIER A R, NEWTON P C, NIKLAUS P A, NIPPERT J B, NOWAK R S, PARTON W J, POLLEY H W, SHAW M R. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 2004, 140(1): 11-25. doi: 10.1007/s00442-004-1550-2
[25] 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和Co2浓度变化响应的模拟. 草业学报, 2018, 27(2): 1-14. GUO D, GUO W F, ZHAO J, Temuqiletu, LI X D, FU H, LUO Y Q. Modeled effects of precipitation, temperature, and CO2 changes on carbon dynamics in grassland and cropland on the Loess Plateau. Acta Prataculturae Sinica, 2018, 27(2): 1-14.
[26] 郭建平, 高素华. 高CO2浓度和土壤干旱对贝加尔针茅C, N积累和分配的影响. 水土保持学报, 2005(2): 118-121. GUO J P, GAO S H. Impacts of CO2 enrichment and soil drought on C, N accumulation and distribution in Stipa baicalensis. Journal of Soil and Water Conservation, 2005(2): 118-121.
[27] OTTMAN M J, KIMBALL B A, PINTER P J, WALL G W, VANDERLIP R L, LEAVITT S W, LAMORTE R L, MATTHIAS A D, BROOKS T J. Elevated CO2 increases sorghum biomass under drought conditions. New Phytologist, 2001, 150(2): 261-273. doi: 10.1046/j.1469-8137.2001.00110.x
[28] 韩其飞, 李莹莹, 彭开兵, 李超凡, 黄晓东, 许文强. 大气氮沉降对中亚草地生态系统净初级生产力的影响. 生态学报, 2021, 41(21): 8545-8555. HAN Q F, LI Y Y, PENG K B, LI C F, HUANG X D, XU W Q. Effects of atmospheric nitrogen deposition on net primary productivity of grassland ecosystem in Central Asia. Acta Ecologica Sinica, 2021, 41(21): 8545-8555.
[29] 周峻宇. 中国气态活性氮气候效应及氮沉降临界负荷研究. 北京: 中国农业大学博士学位论文, 2017. ZHOU J Y. Climate effect of gaseous reactive nitrogen and critical loads of nitrogen deposition in China. PhD Thesis. Beijing: China Agricultural University, 2017.
[30] BRUNING B, ROZEMA J. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany, 2013, 92: 134-143. 补充卷期信息 BRUNING B, ROZEMA J. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany, 2013, 92: 134-143.
[31] LEROUX S J, ALBERT C H, LAFUITE A-S, RAYFIELD B, WANG S, GRAVEL D. Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity. Ecography, 2017, 40(1): 36-47. doi: 10.1111/ecog.02542
[32] CHEN Q, HOOPER D U, LIN S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS One, 2011, 6 (3): e16909. 核实页码信息 CHEN Q, HOOPER D U, LIN S. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China. PLoS One, 2011, 6(3): e16909.
[33] 贾晓彤. 氮沉降模拟方式对草原生态系统生产力和多样性的影响. 北京: 中国农业科学院硕士学位论文, 2020. JIA X T. The effects of different N deposition simulation methods on productivity and biodiversity of grassland. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[34] 刘洪杰. Miami模型的生态学应用. 生态科学, 1997(1): 54-57. LIU H J. The ecological application of Miami model. Ecologic Science, 1997(1): 54-57.
[35] GAMO M, SHINODA M, MAEDA T. Classification of arid lands, including soil degradation and irrigated areas, based on vegetation and aridity indices. International Journal of Remote Sensing, 2013, 34: 6701-6722. doi: 10.1080/01431161.2013.805281
[36] SEINO H, UCHIJIMA Z. Global distribution of net primary productivity of terrestrial vegetation. Journal of Agricultural Meteorology, 1992, 48: 39-48. SEINO H, UCHIJIMA Z. Global distribution of net primary productivity of terrestrial vegetation. Journal of Agricultural Meteorology, 1992, 48: 39-48.
[37] REN J, HU Z, ZHAO J, ZHANG D, HOU F, LIN H, MU X. A grassland classification system and its application in China. Rangeland Journal, 2008, 30(2): 199-209. doi: 10.1071/RJ08002
[38] 孙淼, 徐柱, 柳剑丽. 内蒙古农牧交错区草地气候生产力对气候变化的响应. 草业科学, 2011, 28(6): 1085-1090. doi: 10.3969/j.issn.1001-0629.2011.06.041 SUN M, XU Z, LIU J L. Response of grassland climate productivity to climate change in farming-pastoral area of Inner Mongolia. Pratacultural Science, 2011, 28(6): 1085-1090. doi: 10.3969/j.issn.1001-0629.2011.06.041
[39] 林慧龙, 常生华, 李飞. 草地净初级生产力模型研究进展. 草业科学, 2007(12): 26-29. LIN H L, CHANG S H, LI F. Research progress on grassland net primary productivity (NPP) model. Pratacultural Science, 2007(12): 26-29.
[40] LIANG T G, FENG Q S, YU H, HUANG X D, LIN H L, AN S Z, REN J Z. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassland Science, 2012, 58(4): 208-220.
[41] POTTER C S, RANDERSON J T, FIELD C B, MATSON P A, VITOUSEK P M, MOONEY H A, KLOOSTER S A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. doi: 10.1029/93GB02725
[42] XIAO X M, HOLLINGER D, ABER J, GOLTZ M, DAVIDSON E A, ZHANG Q Y, MOORE B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 2004, 89(4): 519-534. doi: 10.1016/j.rse.2003.11.008
[43] GOETZ S J, PRINCE S D, GOWARD S N, THAWLEY M M, SMALL J. Satellite remote sensing of primary production: An improved production efficiency modeling approach. Ecological Modelling, 1999, 122(3): 239-255. doi: 10.1016/S0304-3800(99)00140-4
[44] VERSTRAETEN W W, VEROUSTRAETE F, FEYEN J. On temperature and water limitation of net ecosystem productivity: Implementation in the c-fix model. Ecological Modelling, 2006, 199(1): 4-22. doi: 10.1016/j.ecolmodel.2006.06.008
[45] RUIMY A, DEDIEU G, SAUGIER B. Turc: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 1996, 10: 269-285. 补充卷期信息 RUIMY A, DEDIEU G, SAUGIER B. Turc: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 1996, 10: 269-285.
[46] SASAI T, ICHII K, YAMAGUCHI Y, NEMANI R. Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco-physiological and mechanistic approaches using satellite data” (beams). Journal of Geophysical Research: Biogeosciences, 2005, 110(G2). [47] 张美玲, 蒋文兰, 陈全功, 柳小妮. 基于CSCS改进CASA模型的中国草地净初级生产力模拟. 中国沙漠, 2014, 34(4): 1150-1160. doi: 10.7522/j.issn.1000-694X.2013.00414 ZHANG M L, JIANG W L, CHEN Q G, LIU X N. Estimation of grassland net primary production in China with improved CASA model based on the CSCS. Journal of Desert Research, 2014, 34(4): 1150-1160. doi: 10.7522/j.issn.1000-694X.2013.00414
[48] 杨红飞, 刚成诚, 穆少杰, 章超斌, 周伟, 李建龙. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究. 草业学报, 2014, 23(3): 39-50. doi: 10.11686/cyxb20140305 YANG H F, GANG C C, MU S J, ZHANG C B, ZHOU W, LI J L. Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang. Acta Prataculturae Sinica, 2014, 23(3): 39-50. doi: 10.11686/cyxb20140305
[49] 郑艺. 基于光能利用率模型的植被总初级生产力估算及其不确定性分析. 北京: 中国科学院大学硕士学位论文, 2017. ZHENG Y. Light use efficiency based gross primary productivity estimation and uncertainty analysis. Master Thesis. Beijing: University of Chinese Academy of Sciences, 2017.
[50] 张馨元. 锡林浩特市草地与农田生态系统GPP模拟. 北京: 中国地质大学(北京)硕士学位论文, 2021. ZHANG X Y. GPP simulation of grassland and farmland ecosystem in Xilinhot. Master Thesis. Beijing: China University of Geosciences (Beijing), 2021.
[51] WHITE M A, THORNTON P E, RUNNING S W, NEMANI R R. Parameterization and sensitivity analysis of the biome-bgc terrestrial ecosystem model: Net primary production controls. Earth Interactions, 2000, 4(3): 1-85. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
[52] PARTON W J, SCURLOCK J M O, OJIMA D S, GILMANOV T G, SCHOLES R J, SCHIMEL D S, KIRCHNER T, MENAUT J-C, SEASTEDT T, GARCIA MOYA E, KAMNALRUT A, KINYAMARIO J I. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7(4): 785-809. doi: 10.1029/93GB02042
[53] LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776. doi: 10.1029/92JD00509
[54] MCGUIRE A D, MELILLO J M, KICKLIGHTER D W, JOYCE L A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. Journal of Biogeography, 1995, 22(4/5): 785-796. doi: 10.2307/2845980
[55] CAO M K, WOODWARD F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 1998, 4(2): 185-198. doi: 10.1046/j.1365-2486.1998.00125.x
[56] ZHANG Y Q, TANG Y H, JIANG J, YANG Y H. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Science in China Series D: Earth Sciences, 2007, 50(1): 113-120. doi: 10.1007/s11430-007-2032-2
[57] CHIMNER R A, COOPER D J, PARTON W J. Modeling carbon accumulation in rocky mountain fens. Wetlands, 2002, 22(1): 100-110. doi: 10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2
[58] 李传华, 韩海燕, 范也平, 曹红娟, 王玉涛, 孙皓. 基于biome-bgc模型的青藏高原五道梁地区NPP变化及情景模拟. 地理科学, 2019, 39(8): 1330-1339. doi: 10.13249/j.cnki.sgs.2019.08.015 LI C H, HAN H Y, FAN Y P, CAO H J, WANG Y T, SUN H. NPP change and scenario simulation in Wudaoliang area of the Tibetan Plateau based on Biome-BGC model. Scientia Geographica Sinica, 2019, 39(8): 1330-1339. doi: 10.13249/j.cnki.sgs.2019.08.015
[59] 刘丽慧, 孙皓, 李传华. 基于改进土壤冻融水循环的biome-bgc模型估算青藏高原草地NPP. 地理研究, 2021, 40(5): 1253-1264. LIU L H, SUN H, LI C H. Estimation of grassland NPP in the Qinghai-Tibet Plateau based on the improved Biome-BGC model considering soil freeze-thaw water cycle. Geographical Research, 2021, 40(5): 1253-1264.
[60] 胡波, 孙睿, 陈永俊, 冯丽超, 孙亮. 遥感数据结合biome-bgc模型估算黄淮海地区生态系统生产力. 自然资源学报, 2011, 26(12): 2061-2071. doi: 10.11849/zrzyxb.2011.12.006 HU B, SUN R, CHEN Y J, FENG L C, SUN L. Estimation of the net ecosystem productivity in Huang-Huai Hai region combining with Biome-BGC model and remote sensing data. Journal of Natural Resources, 2011, 26(12): 2061-2071. doi: 10.11849/zrzyxb.2011.12.006
[61] 李长生. 生物地球化学的概念与方法: DNDC模型的发展. 第四纪研究, 2001(2): 89-99. LI C C. Biogeochemical concepts and methodologies: Development of the DNDC model. Quaternary Sciences, 2001(2): 89-99.
[62] ZHANG L, QIN R Z, CHAI N, WEI H H, YANG Y, WANG Y C, LI F M, ZHANG F. Optimum fertilizer application rate to ensure yield and decrease greenhouse gas emissions in rain-fed agriculture system of the loess plateau. Science of the Total Environment, 2022, 823: 153762. [63] YANG J J, QIN R Z, SHI X P, WEI H H, SUN G J, LI F M, ZHANG F. The effects of plastic film mulching and straw mulching on licorice root yield and soil organic carbon content in a dryland farming. Science of the Total Environment, 2022, 826: 154113. [64] QIN R Z, ZHANG F, YU C Q, ZHANG Q, QI J G, LI F M. Contributions made by rain-fed potato with mulching to food security in China. European Journal of Agronomy, 2022, 133: 126435. [65] CUI G T, WANG J Y. Improving the dndc biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions. Science of the Total Environment, 2019, 687: 61-70. 补充卷期信息 CUI G T, WANG J Y. Improving the dndc biogeochemistry model to simulate soil temperature and emissions of nitrous oxide and carbon dioxide in cold regions. Science of the Total Environment, 2019, 687: 61-70.
[66] 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究. 草业学报, 2019, 28(12): 197-204. WANG D B, JI C T, LIN H L. A 'denitrification-decomposition'(DNDC) model evaluation of alpine meadow soil carbon response to climate change. Acta Prataculturae Sinica, 2019, 28(12): 197-204.
[67] WANG J Y, LI A N, BIAN J H. Simulation of the grazing effects on grassland aboveground net primary production using dndc model combined with time-series remote sensing data—A case study in zoige plateau, china. Remote Sensing, 2016, 8 (3): 168. 核实页码信息 WANG J Y, LI A N, BIAN J H. Simulation of the grazing effects on grassland aboveground net primary production using dndc model combined with time-series remote sensing data: A case study in Zoige Plateau, China. Remote Sensing, 2016, 8(3): 168.
[68] LIU J, CHEN J M, CIHLAR J, PARK W M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62(2): 158-175. doi: 10.1016/S0034-4257(97)00089-8
[69] WANG J B, LIU J Y, CAO M K, LIU Y F, YU G R, LI G C, QI S H, LI K R. Modelling carbon fluxes of different forests by coupling a remote-sensing model with an ecosystem process model. International Journal of Remote Sensing, 2011, 32(21): 6539-6567. doi: 10.1080/01431161.2010.512933