豆科牧草抗逆基因工程研究进展
豆科牧草是饲草的重要组成部分,也是支撑畜牧业发展、尤其是乳产业的重要基础。我国豆科牧草育种研究基础薄弱,干草和优质草种依赖进口,是我国畜牧业发展的短板之一。因此,加强豆科牧草的育种,尤其是当前发展迅速的生物技术育种,是促进我国草业发展和“弯车道超车”的重要途径。由于我国优质土地主要用于粮食生产,畜牧业主要分布在自然气候条件恶劣的地区,因此,我国草产业对抗逆性强的优质牧草品种极其依赖。鉴于生物技术育种的巨大潜力,本文就豆科牧草组织培养体系、遗传转化方法及近年来豆科牧草在抗生物、非生物胁迫等方面的研究成果加以综述,并对未来研究方向进行展望。
English
-
参考文献
[1] 刘志鹏, 周强, 刘文献, 张吉宇, 谢文刚, 方龙发, 王彦荣, 南志标. 中国牧草育种中的若干科学问题. 草业学报, 2021, 30(12): 184-193. doi: 10.11686/cyxb2021314 LIU Z P, ZHOU Q, LIU W X, ZHANG J Y, XIE W G, FANG L F, WANG Y R, NAN Z B. Some scientific issues of forage breeding in China. Acta Prataculturae Sinica, 2021, 30(12): 184-193. doi: 10.11686/cyxb2021314
[2] KAUFFMAN J B, COLEMAN G, OTTING N, LYTJEN D, NAGY D, BESCHTA R L. Riparian vegetation composition and diversity shows resilience following cessation of livestock grazing in northeastern Oregon, USA. PLoS One, 2022, 17(1): e0250136. doi: 10.1371/journal.pone.0250136
[3] 谢华玲, 杨艳萍, 董瑜, 王台. 苜蓿国际发展态势分析. 植物学报, 2021, 56(6): 740-750. doi: 10.11983/CBB21121 XIE H L, YANG Y P, DONG Y, WANG T. Analysis on international development trends of alfalfa. Chinese Bulletin of Botany, 2021, 56(6): 740-750. doi: 10.11983/CBB21121
[4] LANIGAN T M, KOPERA H C, SAUNDERS T L. Principles of genetic engineering. Genes, 2020, 11(3): 11030291.
[5] PERRY J, BRACHMANN A, WELHAM T, BINDER A, CHARPENTIER M, GROTH M, HAAGE K, MARKMANN K, WANG T L, PARNISKE M. TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methane sulfonate alleles toward glycine replacements. Plant Physiology, 2009, 151(3): 1281-1291. doi: 10.1104/pp.109.142190
[6] CHEN H, ZENG Y, YANG Y, HUANG L, TANG B, ZHANG H, HAO F, LIU W, LI Y, LIU Y, ZHANG X, ZHANG R, ZHANG Y, LI Y, WANG K, HE H, WANG Z, FAN G, YANG H, BAO A, SHANG Z, CHEN J, WANG W, QIU Q. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. doi: 10.1038/s41467-020-16338-x
[7] ROY S, LIU W, NANDETY R S, CROOK A, MYSORE K S, PISLARIU C I, FRUGOLI J, DICKSTEIN R, UDVARDI M K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32(1): 15-41. doi: 10.1105/tpc.19.00279
[8] 唐链, 田爽琪. 植物组织培养技术的应用进展. 现代园艺, 2022, 45(18): 24-26. doi: 10.3969/j.issn.1006-4958.2022.18.009 TANG L, TIAN S Q. Application progress of plant tissue culture technology. Modern Horticulture, 2022, 45(18): 24-26. doi: 10.3969/j.issn.1006-4958.2022.18.009
[9] 姜柳. 紫花苜蓿植株再生体系的建立. 哈尔滨: 东北农业大学硕士学位论文, 2017. JIANG L. Establishment of plant regeneration system of alfalfa. Master Thesis. Harbin: Northeast Agricultural University, 2017.
[10] 刘青青. 紫花苜蓿NFF2高效组织培养再生体系的建立. 郑州: 郑州大学硕士学位论文, 2014. LIU Q Q. Establish efficient regeneration system of tissue culture of alfalfa NFF2. Master Thesis. Zhengzhou: Zhengzhou University, 2014.
[11] 刘芳. 新疆黄花苜蓿再生体系建立及农杆菌介导AK-APR基因转化研究. 乌鲁木齐: 新疆农业大学硕士学位论文, 2012. LIU F. Study on regeneration system of Medicago falcata L. of Xinjiang and transformation of AK-APR gene by Agrobacterium tumefaciens. Master Thesis. Urumqi: Xinjiang Agricultural University, 2012.
[12] 张静. 农杆菌介导LYZ-GFP双元基因对3个苜蓿品种的转化及其表达分析. 兰州: 甘肃农业大学硕士学位论文, 2016. ZHANG J. The transformation of LYZ-GFP dual genes by Agrobacterium mediated and its expression analysis in 3 varieties of alfalfa. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.
[13] 康红霞, 朱永红, 赵萌, 贾姝, 伍国强. 红豆草组织培养及植株再生体系的优化. 草地学报, 2021, 29(6): 1336-1342. KANG H X, ZHU Y H, ZHAO M, JIA S, WU G Q. Optimization of plant regeneration system and a callus induction of forag legume sainfoin (Onobrychis viciifolia Scop.). Acta Agrestia Sinica, 2021, 29(6): 1336-1342.
[14] 云雅聪. 不同红豆草材料愈伤组织诱导及植株再生的研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2016. YUN Y C. Callu induction and plant regeneration of the different sainfoin materials. Master Thesis. Huhhot: Inner Mongolia Agricultural University, 2016.
[15] 钏秀娟. 柱花草再生体系的优化及Bar基因遗传转化的初步研究. 海口: 海南大学硕士学位论文, 2014. CHUAN X J. Optimization of regeneration system for Stylosanthes guianensis and the transformation of Bar gene. Master Thesis. Haikou: Hainan University, 2014.
[16] YAN Y, ZHU X, YU Y, LI C, ZHANG Z, WANG F. Nanotechnology strategies for plant genetic engineering. Advanced Materials, 2022, 34(7): 2106945. doi: 10.1002/adma.202106945
[17] FAN Y L, ZHANG X H, ZHONG L J, WANG X Y, JIN L S, LYU S H. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biology, 2020, 20(1): 208. doi: 10.1186/s12870-020-02421-4
[18] OZYIGIT I I, YUCEBILGILI KURTOGLU Y. Particle bombardment technology and its applications in plants. Molecular Biology Reports, 2020, 47(12): 9831-9847. doi: 10.1007/s11033-020-06001-5
[19] OZYIGIT I I. Gene transfer to plants by electroporation: methods and applications. Molecular Biology Reports, 2020, 47(4): 3195-3210. doi: 10.1007/s11033-020-05343-4
[20] WILSON S M, THORPE T A, MOLONEY M M. PEG-mediated expression of GUS and CAT genes in protoplasts from embryogenic suspension cultures of Picea glauca. Plant Cell Reports, 1989, 7(8): 704-707. doi: 10.1007/BF00272066
[21] RAO Y C, YANG X, PAN C Y, WANG C, WANG K J. Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement. Frontiers in Plant Science, 2022, 13: 1-17.
[22] PEREIRA L F, ERICKSON L. Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment. Plant Cell Reports, 1995, 14(5): 290-293.
[23] INDURK S, MISRA H S, EAPEN S. Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Reports, 2007, 26(6): 755-763. doi: 10.1007/s00299-006-0283-6
[24] HORSCH R B, FRY J E, HOFFMANN N L, EICHHOLTZ D, ROGERS S G, FRALEY R T. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231. doi: 10.1126/science.227.4691.1229
[25] DEAK M, KISS G B, KONCZ C, DUDITS D. Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Reports, 1986, 5(2): 97-100. doi: 10.1007/BF00269243
[26] HUANG B, ZHUO R, FAN H, WANG Y, XU J, JIN K, QIAO G. An efficient genetic transformation and CRISPR/Cas9: Based genome editing system for moso bamboo (Phyllostachys edulis). Frontiers in Plant Science, 2022, 13: 31-41.
[27] ESMAEILI S, SALEHI H, KHOSH-KHUI M, NIAZI A, TOHIDFAR M, ARAM F. Isopentenyl Transferase (IPT) Gene transfer to perennial ryegrass through sonication-assisted agrobacterium-mediated transformation (SAAT), vacuum and heat treatment. Molecular Biotechnology, 2019, 61(5): 332-344. doi: 10.1007/s12033-019-00165-7
[28] LAW S S Y, LIOU G, NAGAIAGA Y, GIMÉNEZ-DEJOZ J, TATEISHI A, TSUCHIYA K, KODAMA Y, FUJIGAYA T, NUMATA K. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nature Communications, 2022, 13(1): 2417. doi: 10.1038/s41467-022-30185-y
[29] YU Y, YU P C, CHANG W J, YU K, LIN C S. Plastid transformation: How does it work? Can it be applied to crops? What can it offer. International Journal of Molecular Sciences, 2020, 21(14): 21144854.
[30] IRUM S, JABEEN N, AHMAD K S, SHAFIQUE S S, KHAN T F, GUL H, ANWAAR S, SHAH N I, MEHMOOD A, HUSSAIN S Z. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS One, 2020, 15(12): e0242829. doi: 10.1371/journal.pone.0242829
[31] GODARA R, KATOCH R, RAFIQI S I, YADAV A, NAZIM K, SHARMA R, SINGH N K, KATOCH M. Synthetic pyrethroid resistance in Rhipicephalus (Boophilus) microplus ticks from north-western Himalayas, India. Tropical Animal Health and Production, 2019, 51(5): 1203-1208. doi: 10.1007/s11250-019-01810-8
[32] NGOU B P M, AHN H K, DING P, JONES J D G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592: 110-115. doi: 10.1038/s41586-021-03315-7
[33] MISHRA B, KUMAR N, MUKHTAR M S. Network biology to uncover functional and structural properties of the plant immune system. Current Opinion in Plant Biology, 2021, 62: 102057. doi: 10.1016/j.pbi.2021.102057
[34] HUANG C. From player to pawn: Viral avirulence factors involved in plant immunity. Viruses, 2021, 13(4): 688. doi: 10.3390/v13040688
[35] YANG S, GAO M, XU C, GAO J, DESHPANDE S, LIN S, ROE B A, ZHU H. Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12164-12169. doi: 10.1073/pnas.0802518105
[36] FUKUOKA S, SAKA N, MIZUKAMI Y, KOGA H, YAMANOUCHI U, YOSHIOKA Y, HAYASHI N, EBANA K, MIZOBUCHI R, YANO M. Gene pyramiding enhances durable blast disease resistance in rice. Scientific Reports, 2015, 5: 7773. doi: 10.1038/srep07773
[37] FUESTENBERG-HAGG J, ZAGROBELNY M, BAK S. Plant defense against insect herbivores. International Journal of Molecular Sciences, 2013, 14(5): 10242-10297. doi: 10.3390/ijms140510242
[38] SU T, HAN M, CAO D, XU M. Molecular and biological properties of snakins: the foremost cysteine-rich plant host defense peptides. Journal of Fungi, 2020, 6(4): 6040220.
[39] MUSTAFA G, MEHMOOD R, MAHROSH H S, MEHMOOD K, AHMED S. Investigation of plant antimicrobial peptides against selected pathogenic bacterial species using a peptide-protein docking approach. Research International, 2022: 1077814.
[40] GARCÍA A, AYUB N D, FOX A R, GÓMEZ M C, DIÉGUEZ M J, PAGANO E M, BERINI C A, MUSCHIETTI J P, SOTO G. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biology, 2014, 14: 248. doi: 10.1186/s12870-014-0248-9
[41] HE X, DIXON R A. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. The Plant Cell, 2000, 12(9): 1689-1702.
[42] ZHANG Z, CHEN Q, TAN Y, SHUANG A, DAI R, JIANG X, TEMUER B. Combined transcriptome and metabolome analysis of alfalfa response to thrips infection. Genes, 2021, 12(12): 12121967.
[43] RODRIGUEZ-DECUADRO S, ROSA G, RADIO S, BARRACO-VEGA M, BENKO-ISEPPON A M, DANS P D, SMIRCICH P, CECCHETTO G. Antimicrobial peptides in the seedling transcriptome of the tree legume Peltophorum dubium. Biochimie, 2021, 180: 229-242. doi: 10.1016/j.biochi.2020.11.005
[44] VOLK H, MARTON K, FLAJSMAN M, RADISEK S, TIAN H, HEIN I, PODLIPNIK C, THOMMA B P H J, KOSMELJ K, JAVORNIK B, BERNE S. Chitin-binding protein of Verticillium nonalfalfae disguises fungus from plant chitinases and suppresses chitin-triggered host immunity. Molecular Plant-Microbe Interactions, 2019, 32(10): 1378-1390. doi: 10.1094/MPMI-03-19-0079-R
[45] SINELNIKOV I G, SIEDHOFF N E, CHULKIN A M, ZOROV I N, SCHWANEBERG U, DAVARI M D, SINITSYNA O A, SHCHERBAKOVA L A, SINITSYN A P, ROZHKOVA A M. Expression and refolding of the plant chitinase from Drosera capensis for applications as a sustainable and integrated pest management. Frontiers in Bioengineering and Biotechnology, 2021, 9: 728501. doi: 10.3389/fbioe.2021.728501
[46] TESFAYE M, DENTON M D, SAMAC D A, VANCE C P. Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil, 2005, 269(1-2): 233-243. doi: 10.1007/s11104-004-0520-0
[47] DIKEN GUR S, BAKHSHPOUR M, BERELI N, DENIZLI A. Antibacterial effect against both Gram-positive and Gram-negative bacteria via isozyme imprinted cryogel membranes. Journal of Biomaterials Science, 2021, 32(8): 1024-1039. doi: 10.1080/09205063.2021.1892472
[48] SAITO H, SAKAKIBARA Y, SAKATA A, KURASHIGE R, MURAKAMI D, KAGESHIMA H, SAITO A, MIYAZAKI Y. Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus. PLoS One, 2019, 14(5): e0217504. doi: 10.1371/journal.pone.0217504
[49] LEVASHOV P A, MATOLYGINA D A, OVCHINNIKOVA E D, ADAMOVA I Y, GASANOVA D A, SMIRNOV S A, NELYUB V A, BELOGUROVA N G, TISHKOV V I, EREMEEV N L, LEVASHOV A V. The bacteriolytic activity of native and covalently immobilized lysozyme against Gram-positive and Gram-negative bacteria is differentially affected by charged amino acids and glycine. FEBS Open Bio, 2019, 9(3): 510-518. doi: 10.1002/2211-5463.12591
[50] DAI X, LIU Y, ZHUANG J, YAO S, LIU L, JIANG X, ZHOU K, WANG Y, XIE D, BENNETZEN J L, GAO L, XIA T. Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytologist, 2020, 226(4): 1104-1116. doi: 10.1111/nph.16425
[51] 董文科, 陈春艳, 马晖玲. 转OvBAN/bar双价基因的紫花苜蓿对虫蚀及除草剂的耐受性分析. 草业学报, 2019, 28(7): 159-167. doi: 10.11686/cyxb2019152 DONG W K, CHEN C Y, MA H L. Analysis of insect resistance and herbicide resistance in transgenic alfalfa plants over-expressing the OvBAN/bar gene. Acta Prataculturae Sinica, 2019, 28(7): 159-167. doi: 10.11686/cyxb2019152
[52] MORTON R L, SCHROEDER H E, BATEMAN K S, CHRISPEELS M J, ARMSTRONG E, HIGGINS T J V. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proceedings of the National Academy of Sciences USA, 2000, 97(8): 3820-3825. doi: 10.1073/pnas.070054597
[53] IGNACIMUTHU S, PRAKASH S. Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. Journal of Biosciences, 2006, 31(3): 339-345. doi: 10.1007/BF02704106
[54] GUO Z, KANG S, WU Q, WANG S, CRICKMORE N, ZHOU X, BRAVO A, SOBERON M, ZHANG Y. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathogens, 2021, 17(9): e1009917. doi: 10.1371/journal.ppat.1009917
[55] STRIZHOV N, KELLER M, MATHUR J, KONCZ-KALMAN Z, BOSCH D, PRUDOVSKY E, SCHELL J, SNEH B, KONCZ C, ZILBERSTEIN A. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of the National Academy of Sciences USA, 1996, 93(26): 15012-15017. doi: 10.1073/pnas.93.26.15012
[56] DAS A, DATTA S, THAKUR S, SHUKLA A, ANSARI J, SUJAYANAND G K, CHATURVEDI S K, KUMAR P A, SINGH N P. Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner). Frontiers in Plant Science, 2017, 8: 1423. doi: 10.3389/fpls.2017.01423
[57] CAO B, SHU C, GENG L G F, ZHANG J. Cry78Ba1, One novel crystal protein from Bacillus thuringiensis with high insecticidal activity against rice planthopper. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2539-2546. doi: 10.1021/acs.jafc.9b07429
[58] AKHTAR M, MIZUTA K, SHIMOKAWA T, MAEDA M, TALUKDER M M R, IKENO S. Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system. Journal of Microbiological Methods, 2021, 188: 106207. doi: 10.1016/j.mimet.2021.106207
[59] GÓMEZ I, OCELOTL J, SÁNCHEZ J, AGUILAR-MEDEL S, PEÑA-CHORA G, LINA-GARCIA L, BRAVO A, SOBERÓN M. Bacillus thuringiensis Cry1Ab domain III β-22 mutants with enhanced toxicity to Spodoptera frugiperda. Applied Environmental Microbiology, 2020, 86(22): e01580-20.
[60] KUMAR S, SINGH N, SINHA M, DUBE D, SINGH S B, BUSHAN A, KAUR P, SRINIVASAN A, SHARMA S, SINGH T P. Crystal structure determination and inhibition studies of a novel xylanase and alpha-amylase inhibitor protein (XAIP) from Scadoxus multiflorus. FEBS Journal, 2010, 277(13): 2868-2882. doi: 10.1111/j.1742-4658.2010.07703.x
[61] BERINI F, KATZ C, GRUZDEV N, CASARTELLI M, TETTAMANTI G, MARINELLI F. Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnology Advances, 2018, 36(3): 818-838. doi: 10.1016/j.biotechadv.2018.01.002
[62] TSANEVA M, VAN DAMME E J M. 130 years of plant lectin research. Glycoconjugate Journal, 2020, 37(5): 533-551. doi: 10.1007/s10719-020-09942-y
[63] BONNARDEL F, MARIETHOZ J, PEREZ S, IMBERTY A, LISACEK F. LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 2021, 49: D1548-D1554. doi: 10.1093/nar/gkaa1019
[64] VAN DAMME E J M. 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal, 2022, 39(1): 83-97. doi: 10.1007/s10719-021-10015-x
[65] CHEN P, DE SCHUTTER K, VAN DAMME E J M, SMAGGHE G. Can plant lectins help to elucidate insect lectin-mediated immune response. Insects, 2021, 12(6): 497-515. doi: 10.3390/insects12060497
[66] CHAKRABORTI D, SARKAR A, MONDAL H A, DAS S. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Research, 2009, 18(4): 529-544. doi: 10.1007/s11248-009-9242-7
[67] MATOBA Y, SATO Y, ODA K, HATORI Y, MORIMOTO K. Lectins engineered to favor a glycan-binding conformation have enhanced antiviral activity. Journal of Biological Chemistry, 2021, 296: 100698. doi: 10.1016/j.jbc.2021.100698
[68] HIRAYAMA T, SHINOZAKI K. Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 2010, 61(6): 1041-1052. doi: 10.1111/j.1365-313X.2010.04124.x
[69] 王冰, 程宪国. 干旱、高盐及低温胁迫下植物生理及转录因子的应答调控. 植物营养与肥料学报, 2017, 23(6): 1565-1574. doi: 10.11674/zwyf.17312 WANG B, CHENG X G. Physiological responses and regulatory pathways of transcription factors in plants under drought, high-salt, and low temperature stresses. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1565-1574. doi: 10.11674/zwyf.17312
[70] ZHU J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. doi: 10.1146/annurev.arplant.53.091401.143329
[71] 田野. 霸王ZxABCG11的功能验证及其对紫花苜蓿(Medicago sativa L.)的遗传转化. 兰州: 兰州大学硕士学位论文, 2017. TIAN Y. Functional verification of ZxABCG11 from Zygophyllum xanthoxylum and genetic transformation to alfalfa (Medicago sativa L.). Master Thesis. Lanzhou: Lanzhou University, 2017.
[72] ZONG N, WANG H, LI Z, MA L, XIE L, PANG J, FAN Y, ZHAO J. Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9. Plant Molecular Biology, 2020, 102(3): 339-357. doi: 10.1007/s11103-019-00951-6
[73] 李静. 玉米ABP9基因转化紫花苜蓿及其抗旱性分析. 兰州: 兰州大学硕士学位论文, 2012. LI J. Expression of ABP9 enhances tolerance to drought stress in transgenic alfalfa. Master Thesis. Lanzhou: Lanzhou University, 2012.
[74] ANBAZHAGAN K, BHATNAGAR-MATHUR P, VADEZ V, DUMBALA S R, KAVI KISHOR P B, SHARMA K K. DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Reporter, 2015, 34(2): 199-210. doi: 10.1007/s00299-014-1699-z
[75] CHEN X, WANG H, LI X, MA K, ZHAN Y, ZENG F. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology, 2019, 19(1): 231. doi: 10.1186/s12870-019-1812-0
[76] LIU S, YANG L, LI J, TANG W, LI J, LIN R. FHY3 interacts with phytochrome B and regulates seed dormancy and germination. Plant Physiology, 2021, 187(1): 289-302. doi: 10.1093/plphys/kiab147
[77] BADHAN S, BALL A S, MANTRI N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. International Journal of Molecular Science, 2021, 22(1): ijms22010396.
[78] SINGER S D, BURTON HUGHES K, SUBEDI U, KAUR DHARIWAL G, KADER K, ACHARYA S, CHEN G, HANNOUFA A. The CRISPR/Cas9-mediated modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in alfalfa leads to distinct phenotypic outcomes. Frontiers in Plant Science, 2021, 12: 774146.
[79] 伍国强, 贾姝, 刘海龙, 王春梅, 李善家. 盐胁迫对红豆草幼苗生长和离子积累及分配的影响. 草业科学, 2017, 11(8): 1661-1668. doi: 10.11829/j.issn.1001-0629.2016-0447 WU G Q, JIA S, LIU H L, WANG C M, LI S J. Effect of salt stress on growth, ion accumulation, and distribution in sainfoins seedlings. Pratacultural Science, 2017, 11(8): 1661-1668. doi: 10.11829/j.issn.1001-0629.2016-0447
[80] DANQUAH A, DE ZELICOURT A, COLCOMBET J, HIRT H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 2014, 32(1): 40-52. doi: 10.1016/j.biotechadv.2013.09.006
[81] MITTLER R, BLUMWALD E. The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell, 2015, 27(1): 64-70. doi: 10.1105/tpc.114.133090
[82] OVECKA M, TAKAC T, KOMIS G, VADOVIC P, BEKESOVA S, DOSKOCILOVA A, SMEKALOVA V, LUPTOVCIAK I, SAMAJOVA O, SCHWEIGHOFER A, MESKIENE I, JONAK C, KRENEK P, LICHTSCHEIDL I, SKULTETY L, HIRT H, SAMAJ J. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. Journal of Experimental Botany, 2014, 65(9): 2335-2350. doi: 10.1093/jxb/eru115
[83] ZHU J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. doi: 10.1016/j.cell.2016.08.029
[84] CHEN T H, MURATA N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 2002, 5(3): 250-257. doi: 10.1016/S1369-5266(02)00255-8
[85] WANG F W, WANG C, SUN Y, WANG N, LI X W, DONG Y Y, YAO N, LIU X M, CHEN H, CHEN X F, WANG Z M, LI H Y. Overexpression of vacuolar proton pump ATPase (V-H+-ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa (Medicago sativa L.). Journal of Integrative Agriculture, 2016, 15(10): 2279-2289. doi: 10.1016/S2095-3119(16)61399-0
[86] 林杉. 共表达ZxNHX1-VP1-1紫花苜蓿的分子鉴定及ZxNHX1-PcCLCg紫花苜蓿的耐盐性评价. 兰州: 兰州大学硕士学位论文, 2021. LIN S. Molecular identification of ZxNHX1-VP1-1 co-overexpressing alfalfa, and the evaluation of salt tolerance in alfalfa co-overexpressing ZxNHX1-PcCLCg. Master Thesis. Lanzhou: Lanzhou University, 2021.
[87] 任伟, 王英哲, 徐安凯, 王梦寒, 董兰, 周仂, 谭晶, 刘艳芝, 王志锋, 高阳, 周艳春. 一种创制抗逆转基因苜蓿的方法: 中国, CN109234289B. 2022-04-08. REN W, WANG Y Z, XU A K, WANG M H, DONG L, ZHOU L, TAN J, LIU Y Z, WANG Z F, GAO Y, ZHOU Y C. A method for creating resistant transgenic alfalfa: China, CN109234289B. 2022-04-08.
[88] 贾姝. 超表达BvNHX基因提高红豆草耐盐性的研究. 兰州: 兰州理工大学硕士学位论文, 2017. JIA S. Study on overexpression of BvNHX gene in Sainfoin and identification the salt tolerance of the transgenic plants. Master Thesis. Lanzhou: Lanzhou University of Technology, 2017.
[89] 麻冬梅, 秦楚. AtSOS基因在紫花苜蓿中的表达及其耐盐性研究. 草业学报, 2018, 27(6): 81-91. doi: 10.11686/cyxb2017281 MA D M, QIN C. The expression of the salt tolerance gene AtSOS in Medicago. Acta Prataculturae Sinica, 2018, 27(6): 81-91. doi: 10.11686/cyxb2017281
[90] 徐畅, 何好, 李国良, 金淑梅. 水稻金属硫蛋白基因(rgMT)遗传转化的紫花苜蓿耐盐性分析. 草业科学, 2018, 12(4): 829-838. doi: 10.11829/j.issn.1001-0629.2017-0321 XU C, HE H, LI G L, JIN S M. Salt stress tolerance analysis of rgMT gene transformed Medicago sativa. Pratacultural Science, 2018, 12(4): 829-838. doi: 10.11829/j.issn.1001-0629.2017-0321
[91] ZHANG J, DUAN Z, ZHANG D, ZHANG J, DI H, WU F, WANG Y. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochemical and Biophysical Research Communications, 2016, 472(1): 75-82. doi: 10.1016/j.bbrc.2016.02.067
[92] SAVIĆ J, NIKOLIĆ R, BANJAC N, ZDRAVKOVIĆ-KORAĆ S, STUPAR S, CINGEL A, ĆOSIĆ T, RASPOR M, SMIGOCKI A, NINKOVIĆ S. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. Journal of Plant Physiology, 2019, 243: 153055. doi: 10.1016/j.jplph.2019.153055
[93] WU G Q, LIU Z X, XIE L L, WANG J L. Genome-wide identification and expression analysis of the BvSnRK2 genes family in sugar beet (Beta vulgaris L.) under salt conditions. Journal of Plant Growth Regulation, 2021, 40(2): 519-532. doi: 10.1007/s00344-020-10119-y
[94] RAINERI J, RIBICHICH K F, CHAN R L. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Reporter, 2015, 34(12): 2065-2080. doi: 10.1007/s00299-015-1852-3
[95] YAO L, JIANG Y, LU X, WANG B, ZHOU P, WU T. A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Molecular Biology Reporter, 2016, 43(10): 1089-1100. doi: 10.1007/s11033-016-4042-7
[96] WANG S, GUO T, SHEN Y, WANF Z, KANG J, ZHANG J, YI F, YANG Q, LONG R. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. Plant Physiology and Biochemistry, 2021, 163: 154-165. doi: 10.1016/j.plaphy.2021.04.003
[97] SONG Y, LYU J, QIU N, BAI Y, YANG N, DONG W. The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 141: 300-305. doi: 10.1016/j.plaphy.2019.06.007
[98] KIM J M, TO T K, NISHIOKA T, SEKI M. Chromatin regulation functions in plant abiotic stress responses. Plant, Cell and Environment, 2010, 33(4): 604-611. doi: 10.1111/j.1365-3040.2009.02076.x
[99] LYZENGA W J, STONE S L. Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 2012, 63(2): 599-616. doi: 10.1093/jxb/err310
[100] SEO P J, PARK M J, PARK C M. Alternative splicing of transcription factors in plant responses to low temperature stress: Mechanisms and functions. Planta, 2013, 237(6): 1415-1424. doi: 10.1007/s00425-013-1882-4
[101] XU P, YANG C. Emerging role of SUMOylation in plant development. Plant Signaling and Behavior, 2013, 8(7): e24727. doi: 10.4161/psb.24727
[102] YANG C, LI D, MAO D, LIU X, JI G, LI X, ZHAO X, CHENG Z, CHEN C, ZHU L. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell and Environment, 2013, 36(12): 2207-2218. doi: 10.1111/pce.12130
[103] HAJYZADEH M, TURKTAS M, KHAWAR K M, UNVER T. MiR408 overexpression causes increased drought tolerance in chickpea. Gene, 2015, 555(2): 186-193. doi: 10.1016/j.gene.2014.11.002
[104] ZHOU M, LI D, LI Z, HU Q, YANG C, ZHU L, LUO H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bent grass. Plant Physiology, 2013, 161(3): 1375-1391. doi: 10.1104/pp.112.208702
[105] ARSHAD M, FEYISSA B A, AMYOT L, AUNG B, HANNOUFA A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 2017, 258: 122-136. doi: 10.1016/j.plantsci.2017.01.018
[106] ARSHAD M, GRUBER M Y, WALL K, HANNOUFA A. An insight into microRNA156 role in salinity stress responses of alfalfa. Frontiers Plant Science, 2017, 8: 356.
[107] WANG D, SUN Z, HUX, XIONG J, HU L, XU Y, TANG Y, WU Y. The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC Plant Biology, 2021, 21(1): 605. doi: 10.1186/s12870-021-03336-4
[108] YUAN Y, SONG T, YU J, ZHANG W, HOU X, LING Z K, CUI G. Genome-Wide investigation of the cysteine synthase gene family shows that overexpression of CSase confers alkali tolerance to alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2021, 12: 792862.
[109] LI Y, LI X, ZHANG J, LI D, YAN L, YOU M, ZHANG J, LEI X, CHANG D, JI X, AN J, LI M, BAI S, YAN J. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Frontiers in Plant Science, 2021, 12: 753011. doi: 10.3389/fpls.2021.753011
[110] SHI Y, DING Y, YANG S. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 2018, 23(7): 623-637. doi: 10.1016/j.tplants.2018.04.002
[111] 孙予璐, 李建东, 孙备, 王国骄, 申晓慧, 冉卓. 不同品种紫花苜蓿主要抗寒生理指标对低温的响应. 沈阳农业大学学报, 2017, 48(5): 591-596. SUN Y L, LI J D, SUN B, WANG G J, SHEN X H, RAN Z. Responses of cold resistance physiological indices of different alfalfa varieties to cold stress. Journal of Shenyang Agricultural University, 2017, 48(5): 591-596.
[112] 徐春波. 转AtCBF1基因提高紫花苜蓿抗寒性研究. 呼和浩特: 内蒙古农业大学博士学位论文, 2016. XU C B. Transferring AtCBF1 gene to improves cold tolerance in alfalfa. PhD Thesis. Huhhot: Inner Mongolia Agricultural University, 2016.
[113] 张娜. 豆科牧草对重金属元素转运富集特性的研究. 杨凌: 西北农林科技大学硕士学位论文, 2012. ZHANG N. Research on heavy metals transportation and enrichment properties in the legume forages. Master Thesis. Yangling: Northwest A & F University, 2012.
[114] GARCÍA DE LA TORRE V S, COBA DE LA PENA T, LUCAS M M, PUEYO J J. Transgenic Medicago truncatula plants that accumulate proline display enhanced tolerance to cadmium stress. Frontiers in Plant Science, 2022, 13: 829069. doi: 10.3389/fpls.2022.829069
[115] 许诺, 高爽, 胡振林, 李世军, 王云鹏, 马建. 一种紫花苜蓿MsWRKY19基因及其在铬胁迫环境中的应用: CN113502292A. 2021-10-15. XU N, GAO S, HU Z L, LI S J, WANG Y P, MA J. MsWRKY19 gene of Alfalfa and its application in chromium stress environment: CN113502292A. 2021-10-15.
[116] 安渊, 苏连泰, 周鹏, 于晨, 张钰靖, 王如月, 赵恩华. 一种紫花苜蓿MYB转录因子及其耐铝毒应用: 中国, CN111087458B. 2021-09-03. AN Y, SU L Q, ZHOU P, YU C, ZHANG Y J, WANG R Y, ZHAO E H. An alfalfa MYB transcription factor and its application to aluminum resistance: China, CN111087458B. 2021-09-03.
[117] CHANDRAKAR V, YADU B, KORRAM J, SATNAMI M L, DUBEY A, KUMAR M, KESHAVKANT S. Carbon dot induces tolerance to arsenic by regulating arsenic uptake, reactive oxygen species detoxification and defense-related gene expression in Cicer arietinum L. Plant Physiology and Biochemistry, 2020, 156: 78-86. doi: 10.1016/j.plaphy.2020.09.003
-
表 1 不同豆科牧草的再生体系
Table 1 Regeneration systems of different legume forages
物种
Species最佳外植体
Best explant培养基 Medium 参考文献
Reference诱导愈伤
Callus
induction诱导不定芽
Induction of
adventitious buds诱导生根
Root
induction紫花苜蓿
Medicago sativa下胚轴
HypocotylMS + 2.0 mg·L−1 2,4-D + 0.25 mg·L−1 KT MS + 0.4 mg·L−1 KT 1/2 MS [9] 紫花苜蓿‘NFF2’
M. sativa ‘NFF2’叶柄
PetioleSH2K MSO 1/2 MS [10] 黄花苜蓿
M. falcata下胚轴
HypocotylMS + 0.5 mg·L−1 2,4-D + 0.8 mg·L−1 LKT MS + 0.2 mg·L−1 2,4-D + 0.4 mg·L−1 KT +
1 g·L−1 CH1/2 MS [11] ‘甘农3号’紫花苜蓿
Medicago sativa ‘Gannong 3’下胚轴
HypocotylMS + 2.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT MS + 2.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT + 0.5 mg·L−1 NAA MS + 0.2 mg·L−1 NAA [12] ‘和田’紫花苜蓿
M. sativa ‘Hetian’下胚轴
HypocotylMS + 2.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT MS + 2.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT + 0.05 mg·L−1 NAA MS + 0.1 mg·L−1 NAA ‘甘农1号’杂花苜蓿
M. media ‘Gannong 1’下胚轴
HypocotylMS + 2.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT MS + 2.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT + 0.05 mg·L−1 NAA MS + 0.1 mg·L−1 NAA ‘蒙农’红豆草
Onobrychis viciaefolia ‘Mengnong’下胚轴
HypocotylMS + 2.0 mg·L−1 2,4-D + 1.0 mg·L−1 KT + 1.0 mg·L−1 6-BA MS + 0.1 mg·L−1 NAA + 2.0 mg·L−1 6-BA + 1.0 mg·L−1 CH [14] 普通红豆草
O. viciaefolia下胚轴
HypocotylMS + 0.01 mg·L−1 NAA + 0.1 mg·L−1 6-BA + 1.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT MS + 1.0 mg·L−1 NAA + 2.0 mg·L−1 6-BA + 2.0 mg·L−1 CH ‘雷蒙特’红豆草
O. viciaefolia ‘Reymont’下胚轴
HypocotylMS + 0.5 mg·L−1 6-BA + 1.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT MS + 0.1 mg·L−1 NAA + 1.0 mg·L−1 6-BA + 0.5 mg·L−1 KT ‘埃斯基’红豆草
O. viciaefolia ‘Eski’下胚轴
HypocotylMS + 0.5 mg·L−1 6-BA + 4.0 mg·L−1 2,4-D + 0.5 mg·L−1 KT MS + 0.1 mg·L−1 NAA + 1.0 mg·L−1 6-BA + 2.0 mg·L−1 CH + 2.0 mg·L−1 KT 柱花草
Stylosanthes spp.下胚轴
HypocotylMS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 2,4-D + 3%蔗糖sucrose
MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 2,4-D + 3%蔗糖sucroseMS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 2,4-D + 3%蔗糖sucrose
MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 2,4-D + 3%蔗糖sucrose1/2 MS + 0.5 mg·L−1 IAA + 0.5 mg·L−1 IBA + 0.2%蔗糖sucrose + 0.8%活性炭activated carbon
1/2 MS + 0.5 mg·L−1 IAA + 0.5 mg·L−1 IBA + 0.2%蔗糖sucrose + 0.8%活性炭 activated carbon[15] MS,Murashig Skoog培养基;CH,水解络蛋白;KT,6-糠基氨基嘌呤;IAA,吲哚乙酸;NAA,萘乙酸;2,4-D,2,4-二氯苯氧乙酸。
MS, Murashig Skoog culture medium; CH,casein hydrolysate;KT, kinetin; IAA, 3-indoleacetic acid; NAA, naphthlcetic acid; 2,4-D, 2,4-dichlorophenoxyacetic acid.表 2 豆科牧草遗传转化方法
Table 2 Methods for the genetic transformation of legume forages
种类
Classification系统
System特点
Characteristic优势
Strength缺点
Limitation参考文献
Reference传统遗传转化
Traditional genetic transformation农杆菌
Agrobacterium农杆菌通过感染植物伤口进入细胞,并将T-DNA插入植物基因组
Agrobacterium enters cells by infecting plant wounds and inserts T-DNA into the plant genome效率高、成本低、
转化稳定
High efficiency, low cost, stable, allows transformation宿主范围受限、
随机整合
Limited host range, random integration[17] 显微注射
Biolistic particle delivery把基因包裹在重金属粒子上,脱水后将其高速推进细胞内
Genes are coated and dehydrated onto heavy metal particles, which are propelled into cells at high velocities物种独立性、操作简单、基因传递量大
Species independence, simple operation, large-size gene delivery效率低、细胞或
组织有害、成本高、随机整合
Low efficiency, cell or tissue damage, high cost, random integration[18] 电激法
Electroporation在电场脉冲作用下,基因通过瞬时气孔转移到细胞质中
Genes are transferred into the cytoplasm by transient pores under electric field pulses快捷、经济、效率高
Fast, inexpensive, high efficiency物种范围有限、
难穿过细胞壁、
有害
Limited range of plant species, difficult to pass walled cells, toxicity[19] PEG介导法
PEG-mediated deliveryPEG可使细胞膜不稳定,使DNA进入植物细胞质
PEG destabilizes the cell membrane and allows DNA to enter the plant cytoplasm高效的原生质体转化
Highly efficient protoplast transformation仅限原生质体
随机整合
Limited to protoplasts, random integration[20] 纳米材料
Nanomaterial-mediated gene delivery system碳纳米颗粒、磁性纳米颗粒、硅基纳米材料、层状双氢氧化物、聚合物基纳米材料、肽基纳米材料、纳米材料DNA、脂质体金属纳米颗粒
Carbon nanoparticles, magnetic nanoparticles, silicon-based nanomaterials
layered double hydroxide, polymer-based nanomaterials, peptide-based gene delivery DNA, nanostructures, liposome metal nanostructures纳米材料通过内吞或非内吞途径将外源性基因传递到细胞质或细胞器
Nanomaterials deliver exogenous genes into cytoplasm or organelles via an endocytic or nonendocytic pathway物种独立性、操作简单、生物相容性、装载力高、转化效率高
Species independence, simple operation, biocompatibility, high cargo-loading capacity, high transformation efficiency载体材料受限,
受载体物理、
化学性质的影响
Limited nanocarriers, affected by physical and chemical properties of carriers[16] 基因组编辑
技术
Genome editingCRISPR-Cas
系统
CRISPR-Cas systems将CRISRP-Cas系统送入细胞内,在sgRNA的引导下进行基因切割
The CRISRP-Cas system is delivered into the cell, and gene cleavage is performed under the guidance of sgRNA精确切割基因组,
促进并加速植物
基因组编辑
Precise genetic cutting,
facilitating and accelerating plant genome editing质粒易降解、RNP易失活、转运载体有限
Easy degradation for plasmids, easy deactivation for RNP, restricted to delivery vectors[21] 表 3 豆科牧草抗逆基因工程研究
Table 3 Studies on resistance gene engineering of legume forages
抗逆类型
Stress tolerance type基因
Gene作用
Effect基因工程
Genetic engineering结果
Result参考文献
Reference抗旱
Drought tolerance霸王ZxABCG11
Zygophyllum xanthoxylon ZxABCG11角质层脂转运蛋白
Encoding cuticle lipid transporter农杆菌介导法
Agrobacterium mediated method获得转ZxABCG11基因的紫花苜蓿
Alfalfa derived from transgene ZxABCG11[71] 玉米ZmABP9
Zea mays ZmABP9编码一个bZIP家族的转录因子
Transcription factors encoding a bZIP family of transcription factors农杆菌介导法
Agrobacterium mediated method增强保定苜蓿的抗旱性
Enhanced drought resistance of Baoding alfalfa[73] 拟南芥AtDREB1A
Arabidopsis thaliana AtDREB1A转录因子
Transcription factors农杆菌介导法
Agrobacterium mediated method降低鹰嘴豆蒸腾作用,增加其地上部生物量
Decreased transpiration and increased shoot biomass of chickpea[74] 紫花苜蓿MsSPL8
Medicago sativa MsSPL8编码鳞片启动子结合蛋白样8
Encoding squamosa promoter-binding protein-like 8CRISPR/Cas9 突变体苜蓿对水分亏缺更为敏感
The mutant alfalfa is more sensitive to water deficit[78] 耐盐
Salt tolerance角果碱蓬ScVHA-B, ScVHA-C, ScVHA-H
Suaeda corniculata ScVHA-B, ScVHA-C, ScVHA-H编码V-H+-ATP酶亚基
Encoding the V-H+ -ATPase subunit农杆菌介导法
Agrobacterium mediated method增强紫花苜蓿耐盐性
Enhanced salt tolerance of alfalfa[85] 霸王ZxNHX1-ZxVP1-1
Zygophyllum xanthoxylon ZxNHX1-ZxVP1-1编码液泡膜Na+/H+逆向转运蛋白
Encoding tonoplast Na+/H+ antiporter农杆菌介导法
Agrobacterium mediated method增强紫花苜蓿耐盐胁迫能力
Enhanced salt tolerance of alfalfa[86] 碱茅PdNHX-PdCAX
Puccinellia distans PdNHX-CAX编码液泡膜Na+/H+逆向转运蛋白
Encoding tonoplast Na+/H+ antiporter农杆菌介导法
Agrobacterium mediated method增强紫花苜蓿耐盐胁迫能力
Enhanced salt tolerance of alfalfa[87] 甜菜BvNHX
Beta vulgaris BvNHX编码液泡膜Na+/H+逆向转运蛋白
Encoding tonoplast Na+/H+ antiporter农杆菌介导法
Agrobacterium mediated method增强红豆草的耐盐性
Enhance salt tolerance of Onobrychis viciaefolia[88] 拟南芥AtSOS
Arabidopsis thaliana AtSOS编码SOS
Encoding SOS protein农杆菌介导法
Agrobacterium mediated method减轻盐胁迫对紫花苜蓿的伤害
Reduced the damage of salt stress on alfalfa[89] 水稻OsMT
Oryza sativa OsMT编码金属硫蛋白
Encoding metallothionein农杆菌介导法
Agrobacterium mediated method提高转基因苜蓿耐盐性
Improved salt tolerance of transgenic alfalfa[90] 无芒隐子草CsLEA
Cleistogenes songorica CsLEA编码脱氢蛋白
Encoding dehydrogenated protein农杆菌介导法
Agrobacterium mediated method提高苜蓿对盐胁迫的抗性
Improved the resistance of alfalfa to salt stress[91] 甜菜BvSTI
Beta vulgaris BvSTI编码丝氨酸蛋白酶抑制剂
Encoding serine protease Inhibitors农杆菌介导法
Agrobacterium mediated method减小盐胁迫对百脉根的影响
Reduced the effect of salt stress on Lotus corniculatus[92] 耐盐
Salt tolerance截形苜蓿MtRAV3
Medicago truncatula MtRAV3编码转录因子
Encoding transcription factors农杆菌介导法
Agrobacterium mediated method增强了转基因截形苜蓿对甘露醇、干旱和盐胁迫的耐受性
Enhanced the tolerance of transgenic alfalfa to mannitol, drought, and salt stress[96] 紫花苜蓿MsMYB2L
Medicago sativa MsMYB2L编码转录因子
Encoding transcription factors农杆菌介导法
Agrobacterium mediated methodMsMYB2L可作为一个用于调控紫花苜蓿耐盐性和耐旱性的潜在候选基因
MsMYB2L can be used as a potential candidate gene for regulating alfalfa salt and drought tolerance[97] 紫花苜蓿miR156
Medicago sativa miR156沉默SPL13
Silencing SPL13提高紫花苜蓿对
盐碱胁迫的耐受性
Improved the tolerance of alfalfa to saline alkali stress[106] 百脉根LcERF056
Lotus corniculatu LcERF056编码乙烯反应因子
Encoding ethylene response factors调节活性氧相关基因,提高百脉根耐
盐性
Regulated reactive oxygen species-related genes and improved salt tolerance of Lotus corniculatus[102] 苜蓿MsCSase
Medicago sativa MsCSase编码半胱氨酸合成酶
Encoding cysteine synthetase通过调节渗透调节物质和提高抗氧化能力来增强苜蓿耐碱性
Alkaline tolerance of alfalfa was enhanced by adjusting osmotic regulating substances and improving antioxidant
capacity[108] 耐寒
Resistant to cold拟南芥AtCBF1
Arabidopsis thaliana AtCBF1编码冷诱导转录因子
Encoding cold-inducible transcription factors农杆菌介导法
Agrobacterium mediated method使得转基因紫花苜蓿抗寒、高产
It makes the transgenic alfalfa cold resistant and high yield[112] 抗金属离子
Metal ion resistance豇豆属VaP5CS
Vigna aconitifolia VaP5CS编码△1-吡咯啉-5-羧酸合成酶
Encoding △1-pyrrolin-5-carboxylic acid synthetase固根并提高了紫花苜蓿耐铬性
Fixed root and improved chromium tolerance of alfalfa[114] 紫花苜蓿MsWRKY19
Medicago sativa MsWRKY19编码转录因子
Encoding transcription factors农杆菌介导法
Agrobacterium mediated methodImproved chromium tolerance of alfalfa [115] 紫花苜蓿MsMYB
Medicago sativa MsMYB编码转录因子
Encoding transcription factors农杆菌介导法
Agrobacterium mediated methodMade alfalfa resistant to aluminum stress [116] -
[1] 刘志鹏, 周强, 刘文献, 张吉宇, 谢文刚, 方龙发, 王彦荣, 南志标. 中国牧草育种中的若干科学问题. 草业学报, 2021, 30(12): 184-193. doi: 10.11686/cyxb2021314 LIU Z P, ZHOU Q, LIU W X, ZHANG J Y, XIE W G, FANG L F, WANG Y R, NAN Z B. Some scientific issues of forage breeding in China. Acta Prataculturae Sinica, 2021, 30(12): 184-193. doi: 10.11686/cyxb2021314
[2] KAUFFMAN J B, COLEMAN G, OTTING N, LYTJEN D, NAGY D, BESCHTA R L. Riparian vegetation composition and diversity shows resilience following cessation of livestock grazing in northeastern Oregon, USA. PLoS One, 2022, 17(1): e0250136. doi: 10.1371/journal.pone.0250136
[3] 谢华玲, 杨艳萍, 董瑜, 王台. 苜蓿国际发展态势分析. 植物学报, 2021, 56(6): 740-750. doi: 10.11983/CBB21121 XIE H L, YANG Y P, DONG Y, WANG T. Analysis on international development trends of alfalfa. Chinese Bulletin of Botany, 2021, 56(6): 740-750. doi: 10.11983/CBB21121
[4] LANIGAN T M, KOPERA H C, SAUNDERS T L. Principles of genetic engineering. Genes, 2020, 11(3): 11030291.
[5] PERRY J, BRACHMANN A, WELHAM T, BINDER A, CHARPENTIER M, GROTH M, HAAGE K, MARKMANN K, WANG T L, PARNISKE M. TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methane sulfonate alleles toward glycine replacements. Plant Physiology, 2009, 151(3): 1281-1291. doi: 10.1104/pp.109.142190
[6] CHEN H, ZENG Y, YANG Y, HUANG L, TANG B, ZHANG H, HAO F, LIU W, LI Y, LIU Y, ZHANG X, ZHANG R, ZHANG Y, LI Y, WANG K, HE H, WANG Z, FAN G, YANG H, BAO A, SHANG Z, CHEN J, WANG W, QIU Q. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. doi: 10.1038/s41467-020-16338-x
[7] ROY S, LIU W, NANDETY R S, CROOK A, MYSORE K S, PISLARIU C I, FRUGOLI J, DICKSTEIN R, UDVARDI M K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32(1): 15-41. doi: 10.1105/tpc.19.00279
[8] 唐链, 田爽琪. 植物组织培养技术的应用进展. 现代园艺, 2022, 45(18): 24-26. doi: 10.3969/j.issn.1006-4958.2022.18.009 TANG L, TIAN S Q. Application progress of plant tissue culture technology. Modern Horticulture, 2022, 45(18): 24-26. doi: 10.3969/j.issn.1006-4958.2022.18.009
[9] 姜柳. 紫花苜蓿植株再生体系的建立. 哈尔滨: 东北农业大学硕士学位论文, 2017. JIANG L. Establishment of plant regeneration system of alfalfa. Master Thesis. Harbin: Northeast Agricultural University, 2017.
[10] 刘青青. 紫花苜蓿NFF2高效组织培养再生体系的建立. 郑州: 郑州大学硕士学位论文, 2014. LIU Q Q. Establish efficient regeneration system of tissue culture of alfalfa NFF2. Master Thesis. Zhengzhou: Zhengzhou University, 2014.
[11] 刘芳. 新疆黄花苜蓿再生体系建立及农杆菌介导AK-APR基因转化研究. 乌鲁木齐: 新疆农业大学硕士学位论文, 2012. LIU F. Study on regeneration system of Medicago falcata L. of Xinjiang and transformation of AK-APR gene by Agrobacterium tumefaciens. Master Thesis. Urumqi: Xinjiang Agricultural University, 2012.
[12] 张静. 农杆菌介导LYZ-GFP双元基因对3个苜蓿品种的转化及其表达分析. 兰州: 甘肃农业大学硕士学位论文, 2016. ZHANG J. The transformation of LYZ-GFP dual genes by Agrobacterium mediated and its expression analysis in 3 varieties of alfalfa. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.
[13] 康红霞, 朱永红, 赵萌, 贾姝, 伍国强. 红豆草组织培养及植株再生体系的优化. 草地学报, 2021, 29(6): 1336-1342. KANG H X, ZHU Y H, ZHAO M, JIA S, WU G Q. Optimization of plant regeneration system and a callus induction of forag legume sainfoin (Onobrychis viciifolia Scop.). Acta Agrestia Sinica, 2021, 29(6): 1336-1342.
[14] 云雅聪. 不同红豆草材料愈伤组织诱导及植株再生的研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2016. YUN Y C. Callu induction and plant regeneration of the different sainfoin materials. Master Thesis. Huhhot: Inner Mongolia Agricultural University, 2016.
[15] 钏秀娟. 柱花草再生体系的优化及Bar基因遗传转化的初步研究. 海口: 海南大学硕士学位论文, 2014. CHUAN X J. Optimization of regeneration system for Stylosanthes guianensis and the transformation of Bar gene. Master Thesis. Haikou: Hainan University, 2014.
[16] YAN Y, ZHU X, YU Y, LI C, ZHANG Z, WANG F. Nanotechnology strategies for plant genetic engineering. Advanced Materials, 2022, 34(7): 2106945. doi: 10.1002/adma.202106945
[17] FAN Y L, ZHANG X H, ZHONG L J, WANG X Y, JIN L S, LYU S H. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biology, 2020, 20(1): 208. doi: 10.1186/s12870-020-02421-4
[18] OZYIGIT I I, YUCEBILGILI KURTOGLU Y. Particle bombardment technology and its applications in plants. Molecular Biology Reports, 2020, 47(12): 9831-9847. doi: 10.1007/s11033-020-06001-5
[19] OZYIGIT I I. Gene transfer to plants by electroporation: methods and applications. Molecular Biology Reports, 2020, 47(4): 3195-3210. doi: 10.1007/s11033-020-05343-4
[20] WILSON S M, THORPE T A, MOLONEY M M. PEG-mediated expression of GUS and CAT genes in protoplasts from embryogenic suspension cultures of Picea glauca. Plant Cell Reports, 1989, 7(8): 704-707. doi: 10.1007/BF00272066
[21] RAO Y C, YANG X, PAN C Y, WANG C, WANG K J. Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement. Frontiers in Plant Science, 2022, 13: 1-17.
[22] PEREIRA L F, ERICKSON L. Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment. Plant Cell Reports, 1995, 14(5): 290-293.
[23] INDURK S, MISRA H S, EAPEN S. Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Reports, 2007, 26(6): 755-763. doi: 10.1007/s00299-006-0283-6
[24] HORSCH R B, FRY J E, HOFFMANN N L, EICHHOLTZ D, ROGERS S G, FRALEY R T. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231. doi: 10.1126/science.227.4691.1229
[25] DEAK M, KISS G B, KONCZ C, DUDITS D. Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Reports, 1986, 5(2): 97-100. doi: 10.1007/BF00269243
[26] HUANG B, ZHUO R, FAN H, WANG Y, XU J, JIN K, QIAO G. An efficient genetic transformation and CRISPR/Cas9: Based genome editing system for moso bamboo (Phyllostachys edulis). Frontiers in Plant Science, 2022, 13: 31-41.
[27] ESMAEILI S, SALEHI H, KHOSH-KHUI M, NIAZI A, TOHIDFAR M, ARAM F. Isopentenyl Transferase (IPT) Gene transfer to perennial ryegrass through sonication-assisted agrobacterium-mediated transformation (SAAT), vacuum and heat treatment. Molecular Biotechnology, 2019, 61(5): 332-344. doi: 10.1007/s12033-019-00165-7
[28] LAW S S Y, LIOU G, NAGAIAGA Y, GIMÉNEZ-DEJOZ J, TATEISHI A, TSUCHIYA K, KODAMA Y, FUJIGAYA T, NUMATA K. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nature Communications, 2022, 13(1): 2417. doi: 10.1038/s41467-022-30185-y
[29] YU Y, YU P C, CHANG W J, YU K, LIN C S. Plastid transformation: How does it work? Can it be applied to crops? What can it offer. International Journal of Molecular Sciences, 2020, 21(14): 21144854.
[30] IRUM S, JABEEN N, AHMAD K S, SHAFIQUE S S, KHAN T F, GUL H, ANWAAR S, SHAH N I, MEHMOOD A, HUSSAIN S Z. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS One, 2020, 15(12): e0242829. doi: 10.1371/journal.pone.0242829
[31] GODARA R, KATOCH R, RAFIQI S I, YADAV A, NAZIM K, SHARMA R, SINGH N K, KATOCH M. Synthetic pyrethroid resistance in Rhipicephalus (Boophilus) microplus ticks from north-western Himalayas, India. Tropical Animal Health and Production, 2019, 51(5): 1203-1208. doi: 10.1007/s11250-019-01810-8
[32] NGOU B P M, AHN H K, DING P, JONES J D G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592: 110-115. doi: 10.1038/s41586-021-03315-7
[33] MISHRA B, KUMAR N, MUKHTAR M S. Network biology to uncover functional and structural properties of the plant immune system. Current Opinion in Plant Biology, 2021, 62: 102057. doi: 10.1016/j.pbi.2021.102057
[34] HUANG C. From player to pawn: Viral avirulence factors involved in plant immunity. Viruses, 2021, 13(4): 688. doi: 10.3390/v13040688
[35] YANG S, GAO M, XU C, GAO J, DESHPANDE S, LIN S, ROE B A, ZHU H. Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12164-12169. doi: 10.1073/pnas.0802518105
[36] FUKUOKA S, SAKA N, MIZUKAMI Y, KOGA H, YAMANOUCHI U, YOSHIOKA Y, HAYASHI N, EBANA K, MIZOBUCHI R, YANO M. Gene pyramiding enhances durable blast disease resistance in rice. Scientific Reports, 2015, 5: 7773. doi: 10.1038/srep07773
[37] FUESTENBERG-HAGG J, ZAGROBELNY M, BAK S. Plant defense against insect herbivores. International Journal of Molecular Sciences, 2013, 14(5): 10242-10297. doi: 10.3390/ijms140510242
[38] SU T, HAN M, CAO D, XU M. Molecular and biological properties of snakins: the foremost cysteine-rich plant host defense peptides. Journal of Fungi, 2020, 6(4): 6040220.
[39] MUSTAFA G, MEHMOOD R, MAHROSH H S, MEHMOOD K, AHMED S. Investigation of plant antimicrobial peptides against selected pathogenic bacterial species using a peptide-protein docking approach. Research International, 2022: 1077814.
[40] GARCÍA A, AYUB N D, FOX A R, GÓMEZ M C, DIÉGUEZ M J, PAGANO E M, BERINI C A, MUSCHIETTI J P, SOTO G. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biology, 2014, 14: 248. doi: 10.1186/s12870-014-0248-9
[41] HE X, DIXON R A. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. The Plant Cell, 2000, 12(9): 1689-1702.
[42] ZHANG Z, CHEN Q, TAN Y, SHUANG A, DAI R, JIANG X, TEMUER B. Combined transcriptome and metabolome analysis of alfalfa response to thrips infection. Genes, 2021, 12(12): 12121967.
[43] RODRIGUEZ-DECUADRO S, ROSA G, RADIO S, BARRACO-VEGA M, BENKO-ISEPPON A M, DANS P D, SMIRCICH P, CECCHETTO G. Antimicrobial peptides in the seedling transcriptome of the tree legume Peltophorum dubium. Biochimie, 2021, 180: 229-242. doi: 10.1016/j.biochi.2020.11.005
[44] VOLK H, MARTON K, FLAJSMAN M, RADISEK S, TIAN H, HEIN I, PODLIPNIK C, THOMMA B P H J, KOSMELJ K, JAVORNIK B, BERNE S. Chitin-binding protein of Verticillium nonalfalfae disguises fungus from plant chitinases and suppresses chitin-triggered host immunity. Molecular Plant-Microbe Interactions, 2019, 32(10): 1378-1390. doi: 10.1094/MPMI-03-19-0079-R
[45] SINELNIKOV I G, SIEDHOFF N E, CHULKIN A M, ZOROV I N, SCHWANEBERG U, DAVARI M D, SINITSYNA O A, SHCHERBAKOVA L A, SINITSYN A P, ROZHKOVA A M. Expression and refolding of the plant chitinase from Drosera capensis for applications as a sustainable and integrated pest management. Frontiers in Bioengineering and Biotechnology, 2021, 9: 728501. doi: 10.3389/fbioe.2021.728501
[46] TESFAYE M, DENTON M D, SAMAC D A, VANCE C P. Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil, 2005, 269(1-2): 233-243. doi: 10.1007/s11104-004-0520-0
[47] DIKEN GUR S, BAKHSHPOUR M, BERELI N, DENIZLI A. Antibacterial effect against both Gram-positive and Gram-negative bacteria via isozyme imprinted cryogel membranes. Journal of Biomaterials Science, 2021, 32(8): 1024-1039. doi: 10.1080/09205063.2021.1892472
[48] SAITO H, SAKAKIBARA Y, SAKATA A, KURASHIGE R, MURAKAMI D, KAGESHIMA H, SAITO A, MIYAZAKI Y. Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus. PLoS One, 2019, 14(5): e0217504. doi: 10.1371/journal.pone.0217504
[49] LEVASHOV P A, MATOLYGINA D A, OVCHINNIKOVA E D, ADAMOVA I Y, GASANOVA D A, SMIRNOV S A, NELYUB V A, BELOGUROVA N G, TISHKOV V I, EREMEEV N L, LEVASHOV A V. The bacteriolytic activity of native and covalently immobilized lysozyme against Gram-positive and Gram-negative bacteria is differentially affected by charged amino acids and glycine. FEBS Open Bio, 2019, 9(3): 510-518. doi: 10.1002/2211-5463.12591
[50] DAI X, LIU Y, ZHUANG J, YAO S, LIU L, JIANG X, ZHOU K, WANG Y, XIE D, BENNETZEN J L, GAO L, XIA T. Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytologist, 2020, 226(4): 1104-1116. doi: 10.1111/nph.16425
[51] 董文科, 陈春艳, 马晖玲. 转OvBAN/bar双价基因的紫花苜蓿对虫蚀及除草剂的耐受性分析. 草业学报, 2019, 28(7): 159-167. doi: 10.11686/cyxb2019152 DONG W K, CHEN C Y, MA H L. Analysis of insect resistance and herbicide resistance in transgenic alfalfa plants over-expressing the OvBAN/bar gene. Acta Prataculturae Sinica, 2019, 28(7): 159-167. doi: 10.11686/cyxb2019152
[52] MORTON R L, SCHROEDER H E, BATEMAN K S, CHRISPEELS M J, ARMSTRONG E, HIGGINS T J V. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proceedings of the National Academy of Sciences USA, 2000, 97(8): 3820-3825. doi: 10.1073/pnas.070054597
[53] IGNACIMUTHU S, PRAKASH S. Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. Journal of Biosciences, 2006, 31(3): 339-345. doi: 10.1007/BF02704106
[54] GUO Z, KANG S, WU Q, WANG S, CRICKMORE N, ZHOU X, BRAVO A, SOBERON M, ZHANG Y. The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathogens, 2021, 17(9): e1009917. doi: 10.1371/journal.ppat.1009917
[55] STRIZHOV N, KELLER M, MATHUR J, KONCZ-KALMAN Z, BOSCH D, PRUDOVSKY E, SCHELL J, SNEH B, KONCZ C, ZILBERSTEIN A. A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of the National Academy of Sciences USA, 1996, 93(26): 15012-15017. doi: 10.1073/pnas.93.26.15012
[56] DAS A, DATTA S, THAKUR S, SHUKLA A, ANSARI J, SUJAYANAND G K, CHATURVEDI S K, KUMAR P A, SINGH N P. Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner). Frontiers in Plant Science, 2017, 8: 1423. doi: 10.3389/fpls.2017.01423
[57] CAO B, SHU C, GENG L G F, ZHANG J. Cry78Ba1, One novel crystal protein from Bacillus thuringiensis with high insecticidal activity against rice planthopper. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2539-2546. doi: 10.1021/acs.jafc.9b07429
[58] AKHTAR M, MIZUTA K, SHIMOKAWA T, MAEDA M, TALUKDER M M R, IKENO S. Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system. Journal of Microbiological Methods, 2021, 188: 106207. doi: 10.1016/j.mimet.2021.106207
[59] GÓMEZ I, OCELOTL J, SÁNCHEZ J, AGUILAR-MEDEL S, PEÑA-CHORA G, LINA-GARCIA L, BRAVO A, SOBERÓN M. Bacillus thuringiensis Cry1Ab domain III β-22 mutants with enhanced toxicity to Spodoptera frugiperda. Applied Environmental Microbiology, 2020, 86(22): e01580-20.
[60] KUMAR S, SINGH N, SINHA M, DUBE D, SINGH S B, BUSHAN A, KAUR P, SRINIVASAN A, SHARMA S, SINGH T P. Crystal structure determination and inhibition studies of a novel xylanase and alpha-amylase inhibitor protein (XAIP) from Scadoxus multiflorus. FEBS Journal, 2010, 277(13): 2868-2882. doi: 10.1111/j.1742-4658.2010.07703.x
[61] BERINI F, KATZ C, GRUZDEV N, CASARTELLI M, TETTAMANTI G, MARINELLI F. Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnology Advances, 2018, 36(3): 818-838. doi: 10.1016/j.biotechadv.2018.01.002
[62] TSANEVA M, VAN DAMME E J M. 130 years of plant lectin research. Glycoconjugate Journal, 2020, 37(5): 533-551. doi: 10.1007/s10719-020-09942-y
[63] BONNARDEL F, MARIETHOZ J, PEREZ S, IMBERTY A, LISACEK F. LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 2021, 49: D1548-D1554. doi: 10.1093/nar/gkaa1019
[64] VAN DAMME E J M. 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal, 2022, 39(1): 83-97. doi: 10.1007/s10719-021-10015-x
[65] CHEN P, DE SCHUTTER K, VAN DAMME E J M, SMAGGHE G. Can plant lectins help to elucidate insect lectin-mediated immune response. Insects, 2021, 12(6): 497-515. doi: 10.3390/insects12060497
[66] CHAKRABORTI D, SARKAR A, MONDAL H A, DAS S. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Research, 2009, 18(4): 529-544. doi: 10.1007/s11248-009-9242-7
[67] MATOBA Y, SATO Y, ODA K, HATORI Y, MORIMOTO K. Lectins engineered to favor a glycan-binding conformation have enhanced antiviral activity. Journal of Biological Chemistry, 2021, 296: 100698. doi: 10.1016/j.jbc.2021.100698
[68] HIRAYAMA T, SHINOZAKI K. Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 2010, 61(6): 1041-1052. doi: 10.1111/j.1365-313X.2010.04124.x
[69] 王冰, 程宪国. 干旱、高盐及低温胁迫下植物生理及转录因子的应答调控. 植物营养与肥料学报, 2017, 23(6): 1565-1574. doi: 10.11674/zwyf.17312 WANG B, CHENG X G. Physiological responses and regulatory pathways of transcription factors in plants under drought, high-salt, and low temperature stresses. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1565-1574. doi: 10.11674/zwyf.17312
[70] ZHU J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. doi: 10.1146/annurev.arplant.53.091401.143329
[71] 田野. 霸王ZxABCG11的功能验证及其对紫花苜蓿(Medicago sativa L.)的遗传转化. 兰州: 兰州大学硕士学位论文, 2017. TIAN Y. Functional verification of ZxABCG11 from Zygophyllum xanthoxylum and genetic transformation to alfalfa (Medicago sativa L.). Master Thesis. Lanzhou: Lanzhou University, 2017.
[72] ZONG N, WANG H, LI Z, MA L, XIE L, PANG J, FAN Y, ZHAO J. Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9. Plant Molecular Biology, 2020, 102(3): 339-357. doi: 10.1007/s11103-019-00951-6
[73] 李静. 玉米ABP9基因转化紫花苜蓿及其抗旱性分析. 兰州: 兰州大学硕士学位论文, 2012. LI J. Expression of ABP9 enhances tolerance to drought stress in transgenic alfalfa. Master Thesis. Lanzhou: Lanzhou University, 2012.
[74] ANBAZHAGAN K, BHATNAGAR-MATHUR P, VADEZ V, DUMBALA S R, KAVI KISHOR P B, SHARMA K K. DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Reporter, 2015, 34(2): 199-210. doi: 10.1007/s00299-014-1699-z
[75] CHEN X, WANG H, LI X, MA K, ZHAN Y, ZENG F. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology, 2019, 19(1): 231. doi: 10.1186/s12870-019-1812-0
[76] LIU S, YANG L, LI J, TANG W, LI J, LIN R. FHY3 interacts with phytochrome B and regulates seed dormancy and germination. Plant Physiology, 2021, 187(1): 289-302. doi: 10.1093/plphys/kiab147
[77] BADHAN S, BALL A S, MANTRI N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. International Journal of Molecular Science, 2021, 22(1): ijms22010396.
[78] SINGER S D, BURTON HUGHES K, SUBEDI U, KAUR DHARIWAL G, KADER K, ACHARYA S, CHEN G, HANNOUFA A. The CRISPR/Cas9-mediated modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in alfalfa leads to distinct phenotypic outcomes. Frontiers in Plant Science, 2021, 12: 774146.
[79] 伍国强, 贾姝, 刘海龙, 王春梅, 李善家. 盐胁迫对红豆草幼苗生长和离子积累及分配的影响. 草业科学, 2017, 11(8): 1661-1668. doi: 10.11829/j.issn.1001-0629.2016-0447 WU G Q, JIA S, LIU H L, WANG C M, LI S J. Effect of salt stress on growth, ion accumulation, and distribution in sainfoins seedlings. Pratacultural Science, 2017, 11(8): 1661-1668. doi: 10.11829/j.issn.1001-0629.2016-0447
[80] DANQUAH A, DE ZELICOURT A, COLCOMBET J, HIRT H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 2014, 32(1): 40-52. doi: 10.1016/j.biotechadv.2013.09.006
[81] MITTLER R, BLUMWALD E. The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell, 2015, 27(1): 64-70. doi: 10.1105/tpc.114.133090
[82] OVECKA M, TAKAC T, KOMIS G, VADOVIC P, BEKESOVA S, DOSKOCILOVA A, SMEKALOVA V, LUPTOVCIAK I, SAMAJOVA O, SCHWEIGHOFER A, MESKIENE I, JONAK C, KRENEK P, LICHTSCHEIDL I, SKULTETY L, HIRT H, SAMAJ J. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. Journal of Experimental Botany, 2014, 65(9): 2335-2350. doi: 10.1093/jxb/eru115
[83] ZHU J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324. doi: 10.1016/j.cell.2016.08.029
[84] CHEN T H, MURATA N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 2002, 5(3): 250-257. doi: 10.1016/S1369-5266(02)00255-8
[85] WANG F W, WANG C, SUN Y, WANG N, LI X W, DONG Y Y, YAO N, LIU X M, CHEN H, CHEN X F, WANG Z M, LI H Y. Overexpression of vacuolar proton pump ATPase (V-H+-ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa (Medicago sativa L.). Journal of Integrative Agriculture, 2016, 15(10): 2279-2289. doi: 10.1016/S2095-3119(16)61399-0
[86] 林杉. 共表达ZxNHX1-VP1-1紫花苜蓿的分子鉴定及ZxNHX1-PcCLCg紫花苜蓿的耐盐性评价. 兰州: 兰州大学硕士学位论文, 2021. LIN S. Molecular identification of ZxNHX1-VP1-1 co-overexpressing alfalfa, and the evaluation of salt tolerance in alfalfa co-overexpressing ZxNHX1-PcCLCg. Master Thesis. Lanzhou: Lanzhou University, 2021.
[87] 任伟, 王英哲, 徐安凯, 王梦寒, 董兰, 周仂, 谭晶, 刘艳芝, 王志锋, 高阳, 周艳春. 一种创制抗逆转基因苜蓿的方法: 中国, CN109234289B. 2022-04-08. REN W, WANG Y Z, XU A K, WANG M H, DONG L, ZHOU L, TAN J, LIU Y Z, WANG Z F, GAO Y, ZHOU Y C. A method for creating resistant transgenic alfalfa: China, CN109234289B. 2022-04-08.
[88] 贾姝. 超表达BvNHX基因提高红豆草耐盐性的研究. 兰州: 兰州理工大学硕士学位论文, 2017. JIA S. Study on overexpression of BvNHX gene in Sainfoin and identification the salt tolerance of the transgenic plants. Master Thesis. Lanzhou: Lanzhou University of Technology, 2017.
[89] 麻冬梅, 秦楚. AtSOS基因在紫花苜蓿中的表达及其耐盐性研究. 草业学报, 2018, 27(6): 81-91. doi: 10.11686/cyxb2017281 MA D M, QIN C. The expression of the salt tolerance gene AtSOS in Medicago. Acta Prataculturae Sinica, 2018, 27(6): 81-91. doi: 10.11686/cyxb2017281
[90] 徐畅, 何好, 李国良, 金淑梅. 水稻金属硫蛋白基因(rgMT)遗传转化的紫花苜蓿耐盐性分析. 草业科学, 2018, 12(4): 829-838. doi: 10.11829/j.issn.1001-0629.2017-0321 XU C, HE H, LI G L, JIN S M. Salt stress tolerance analysis of rgMT gene transformed Medicago sativa. Pratacultural Science, 2018, 12(4): 829-838. doi: 10.11829/j.issn.1001-0629.2017-0321
[91] ZHANG J, DUAN Z, ZHANG D, ZHANG J, DI H, WU F, WANG Y. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochemical and Biophysical Research Communications, 2016, 472(1): 75-82. doi: 10.1016/j.bbrc.2016.02.067
[92] SAVIĆ J, NIKOLIĆ R, BANJAC N, ZDRAVKOVIĆ-KORAĆ S, STUPAR S, CINGEL A, ĆOSIĆ T, RASPOR M, SMIGOCKI A, NINKOVIĆ S. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. Journal of Plant Physiology, 2019, 243: 153055. doi: 10.1016/j.jplph.2019.153055
[93] WU G Q, LIU Z X, XIE L L, WANG J L. Genome-wide identification and expression analysis of the BvSnRK2 genes family in sugar beet (Beta vulgaris L.) under salt conditions. Journal of Plant Growth Regulation, 2021, 40(2): 519-532. doi: 10.1007/s00344-020-10119-y
[94] RAINERI J, RIBICHICH K F, CHAN R L. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Reporter, 2015, 34(12): 2065-2080. doi: 10.1007/s00299-015-1852-3
[95] YAO L, JIANG Y, LU X, WANG B, ZHOU P, WU T. A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Molecular Biology Reporter, 2016, 43(10): 1089-1100. doi: 10.1007/s11033-016-4042-7
[96] WANG S, GUO T, SHEN Y, WANF Z, KANG J, ZHANG J, YI F, YANG Q, LONG R. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. Plant Physiology and Biochemistry, 2021, 163: 154-165. doi: 10.1016/j.plaphy.2021.04.003
[97] SONG Y, LYU J, QIU N, BAI Y, YANG N, DONG W. The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 141: 300-305. doi: 10.1016/j.plaphy.2019.06.007
[98] KIM J M, TO T K, NISHIOKA T, SEKI M. Chromatin regulation functions in plant abiotic stress responses. Plant, Cell and Environment, 2010, 33(4): 604-611. doi: 10.1111/j.1365-3040.2009.02076.x
[99] LYZENGA W J, STONE S L. Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 2012, 63(2): 599-616. doi: 10.1093/jxb/err310
[100] SEO P J, PARK M J, PARK C M. Alternative splicing of transcription factors in plant responses to low temperature stress: Mechanisms and functions. Planta, 2013, 237(6): 1415-1424. doi: 10.1007/s00425-013-1882-4
[101] XU P, YANG C. Emerging role of SUMOylation in plant development. Plant Signaling and Behavior, 2013, 8(7): e24727. doi: 10.4161/psb.24727
[102] YANG C, LI D, MAO D, LIU X, JI G, LI X, ZHAO X, CHENG Z, CHEN C, ZHU L. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell and Environment, 2013, 36(12): 2207-2218. doi: 10.1111/pce.12130
[103] HAJYZADEH M, TURKTAS M, KHAWAR K M, UNVER T. MiR408 overexpression causes increased drought tolerance in chickpea. Gene, 2015, 555(2): 186-193. doi: 10.1016/j.gene.2014.11.002
[104] ZHOU M, LI D, LI Z, HU Q, YANG C, ZHU L, LUO H. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bent grass. Plant Physiology, 2013, 161(3): 1375-1391. doi: 10.1104/pp.112.208702
[105] ARSHAD M, FEYISSA B A, AMYOT L, AUNG B, HANNOUFA A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 2017, 258: 122-136. doi: 10.1016/j.plantsci.2017.01.018
[106] ARSHAD M, GRUBER M Y, WALL K, HANNOUFA A. An insight into microRNA156 role in salinity stress responses of alfalfa. Frontiers Plant Science, 2017, 8: 356.
[107] WANG D, SUN Z, HUX, XIONG J, HU L, XU Y, TANG Y, WU Y. The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC Plant Biology, 2021, 21(1): 605. doi: 10.1186/s12870-021-03336-4
[108] YUAN Y, SONG T, YU J, ZHANG W, HOU X, LING Z K, CUI G. Genome-Wide investigation of the cysteine synthase gene family shows that overexpression of CSase confers alkali tolerance to alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2021, 12: 792862.
[109] LI Y, LI X, ZHANG J, LI D, YAN L, YOU M, ZHANG J, LEI X, CHANG D, JI X, AN J, LI M, BAI S, YAN J. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to high temperature stress. Frontiers in Plant Science, 2021, 12: 753011. doi: 10.3389/fpls.2021.753011
[110] SHI Y, DING Y, YANG S. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 2018, 23(7): 623-637. doi: 10.1016/j.tplants.2018.04.002
[111] 孙予璐, 李建东, 孙备, 王国骄, 申晓慧, 冉卓. 不同品种紫花苜蓿主要抗寒生理指标对低温的响应. 沈阳农业大学学报, 2017, 48(5): 591-596. SUN Y L, LI J D, SUN B, WANG G J, SHEN X H, RAN Z. Responses of cold resistance physiological indices of different alfalfa varieties to cold stress. Journal of Shenyang Agricultural University, 2017, 48(5): 591-596.
[112] 徐春波. 转AtCBF1基因提高紫花苜蓿抗寒性研究. 呼和浩特: 内蒙古农业大学博士学位论文, 2016. XU C B. Transferring AtCBF1 gene to improves cold tolerance in alfalfa. PhD Thesis. Huhhot: Inner Mongolia Agricultural University, 2016.
[113] 张娜. 豆科牧草对重金属元素转运富集特性的研究. 杨凌: 西北农林科技大学硕士学位论文, 2012. ZHANG N. Research on heavy metals transportation and enrichment properties in the legume forages. Master Thesis. Yangling: Northwest A & F University, 2012.
[114] GARCÍA DE LA TORRE V S, COBA DE LA PENA T, LUCAS M M, PUEYO J J. Transgenic Medicago truncatula plants that accumulate proline display enhanced tolerance to cadmium stress. Frontiers in Plant Science, 2022, 13: 829069. doi: 10.3389/fpls.2022.829069
[115] 许诺, 高爽, 胡振林, 李世军, 王云鹏, 马建. 一种紫花苜蓿MsWRKY19基因及其在铬胁迫环境中的应用: CN113502292A. 2021-10-15. XU N, GAO S, HU Z L, LI S J, WANG Y P, MA J. MsWRKY19 gene of Alfalfa and its application in chromium stress environment: CN113502292A. 2021-10-15.
[116] 安渊, 苏连泰, 周鹏, 于晨, 张钰靖, 王如月, 赵恩华. 一种紫花苜蓿MYB转录因子及其耐铝毒应用: 中国, CN111087458B. 2021-09-03. AN Y, SU L Q, ZHOU P, YU C, ZHANG Y J, WANG R Y, ZHAO E H. An alfalfa MYB transcription factor and its application to aluminum resistance: China, CN111087458B. 2021-09-03.
[117] CHANDRAKAR V, YADU B, KORRAM J, SATNAMI M L, DUBEY A, KUMAR M, KESHAVKANT S. Carbon dot induces tolerance to arsenic by regulating arsenic uptake, reactive oxygen species detoxification and defense-related gene expression in Cicer arietinum L. Plant Physiology and Biochemistry, 2020, 156: 78-86. doi: 10.1016/j.plaphy.2020.09.003
-
期刊类型引用(1)
1. 余正勇,肖钊富,宋志高. 中国草原旅游网络关注度时空差异及其影响因素研究. 草原与草坪. 2024(06): 79-87 . 百度学术
其他类型引用(0)
计量
- PDF下载量:
- 文章访问数:
- HTML全文浏览量:
- 被引次数: 1