欢迎访问 草业科学,今天是2025年4月12日 星期六!

绿肥对主作物农艺性状、病虫草害及土壤的影响

岳芸莹, 丁婷婷, 段廷玉

岳芸莹,丁婷婷,段廷玉. 绿肥对主作物农艺性状、病虫草害及土壤的影响. 草业科学, 2023, 40(8): 2058-2071. DOI: 10.11829/j.issn.1001-0629.2022-0572
引用本文: 岳芸莹,丁婷婷,段廷玉. 绿肥对主作物农艺性状、病虫草害及土壤的影响. 草业科学, 2023, 40(8): 2058-2071. DOI: 10.11829/j.issn.1001-0629.2022-0572
YUE Y Y, DING T T, DUAN T Y. Research progress on the effects of green manure on the growth, disease, pests, weeds, and soil of main crops. Pratacultural Science, 2023, 40(8): 2058-2071. DOI: 10.11829/j.issn.1001-0629.2022-0572
Citation: YUE Y Y, DING T T, DUAN T Y. Research progress on the effects of green manure on the growth, disease, pests, weeds, and soil of main crops. Pratacultural Science, 2023, 40(8): 2058-2071. DOI: 10.11829/j.issn.1001-0629.2022-0572

绿肥对主作物农艺性状、病虫草害及土壤的影响

基金项目: 国家绿肥产业技术体系项目(CARS-22)
摘要:

绿肥在用地养地、保障粮食安全和改善生态环境等方面具有重要的作用。为了探究绿肥对主作物系统的影响,本文查阅了2015年以来主作物耦合绿肥的相关文献,归纳了绿肥对主作物农艺性状、病虫草害的防控以及对土壤理化性质等的影响。总体上,绿肥可有效改善土壤理化性质,促进养分转化,提高主作物对养分、水分的利用效率;影响主作物生理生化,促进主作物生长,提高主作物产量和品质,有效降低主作物病虫害的发生和危害,是实现绿色循环农业的重要途径。本文根据研究现状,对未来的研究方向进行了展望,提出加强对绿肥种植经济效益的评估和绿肥-主作物一体化病虫害防控方面的研究,进一步强化绿肥产品的推出与销售。

 

English

  • [1] 王永军, 吕艳杰, 刘慧涛, 边少锋, 王立春. 东北春玉米高产与养分高效综合管理. 中国农业科学, 2019, 52(20): 3533-3535.

    WANG Y J, LYU Y J, LIU H T, BIAN S F, WANG L C. Integrated management of high-yielding and high nutrient efficient spring maize in northeast china. Scientia Agricultura Sinica, 2019, 52(20): 3533-3535.

    [2] 黄炳林, 王孟雪, 金喜军, 胡国华, 张玉先. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019, 193(6): 104-113.

    HUANG B L, WANG M X, JIN X J, HU G H, ZHANG Y X. Effects of different tillage treatments on soil microorganisms, Enzyme Activities and Nutrients. Crops, 2019, 193(6): 104-113.

    [3]

    ANDERSON A E, HAMMAC W A, STOTT D E, TYNER W E. An analysis of yield variation under soil conservation practices. Journal of Soil and Water Conservation, 2020, 75(1): 103-111. doi: 10.2489/jswc.75.1.103

    [4] 曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料, 2009, 222(4): 1-3.

    CAO W D, HUANG H X. Ideas on restoration and development of green manures in China. Soil and Fertilizer Sciences in China, 2009, 222(4): 1-3.

    [5] 张茜, 赵秋, 向春阳, 史昕倩, 杜锦. 冬绿肥-春玉米轮作对土壤有机磷形态及其有效性的影响. 华北农学报, 2022, 37(1): 121-128.

    ZHANG Q, ZHAO Q, XIANG C Y, SHI X Q, DU J. Effect of winter green Manure/spring corn rotation on the forms and availability of soil organic Phosphorus. Acta Agriculturae Boreali-Sinica, 2022, 37(1): 121-128.

    [6] 刘晓冰, 宋春雨, STEPHEN J H, 邢宝山. 覆盖作物的生态效应. 应用生态学报, 2002, 12(3): 365-368.

    LIU X B, SONG C Y, STEPHEN J H, XING B S. Ecological effects of cover crops. Chinese Journal of Applied Ecology, 2002, 12(3): 365-368.

    [7]

    LOCATELLI J L, BRATTI F, RIBEIRO R H, BESEN M R, BRANCALEONI E, PIVA J T. Soil carbon sequestration and stocks: short term impact of maize succession to cover crops in Southern Brazil Inceptisol. Spanish Journal of Agricultural Research, 2020, 18(3): e0304. doi: 10.5424/sjar/2020183-16255

    [8] 刘勇, 周俗, 陈莉敏, 康晓慧, 白春海, 胡蓉, 罗飚. 采用播期、轮作和刈割防治光叶紫花苕病害. 草业科学, 2018, 35(8): 1929-1936.

    LIU Y, ZHOU S, CHEN L M, KANG X H, BAI C H, HU R, LUO B. Controlling the diseases of Vicia villosa by adapting sowing date, crop rotation, and mowing. Pratacultural Science, 2018, 35(8): 1929-1936.

    [9] 贾立平. 太阳辐射与植物生长发育的关系. 新农业, 2021, 952(19): 36.

    JIA L P. The relationship between solar radiation and plant growth and development. Xin Nongye, 2021, 952(19): 36.

    [10] 吴宇佳, 杨春, 雷菲, 吉清妹, 张冬明, 符传良. 套种花生对香蕉园小气候和土壤理化性质的影响. 福建农业学报, 2020, 35(3): 337-343.

    WU Y J, YANG C, LEI F, JI Q M, ZHANG D M, FU C L. Effects of intercropping peanut on soil properties and microclimate at banana orchards. Fujian Journal of Agricultural Sciences, 2020, 35(3): 337-343.

    [11]

    CHIM B K, OSBORNE S L, LEHMAN R M, SCHNEIDER S K. Cover crop effects on cash crops in northern great plains no till systems are annually variable and possibly delayed. Communications in Soil Science and Plant Analysis, 2022, 53(2): 153-169. doi: 10.1080/00103624.2021.1984512

    [12]

    CHRISTIANSON R, FOX J, LAW N, WONG C. Effectiveness of cover crops for water pollutant reduction from agricultural areas. Transactions of the ASABE, 2021, 64(3): 1007-1017. doi: 10.13031/trans.14028

    [13]

    NIEWIADOMSKA A, MAJCHRZAK L, BOROWIAK K, WOLNA M A, WARACZEWSKA Z, BUDKA A, GAJ R. The influence of tillage and cover cropping on soil microbial parameters and spring wheat physiology. Agronomy, 2020, 10(2): 200-221. doi: 10.3390/agronomy10020200

    [14]

    GRUNWALD D, STRACKE A, KOCH H J. Cover crop effects on soil structure and early sugar beet growth. Soil Use and Management, 2022, 39(1): 2009-2017.

    [15]

    QUEIROZ R F D, CHIODEROLI C A, FURLANI C E A, HOLANDA H V, ZERBATO C. Maize intercropped with Urochloa ruziziensis under no tillage system. Pesquisa Agropecuária Tropical, 2016, 46(3): 238-244.

    [16]

    SIGDEL S, CHATTERJEE A, BERTI M, WICK A, GASCH C. Interseeding cover crops in sugar beet. Field Crops Research, 2021, 263: 108079. doi: 10.1016/j.fcr.2021.108079

    [17]

    LIU R, WELLS M S, GARCIA Y GARCIA A. Cover crop potential of winter oilseed crops in the Northern US corn belt. Archives of Agronomy and Soil Science, 2019, 65(13): 1845-1859. doi: 10.1080/03650340.2019.1578960

    [18]

    MALONE L C, MOURTZINIS S, GASKA J M, LAUER J G, RUARK M D, CONLEY S P. Cover crops in a Wisconsin annual cropping system: Feasibility and yield effects. Agronomy Journal, 2022, 114(2): 1052-1067. doi: 10.1002/agj2.21029

    [19]

    NEGRINI A C A, DE MELO P C T, AMBROSANO E J, SAKAI R H, SCHAMMASS E A, ROSSI F. Performance of lettuce in sole cropping and intercropping with green manures. Horticultura Brasileira, 2010, 28(1): 58-63. doi: 10.1590/S0102-05362010000100011

    [20]

    DA SILVA E, MURAOKA T, BASTOS A V S, FRANZIN V I, BUZETTI S, SOARES F A L, TEIXEIRA M B, BENDASSOLLI J A. Biomass and nutrient accumulation by cover crops and upland rice grown in succession under no tillage system as affected by nitrogen fertilizer rate. Journal of Crop Science and Biotechnology, 2020, 23(2): 117-126. doi: 10.1007/s12892-019-0288-0

    [21]

    FERNANDES A M, CAMPOS L G, SENNA M S, DA SILVA C L, ASSUNCAO N S. Yield and nitrogen use efficiency of sweet potato in response to cover crop and nitrogen management. Agronomy Journal, 2018, 110(5): 2004-2015. doi: 10.2134/agronj2017.12.0721

    [22]

    BRITO L F, GALVÃO J C C, GIEHL J, CAMPOS S D A, COELHO S P. Agronomic traits and yield of organic maize under no tillage system. Pesquisa Agropecuária Tropical, 2017, 47(1): 72-79.

    [23]

    KASPAR T C, BAKKER M G. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no till corn yield. Journal of Soil and Water Conservation, 2015, 70(6): 353-364. doi: 10.2489/jswc.70.6.353

    [24]

    PIVA J T, BRATTI F, LOCATELLI J L, RIBEIRO R H, BESEN M R, BRANCALEONI E, SCHMITT D E. Use of winter cover crops improves maize productivity under reduced nitrogen fertilization: A long term study. Bragantia, 2021, 80: 1-11.

    [25] 李梦璐, 胡雪峰, 代会会, 罗凡, 张培枫, 安柏年. 豆科绿肥间作对小青菜品质和土壤酶活性的影响. 上海大学学报(自然科学版), 2019, 25(2): 275-281.

    LI M L, HU X F, DAI H H, LUO F, ZHANG P F, AN B N. Effects of Brassica chinensis intercropping leguminous green manure on vegetable quality and soil enzyme activities. Journal of Shanghai University (Natural Science Edition), 2019, 25(2): 275-281.

    [26] 谢克孝, 薛志慧, 陈志丹. 茶园间作不同植物对茶叶产量和品质及茶园土壤的影响. 茶叶通讯, 2021, 48(3): 422-429.

    XIE K X, XUE Z H, CHEN Z D. Effects of intercropping different plants in tea garden on yield and quality of tea and soil of tea garden. Journal of Tea Communication, 2021, 48(3): 422-429.

    [27]

    KRENCHINSKI F H, CESCO V J S, RODRIGUES D M, ALBRECHT L P, WOBETO K S, ALBRECHT A J P. Agronomic performance of soybean grown in succession to winter cover crops. Pesquisa Agropecuária Brasileira, 2018, 53(8): 909-917.

    [28]

    KADZIENE G, SUPRONIENE S, AUSKALNIENE O, PRANAITIENE S, SVEGZDA P, VERSULIENE A, CESEVICIENE J, JANUSAUSKAITE D, FEIZA V. Tillage and cover crop influence on weed pressure and Fusarium infection in spring cereals. Crop Protection, 2020, 127: 104966. doi: 10.1016/j.cropro.2019.104966

    [29]

    HANDISENI M, JO Y K, ZHOU X G. Integration of Brassica cover crop with host resistance and azoxystrobin for management of rice sheath blight. Plant Disease, 2015, 99(6): 883-885. doi: 10.1094/PDIS-08-14-0845-RE

    [30] 杨劲明, 王禹童, 陈冰, 刘满意, 王蓓蓓, 阮云泽, 赵艳. 豆科绿肥作物残体对连作蕉园土壤肥力的影响. 热带作物学报, 2020, 41(3): 433-440.

    YANG J M, WANG Y T, CHEN B, LIU M Y, WANG B B, RUAN Y Z, ZHAO Y. Effects of leguminous green manure crop residues on soil fertility in continuous cropping banana garden. Journal of Tropical Crops, 2020, 41(3): 433-440.

    [31]

    AIT KACI AHMED N, GALAUP B, DESPLANQUES J, DECHAMP-GUILLAUME G, SEASSAU C. Ecosystem services provided by cover crops and biofumigation in sunflower cultivation. Agronomy, 2022, 12(1): 120. doi: 10.3390/agronomy12010120

    [32]

    PARAJULI M, PANTH M, GONZALEZ A, ADDESSO K M, WITCHER A, SIMMONS T, BAYSAL-GUREL F. Cover crop usage for the sustainable management of soilborne diseases in woody ornamental nursery production system. Canadian Journal of Plant Pathology, 2022, 44(3): 432-452. doi: 10.1080/07060661.2021.2020336

    [33]

    LARKIN R P, HALLORAN J M. Management effects of disease suppressive rotation crops on potato yield and soilborne disease and their economic implications in potato production. American Journal of Potato Research, 2014, 91(5): 429-439. doi: 10.1007/s12230-014-9366-z

    [34]

    WEN L, LEE MARZANO S, ORTIZ RIBBING L M, GRUVER J, HARTMAN G L, EASTBURN D M. Suppression of soilborne diseases of soybean with cover crops. Plant Disease, 2017, 101(11): 1918-1928. doi: 10.1094/PDIS-07-16-1067-RE

    [35]

    HOSSAIN S, BERGKVIST G, GLINWOOD R, BERGLUND K, MARTENSSON A, HALLIN S, PERSSON P. Brassicaceae cover crops reduce Aphanomyces pea root rot without suppressing genetic potential of microbial nitrogen cycling. Plant and Soil, 2015, 392(1): 227-238.

    [36] 贾曦, 王璐, 刘振林, 李长松, 殷复伟, 王莹莹, 万书波. 玉米||花生间作模式对作物病害发生的影响及分析. 花生学报, 2016, 45(4): 55-60.

    JIA X, WANG L, LIU Z L, LI C S, YIN F W, WANG Y Y, WAN S B. Effects and analyses of intercropping pattern for maize andpeanut on crops disease occurrence. Journal of Peanut Science, 2016, 45(4): 55-60.

    [37]

    GANDARIASBEITIA M, OJINAGA M, ORBEGOZO E, ORTIZ-BARREDO A, NUNEZ-ZOFIO M, MENDARTE S, LARREGLA S. Winter biodisinfestation with Brassica green manure is a promising management strategy for Phytophthora capsici control of protected pepper crops in humid temperate climate regions of northern Spain. Spanish Journal of Agricultural Research, 2019, 17(1): e1005. doi: 10.5424/sjar/2019171-13808

    [38]

    HIMMELSTEIN J C, MAUL J E, EVERTS K L. Impact of five cover crop green manures and actinovate on fusarium wilt of watermelon. Plant Disease, 2014, 98(3): 965-972.

    [39] 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展. 智慧农业, 2019, 1(2): 1-19.

    LAN Y B, DENG X L, ZENG G L. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing. Smart Agriculture, 2019, 1(2): 1-19.

    [40] 李春广, OERKE E C, DEHNE H W. 主要农作物病虫害防控措施的作用及损失率分析. 中国植保导刊, 2014, 34(7): 89-92.

    LI C G, OERKE E C, DEHNE H W. Safeguarding production-losses in major crops and the role of crop protection. China Plant Protection, 2014, 34(7): 89-92.

    [41] 张蕾, 霍治国, 王丽, 姜玉英. 气候变化对中国农作物虫害发生的影响. 生态学杂志, 2012, 31(6): 1499-1507.

    ZHANG L, HUO Z G, WANG L, JIANG Y Y. Effects of climate change on the occurrence of crop insect pests in China. Chinese Journal of Ecology, 2012, 31(6): 1499-1507.

    [42]

    SOHEILI A, SAEEDIZADEH A. Suppression of brassicaceous tissue on Meloidogyne javanica in a Rhizosphere. International Journal of Agriculture and Biology, 2017, 19(5): 1012-1018. doi: 10.17957/IJAB/15.0400

    [43]

    NGALA B M, HAYDOCK P P J, WOODS S, BACK M A. Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida. Pest Management Science, 2015, 71(5): 759-769. doi: 10.1002/ps.3849

    [44] 刘领, 李继伟, 任鹏, 赵世民, 王慧, 李友军. 不同芸薹属绿肥对烤烟生长及产量的影响. 河南农业科学, 2017, 46(8): 52-56, 76.

    LIU L, LI J W, REN P, ZHAO S M, WANG H, LI Y J. Effects of different brassica green manure on growth and yield of tobacco. Journal of Henan Agricultural Sciences, 2017, 46(8): 52-56, 76.

    [45]

    DO NASCIMENTO D D, VIDAL R L, PIMENTA A A, DE COSTA C M G, SOARES P L. Crotalaria and millet as alternative controls of root knot nematodes infecting okra. Bioscience Journal, 2020, 36(3): 713-719.

    [46]

    DJIAN-CAPORALINO C, MATEILLE T, BAILLY-BECHET M, MARTEU N, FAZARI A, BAUTHEAC P, RAPTOPOULO A, LUAN V D, TAVOILLOT J, MARTINY B, GOILLON C, CASTAGNONE-SERENO P. Evaluating sorghums as green manure against root knot nematodes. Crop Protection, 2019, 122: 142-150. doi: 10.1016/j.cropro.2019.05.002

    [47] 吴菲菲, 张蕾, 程云霞, 江幸福, 苏建亚. 3种绿肥对黏虫营养生理的影响. 植物保护, 2020, 46(6): 111-116.

    WU F F, ZHANG L, CHENG Y X, JIANG X F, SU J Y. Effects of three green manures on nutritional physiology of Mythimna separata. Plant Protection, 2020, 46(6): 111-116.

    [48]

    DA CONSOLAÇÃO ROSADO M, DE ARAÚJO G J, PALLINI A, VENZON M. Cover crop intercropping increases biological control in coffee crops. Biological Control, 2021, 160: 104675. doi: 10.1016/j.biocontrol.2021.104675

    [49]

    PAGE W W, SMITH M C, HOLT J, KYETERE D. Intercrops, Cicadulina spp. and maize streak virus disease. Annals of Applied Biology, 2008, 135(1): 385-393.

    [50] 房宁. 强化科技支撑推进草害综合治理. 农民日报, (2021-10-26)[2022-07-14].

    FANG N. Strengthening scientific and technological support promote comprehensive control of grass damage. Farmers’ Daily, (2021-10-26) [2022-07-14].

    [51]

    GFELLER A, HERRERA J M, TSCHUY F, WIRTH J. Explanations for Amaranthus retroflexus growth suppression by cover crops. Crop Protection, 2018, 104: 11-20. doi: 10.1016/j.cropro.2017.10.006

    [52]

    CUTTI L, LAMEGO F P, AGUIAR A C M D, KASPARY T E, RIGON C A G. Winter cover crops on weed infestation and maize yield. Revista Caatinga, 2016, 29(4): 885-891. doi: 10.1590/1983-21252016v29n413rc

    [53]

    SODRÉ FILHO J, CARMONA R, MARCHÃO R L, CARVALHO A M D. Weed infestations in soybean grown in succession to cropping systems with sorghum and cover plants. Pesquisa Agropecuaria Brasileira, 2021, 55: e01640.

    [54]

    BARAIBAR B, MORTENSEN D A, HUNTER M C, BARBERCHECK M E, KAYE J P, FINNEY D M, CURRAN W S, BUNCHEK J, WHITE C M. Growing degree days and cover crop type explain weed biomass in winter cover crops. Agronomy for Sustainable Development, 2018, 38(6): 1-9.

    [55]

    MENALLED F D, SMITH R G, DAUER J T, FOX T B. Impact of agricultural management on carabid communities and weed seed predation. Agriculture Ecosystems & Environment, 2007, 118(1-4): 49-54.

    [56]

    BHASKAR V, BELLINDER R R, DITOMMASO A, WALTER M F. Living mulch performance in a tropical cotton system and impact on yield and weed control. Agriculture, 2018, 8(2): 19-36. doi: 10.3390/agriculture8020019

    [57] 程滨, 赵瑞芬, 滑小赞, 王森, 王钊. 果园绿肥对土壤生境调控的研究进展. 天津农业科学, 2021, 27(12): 59-62.

    CHENG B, ZHAO R F, HUA X Z, WANG S, WANG Z. Research progress of green manure mulching between rows of orchard on soil habitat regulation. Tianjin Agricultural Sciences, 2021, 27(12): 59-62.

    [58]

    DEIMLING K A A, SEIDEL E P, ROSSET J S, MOTTIN M C, HERRMANN D D R, FAVORITO A C. Soil physical properties and soybean productivity in succession to cover crops. Revista Ceres, 2019, 66(4): 316-322. doi: 10.1590/0034-737x201966040010

    [59] 何娜娜, 贾如浩, 叶苗泰, 赵西宁, 高晓东. 黄土高原旱地苹果园油菜间作对土壤大孔隙结构的影响. 水土保持学报, 2021, 35(1): 259-264.

    HE N N, JIA R H, YE M T, ZHAO X N, GAO X D. Effect of rape intercropping on soil macropore structure in dryland apple orchard of the loess plateau. Journal of Soil and Water Conservation, 2021, 35(1): 259-264.

    [60]

    KHAN R, FAROOQUE A A, BROWN H C P, ZAMAN Q U, ACHARYA B, ABBAS F, MCKENZIE-GOPSILL A. The role of cover crop types and residue incorporation in improving soil chemical properties. Agronomy, 2021, 11(10): 2091. doi: 10.3390/agronomy11102091

    [61] 杨露, 毛云飞, 胡艳丽, 王芸芸, 张璐璐, 尹伊君, 庞会灵, 宿夏菲, 刘业萍, 沈向. 生草改善果园土壤肥力和苹果树体营养的效果. 植物养与肥料学报, 2020, 26(2): 325-337.

    YANG L, MAO Y F, HU Y L, WANG Y Y, ZHANG L L, YIN Y J, PANG H L, SU X F, LIU Y P, SHEN X. Effects of orchard grass on soil fertility and apple tree nutrition. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 325-337.

    [62] 赵茜, 施龙清, 何海芳, 李天璞, 李亚勍, 张力文, 杨广. 间作不同绿肥植物组合对茶园土壤改良的效果. 福建农业学报, 2021, 36(5): 602-609.

    ZHAO Q, SHI L Q, HE H F, LI T P, LI Y Q, ZHANG L W, YANG G. Improvement of plantation soil by intercropping tea plants with green manures. Fujian Journal of Agricultural Sciences, 2021, 36(5): 602-609.

    [63] 朱亚琼, 简大为, 郑伟, 王朴, 黎松松, 郝帅, 娜尔克孜, 刘岳含, 艾丽菲热. 不同种植模式下豆科绿肥对土壤改良效果的影响. 草业科学, 2020, 37(5): 889-900.

    ZHU Y Q, JIAN D W, ZHENG W, WANG P, LI S S, HAO S, Naerkezi, LIU Y H, Ailifeire. Effects of improving soil fertility by planting different leguminous green manure plants under different mixed cropping patterns. Pratacultural Science, 2020, 37(5): 889-900.

    [64]

    VERAS M D S, RAMOS M L G, OLIVEIRA D N S, FIGUEIREDO C C D, CARVALHO A M D, PULROLNIK K, SOUZA K W D. Cover crops and nitrogen fertilization effects on nitrogen soil fractions under corn cultivation in a no tillage System. Revista Brasileira de Ciencia do Solo, 2016, 40: e0150092.

    [65]

    ALMEIDA E F A, SOUZA R R, LESSA M A, REIS S N, CARVALHO L M. Green manure affects cut flower yield and quality of 'Vegas’ rose bushes. Ornamental Horticulture, 2017, 23(1): 38-44. doi: 10.14295/oh.v23i1.881

    [66]

    BLANCO-CANQUI H. Cover crops and water quality. Agronomy Journal, 2018, 110(5): 1633-1647. doi: 10.2134/agronj2018.02.0077

    [67]

    çERçIOğLU M, ANDERSON S H, UDAWATTA R P, ALAGELE S. Effect of cover crop management on soil hydraulic properties. Geoderma, 2019, 343: 247-253. doi: 10.1016/j.geoderma.2019.02.027

    [68] 李晓龙, 窦云萍, 马丁, 王春良, 刘相泉, 贾永华. 宁夏地区果园生草对土壤温、湿度及天敌数量的影响. 北方园艺, 2020, 451(4): 93-101.

    LI X L, DOU Y P, MA D, WANG C L, LIU X Q, JIA Y H. Effects of grass on soil temperature, soil moisture and natural enemy quantity in orchard in Ningxia. Northern Horticulture, 2020, 451(4): 93-101.

    [69]

    TYLER H L. Winter cover crops and no till management enhance enzyme activities in soybean field soils. Pedobiologia, 2020, 81: 150666.

    [70]

    WANG Y, LIU L, TIAN Y, WU X P, YANG J F, LUO Y, LI H K, AWASTHI M K, ZHAO Z Y. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover. Soil and Tillage Research, 2020, 202: 104666. doi: 10.1016/j.still.2020.104666

    [71]

    BUYER J S, BALIGAR V C, HE Z, AREVALO-GARDINI E. Soil microbial communities under cacao agroforestry and cover crop systems in Peru. Applied Soil Ecology, 2017, 120: 273-280. doi: 10.1016/j.apsoil.2017.09.009

    [72]

    SHU X, ZOU Y, SHAW L J, TODMAN L, TIBBETT M, SIZMUR T. Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Research, 2021, 60(4): 349-359. doi: 10.1071/SR21105

    [73] 庞建光, 朱铮, 武龙. 桑园生草对土壤养分、微生物及桑葚品质的影响. 河北大学学报 (自然科学版), 2017, 37(3): 267-273.

    PANG J G, ZHU Z, WU L. Effects of inter row planting grasses on soil nutrient, microbial quantity and fruit quality in mulberry field. Journal of Hebei University (Natural Science Edition), 2017, 37(3): 267-273.

  • 图  1   不同绿肥研究方向的文章数量

    GA:绿肥 + 农艺性状;GD:绿肥 + 病害;GP:绿肥 + 虫害;GW:绿肥 + 杂草;GS:绿肥 + 土壤。

    Figure  1.   Numbers of articles on different green manure research directions

    GA: green manure + agronomic trait; GD: green manure + diseases; GP: green manure + pests; GW: green manure + weeds; GS: green manure + soil.

    图  2   绿肥对于主作物农艺性状的影响

    Figure  2.   Effects of green manure on the agronomic characteristics of main crops

    图  3   绿肥-主作物耦合系统

    Figure  3.   Green manure-main crop coupling system

    表  1   绿肥对主作物病害的影响

    Table  1   Effects of green manure on main crop diseases

    绿肥
    Green manure crop
    主作物
    Main crop
    病原
    Pathogen
    影响
    Influence
    参考文献
    Reference
    白芥
    Sinapis alba
    白三叶
    Trifolium repens
    小麦
    Triticum aestivum
    禾谷镰刀菌
    Fusarium graminearum
    降低深耕和直接播种处理下小麦赤霉病的发病率29%和21%,降低浅耕处理下小麦赤霉病发病率91%
    Reduced the incidence of wheat Gibberella by 29% and 21% under deep tillage and direct sowing treatment, and reduced the incidence of wheat Gibberella under shallow tillage treatment by 91%
    [28]
    芥菜
    Brassica juncea
    水稻
    Oryza sativa
    立枯丝核菌
    Rhizoctonia solani
    降低水稻纹枯病严重度10%~39%
    Reduced the severity of rice sheath blight by 10%~39%
    [29]
    田菁
    Sesbania cannabina
    白三叶
    Trifolium repens
    香蕉
    Musa nana
    尖孢镰刀菌
    Fusarium oxysporum
    香蕉枯萎病发病率降低33.09%~79.92%
    The incidence of banana wilt disease decreased by 33.09%~79.92%
    [30]
    芥菜
    Brassica juncea
    芜菁 Brassica rapa
    肥田萝卜
    Raphanus sativus
    暗紫野豌豆
    Vicia benghalensis
    向日葵
    Helianthus annuus
    大丽轮枝菌
    Verticillium dahliae
    降低向日葵黄萎病35.8%的病情指数
    Reduced the disease index of sunflower Verticillium wilt by 35.8%
    [31]
    红三叶
    Trifolium pratense
    红枫
    Acer palmatum ‘Atropurpureum’
    立枯丝核菌
    Rhizoctonia solani
    钟器疫霉菌
    Phytopythium vexans
    烟草疫霉菌
    Phytophthora nicotianae
    红三叶连续两年降低红枫根部病害55.07%和61.46%的严重度
    Red clover reduced the severity of root diseases of red maple by 55.07% and 61.46% for two consecutive years
    [32]
    白芥
    Sinapis alba
    芥菜
    Brassica juncea
    高粱
    Sorghum bicolor
    欧洲油菜
    Brassica napus
    大豆 Glycine max
    大麦
    Hordeum Vulgare
    红三叶
    Trifolium pratense
    马铃薯
    Solanum tuberosum
    立枯丝核菌
    Rhizoctonia solani
    链霉菌疥疮链霉菌Streptomyces scabies
    降低马铃薯块茎上黑痣病的病斑面积0.5%~1.0%,降低发病率15%~41%;降低马铃薯疮痂病病斑面积8%~14%,降低发病率11%~13%
    Reduced the spot area of potato black scurf by 0.5~1.0%, and reduced the incidence rate by 15%~41%;Reduced potato scab disease area by 8%~14%, and reduced incidence by 11%~13%
    [33]
    芥菜
    Brassica juncea
    欧洲油菜
    Brassica napus
    大豆
    Glycine max
    立枯丝核菌
    Rhizoctonia solani
    镰刀菌
    Fusarium virguliforme
    降低大豆根系的立枯丝核菌和镰刀菌的数量,增加大豆产量
    Reduced the number of Rhizoctonia solani and Fusarium virguliforme in soybean roots and increased soybean yield
    [34]
    芥菜
    Brassica juncea
    白芥
    Sinapis alba
    豌豆
    Pisum sativum
    根腐丝囊霉
    Aphanomyces euteiches
    芥菜和白芥产生组成多样化的代谢产物,如异硫氰酸盐,可降低豌豆根腐病发病率
    Mustard greens and white mustard produce metabolites of diverse composition, such as isothiocyanate, which reduce the incidence of pea root rot
    [35]
    花生
    Arachis hypogaea
    玉米
    Zea mays
    不明确
    Unspecified
    间作花生使得玉米之间形成屏蔽,降低玉米茎腐病发病率42.5%
    Intercropping peanuts formed shields between maize, reducing the incidence of maize stem rot by 42.5%
    [36]
    白芥
    Sinapis alba
    辣椒
    Capsicum annuum
    辣椒疫霉
    Phytophthora capsici
    种植白芥的第1年和第2年,降低辣椒疫霉引起的辣椒疫病83%和75%的致死率
    In the first and second years of planting white mustard, the fatality rate of pepper blight caused by P. capsici was reduced by 83% and 75%
    [37]
    下载: 导出CSV

    表  2   绿肥对主作物虫害的影响

    Table  2   Effects of green manure on main crop pests

    绿肥
    Green manure crop
    主作物
    Main crop
    病虫
    Pests
    影响
    Influence
    参考文献
    Reference
    芥菜
    Brassica juncea
    肥田萝卜
    Raphanus sativus
    芝麻菜
    Eruca sativa
    马铃薯
    Solanum tuberosum
    囊肿线虫
    Globodera
    可有效降低马铃薯囊肿线虫的种群数量
    Reduced the population of Globodera
    [43]
    芜菁
    Brassica rapa
    芥菜
    Brassica juncea
    油菜
    Brassica napus
    烟草
    Nicotiana tabacum
    根结线虫
    Meloidogyne
    降低根结线虫病发病率38.5%、27.5%、50.5%,增加烤烟产量8.7%、15.5%、24.7%
    The incidence of root-knot nematode disease was reduced by 38.5%, 27.5% and 50.5%, and the flue-cured tobacco production was increased by 8.7%, 15.5% and 24.7%
    [44]
    大托叶猪屎豆
    Crotalaria spectabilis
    御谷
    Pennisetum glaucum
    秋葵
    Abelmoschus esculentus
    根结线虫
    Meloidogyne
    绿肥单播时降低秋葵上的根结线虫种群数量达61%,混播时降低根结线虫种群数量85%
    The population of root-knot nematodes on okra was reduced by 61% during single sowing of green manure and by 85% during mixed sowing
    [45]
    苏丹草
    Sorghum sudanense
    多种蔬菜
    Vegetables
    根结线虫
    Meloidogyne
    降低田间77%~94%根结线虫种群密度
    Reduced the population density of root-knot nematodes by 77%~94% in the field
    [46]
    紫云英
    Astragalus sinicus
    毛叶苕子
    Vicia villosa
    箭筈豌豆
    Vicia sativa
    玉米
    Zea mays
    黏虫
    Mythimna
    separata
    降低黏虫5龄幼虫相对生长率、相对取食率、食物利用率和食物转化率,缩短害虫生长发育历期,减轻危害
    Reduced the relative growth rate, relative feeding rate, food utilization rate and food conversion rate of armyworm fifth instar larvae, shortened the growth and development period of pests, and decreased damage
    [47]
    菽麻
    Crotalaria juncea
    荞麦
    Fagopyrum esculentum
    咖啡
    Coffea
    arabica
    咖啡潜叶蛾
    Leucoptera
    coffeella
    招募咖啡潜叶蛾的天敌胡蜂的物种数和多样性指数间接促进对于病虫的防控
    Increased the species number and diversity index of wasps, the natural enemy of L. coffeella; indirectly promotes the control of pests and diseases
    [48]
    菜豆
    Phaseolus vulgaris

    Eleusine coracana
    玉米
    Zea mays
    叶蝉
    Cicadellidea
    通过干扰叶蝉的求偶行为来阻止玉米病毒病的传播,阻止了害虫本身的大面积爆发
    By interfering with the leafhopper’s courtship behavior, the spread of maize virus disease was stopped, preventing a large outbreak of the pest itself
    [49]
    下载: 导出CSV

    表  3   绿肥对主作物杂草的影响

    Table  3   Effects of green manure on main crop weeds

    绿肥
    Green manure crop
    主作物
    Main crop
    影响
    Influence
    参考文献
    Reference
    地三叶草
    Trifolium subterraneum
    反枝苋
    Amaranthus retroflflexus
    抑制反枝苋田间杂草生长,降低总杂草干重69.4%
    It inhibited the growth of weeds and reduced their total dry weight by 69.4%
    [51]
    糙伏毛燕麦
    Avena strigosa
    多花黑麦草
    Lolium multiflorum
    箭筈豌豆
    Vicia sativa
    肥田萝卜
    Raphanus sativus
    玉米
    Zea mays
    降低了玉米田间杂草干重57.24%
    The dry weight of weeds in a maize field was reduced by 57.24%
    [52]
    高粱
    Sorghum bicolor
    尾稃草属植物
    Urochloa brizantha
    刚果臂形草
    Urochloa ruziziensis
    大豆
    Glycine max
    降低大豆田中杂草的竞争力、阻止杂草蔓延和扩展,降低杂草多样性
    Reduced the competitiveness of weeds in soybean fields, prevented the spread and expansion of weeds, and reduce their diversitys
    [53]
    芸薹类植物
    Brassica
    大豆
    Glycine max
    大豆田中,芸薹类植物对杂草的抑制作用优于禾本科和其他绿肥作物
    In soybean fields, Brassica species exhibited better weed inhibition than grasses and other green manure crops
    [54]
    多种绿肥
    Many species of green manure
    不明确
    Unspecified
    绿肥增加杂草的主要采食者脊角步甲属昆虫(Poecilus chalcitesP. lucumblandus)和斑步甲属昆虫(Anisodactylus rusticus)的数量,从而间接防控主作物草害
    Green manure crops increase the populations of the main weed feeders Poecilus chalcites, P. lucumblandus, and Anisodactylus rusticus, thereby indirectly controlling damage to the main crops
    [55]
    下载: 导出CSV

    表  4   绿肥对土壤的影响

    Table  4   Effects of green manure on soil

    绿肥
    Green manure crop
    主作物
    Main crop
    影响
    Influence
    参考文献
    Reference
    小须芒草
    Schizachyrium
    scoparium
    苹果
    Malus pumila
    2年后,苹果园土壤pH较无绿肥处理降低6.83%~7.19%
    After two years, the soil pH of the apple orchard decreased by 6.83%~7.19% compared with that of non-green manure treatment
    [61]
    圆叶决明
    Chamaecrista rotundifolia
    油菜 Brassica napus
    宿根羽扇豆
    Lupinus perennis
    茶树
    Camellia sinensis
    提高茶园土壤pH达11.94%
    Increased the soil pH of tea trees by 11.94%
    [62]
    花生
    Arachis hypogaea
    鹰嘴豆
    Cicer arietinum
    白花草木樨
    Melilotus albus
    玉米
    Zea mays
    油菜
    Brassica napus
    提高土壤有机质、全氮、全磷、全钾、碱解氮、有效磷达40.43%、50.00%、10.00%、27.93%、76.75%、45.13%,增加玉米和油菜地上生物量23.19%和16.68%
    The soil organic matter, total nitrogen, total phosphorus, total potassium, alkaline hydrolyzable nitrogen, and available phosphorus reached 40.43%, 50.00%, 10.00%, 27.93%, 76.75%, and 45.13%, respectively; increased the aboveground biomass of maize and rapeseed by 23.19% and 16.68%, respectively
    [63]
    木豆 Cajanus cajan
    刀豆
    Canavalia brasiliensis
    高粱 Sorghum bicolor
    刚果臂形草
    Urochloa ruziziensis
    玉米
    Zea mays
    增加玉米田中土壤总氮、微粒氮、矿物氮等各种形式氮的含量
    Increased the content of total soil nitrogen, particulate nitrogen, mineral nitrogen, and other forms of nitrogen in maize fields
    [64]
    木豆 Cajanus cajan
    洋刀豆
    Canavalia ensiformis
    花生 Arachis hypogaea
    玫瑰
    Rosa rugosa
    增加玫瑰田中K、Mg、B含量达46.15%、16.67%、31.58%外,减少土壤Zn、Fe、S含量达34.80%、50.23%、18.00% The contents of K, Mg and B in rose fields increased by 46.15%, 16.67%, and 31.58%, respectively, and the contents of soil Zn, Fe and S decreased by 34.80%, 50.23%, and 18.00%, respectively [65]
    多种绿肥
    Many species of green
    玉米
    Zea mays
    大豆
    Glycine max
    减少因地表径流、泥沙流失造成的养分流失,还可以减少硝酸盐等营养物质的淋失,降幅高达95%
    Reduced nutrient loss due to surface runoff and sediment loss; can also reduce the leaching of nutrients such as nitrates by up to 95%
    [66]
    多种绿肥
    Many species of green manure
    大豆
    Glycine max
    玉米 Zea mays
    多种绿肥作物混播使土壤饱和导水率逐年增加,最高可增加64.6%
    The mixed planting of a variety of green manure crops increased the water conductivity of soil saturation year by year, up to 64.6%
    [67]
    黑麦草
    Lolium perenne
    苹果 黑麦草降低苹果园0-5 cm土层1.80%~5.77% 的含水量 Ryegrass reduces the water content of the 0-5 cm soil layer in an apple field by 1.80%~5.77% [68]
    黑麦
    Secale cereale
    绛三叶草
    Trifolium incarnatum
    大豆
    Glycine max
    增加土壤中的微生物和可分解利用的基质含量,从而显著增加大豆田中与有机质分解相关的磷酸酶和二乙酸荧光素水解酶活性
    The phosphatase and fluorescein diacetate hydrolase activities related to the decomposition of organic matter in soybean fields were significantly increased by increasing the content of microorganisms and degradable substrates in soil
    [69]
    白三叶
    Trifolium repens
    富士苹果
    Malus pumila
    增加了富士苹果园中各种土壤酶活性,如CBH (纤维素酶)、NAG (N-乙酰-β-D-葡萄糖苷酶)和PHOS (磷酸酶)等 The activity levels of various soil enzymes, such as CBH, NAG, and PHOS, were increased [70]
    平托花生 Arachis pintoi
    毛蔓豆 Calopogonium mucunoides
    洋刀豆
    Canavalia ensiformis
    距瓣豆
    Centrosema pubescens
    可可
    Theobroma cacao
    提高革兰氏阴性菌与革兰氏阳性菌的比例,降低了真菌生物量 Increased the ratio of gram-negative to gram-positive bacteria; reduced fungal biomass [71]
    多种绿肥混播
    Mixed sowing of various green manures
    增加了真菌和革兰氏阳性菌的比例,使土壤微生物群落组成发生了显著变化
    Increased the ratio of fungi to gram-positive bacteria, the soil microbial community composition was affected
    [72]
    毛叶苕子
    Vicia villosa

    Morus alba
    提高桑园中土壤细菌、真菌和放线菌数量86.8%、151.7%和168.4%
    The number of bacteria, fungi, and actinomycetes in the mulberry fields increased by 86.8%, 151.7%, and 168.4%, respectively
    [73]
    下载: 导出CSV
  • [1] 王永军, 吕艳杰, 刘慧涛, 边少锋, 王立春. 东北春玉米高产与养分高效综合管理. 中国农业科学, 2019, 52(20): 3533-3535.

    WANG Y J, LYU Y J, LIU H T, BIAN S F, WANG L C. Integrated management of high-yielding and high nutrient efficient spring maize in northeast china. Scientia Agricultura Sinica, 2019, 52(20): 3533-3535.

    [2] 黄炳林, 王孟雪, 金喜军, 胡国华, 张玉先. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019, 193(6): 104-113.

    HUANG B L, WANG M X, JIN X J, HU G H, ZHANG Y X. Effects of different tillage treatments on soil microorganisms, Enzyme Activities and Nutrients. Crops, 2019, 193(6): 104-113.

    [3]

    ANDERSON A E, HAMMAC W A, STOTT D E, TYNER W E. An analysis of yield variation under soil conservation practices. Journal of Soil and Water Conservation, 2020, 75(1): 103-111. doi: 10.2489/jswc.75.1.103

    [4] 曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料, 2009, 222(4): 1-3.

    CAO W D, HUANG H X. Ideas on restoration and development of green manures in China. Soil and Fertilizer Sciences in China, 2009, 222(4): 1-3.

    [5] 张茜, 赵秋, 向春阳, 史昕倩, 杜锦. 冬绿肥-春玉米轮作对土壤有机磷形态及其有效性的影响. 华北农学报, 2022, 37(1): 121-128.

    ZHANG Q, ZHAO Q, XIANG C Y, SHI X Q, DU J. Effect of winter green Manure/spring corn rotation on the forms and availability of soil organic Phosphorus. Acta Agriculturae Boreali-Sinica, 2022, 37(1): 121-128.

    [6] 刘晓冰, 宋春雨, STEPHEN J H, 邢宝山. 覆盖作物的生态效应. 应用生态学报, 2002, 12(3): 365-368.

    LIU X B, SONG C Y, STEPHEN J H, XING B S. Ecological effects of cover crops. Chinese Journal of Applied Ecology, 2002, 12(3): 365-368.

    [7]

    LOCATELLI J L, BRATTI F, RIBEIRO R H, BESEN M R, BRANCALEONI E, PIVA J T. Soil carbon sequestration and stocks: short term impact of maize succession to cover crops in Southern Brazil Inceptisol. Spanish Journal of Agricultural Research, 2020, 18(3): e0304. doi: 10.5424/sjar/2020183-16255

    [8] 刘勇, 周俗, 陈莉敏, 康晓慧, 白春海, 胡蓉, 罗飚. 采用播期、轮作和刈割防治光叶紫花苕病害. 草业科学, 2018, 35(8): 1929-1936.

    LIU Y, ZHOU S, CHEN L M, KANG X H, BAI C H, HU R, LUO B. Controlling the diseases of Vicia villosa by adapting sowing date, crop rotation, and mowing. Pratacultural Science, 2018, 35(8): 1929-1936.

    [9] 贾立平. 太阳辐射与植物生长发育的关系. 新农业, 2021, 952(19): 36.

    JIA L P. The relationship between solar radiation and plant growth and development. Xin Nongye, 2021, 952(19): 36.

    [10] 吴宇佳, 杨春, 雷菲, 吉清妹, 张冬明, 符传良. 套种花生对香蕉园小气候和土壤理化性质的影响. 福建农业学报, 2020, 35(3): 337-343.

    WU Y J, YANG C, LEI F, JI Q M, ZHANG D M, FU C L. Effects of intercropping peanut on soil properties and microclimate at banana orchards. Fujian Journal of Agricultural Sciences, 2020, 35(3): 337-343.

    [11]

    CHIM B K, OSBORNE S L, LEHMAN R M, SCHNEIDER S K. Cover crop effects on cash crops in northern great plains no till systems are annually variable and possibly delayed. Communications in Soil Science and Plant Analysis, 2022, 53(2): 153-169. doi: 10.1080/00103624.2021.1984512

    [12]

    CHRISTIANSON R, FOX J, LAW N, WONG C. Effectiveness of cover crops for water pollutant reduction from agricultural areas. Transactions of the ASABE, 2021, 64(3): 1007-1017. doi: 10.13031/trans.14028

    [13]

    NIEWIADOMSKA A, MAJCHRZAK L, BOROWIAK K, WOLNA M A, WARACZEWSKA Z, BUDKA A, GAJ R. The influence of tillage and cover cropping on soil microbial parameters and spring wheat physiology. Agronomy, 2020, 10(2): 200-221. doi: 10.3390/agronomy10020200

    [14]

    GRUNWALD D, STRACKE A, KOCH H J. Cover crop effects on soil structure and early sugar beet growth. Soil Use and Management, 2022, 39(1): 2009-2017.

    [15]

    QUEIROZ R F D, CHIODEROLI C A, FURLANI C E A, HOLANDA H V, ZERBATO C. Maize intercropped with Urochloa ruziziensis under no tillage system. Pesquisa Agropecuária Tropical, 2016, 46(3): 238-244.

    [16]

    SIGDEL S, CHATTERJEE A, BERTI M, WICK A, GASCH C. Interseeding cover crops in sugar beet. Field Crops Research, 2021, 263: 108079. doi: 10.1016/j.fcr.2021.108079

    [17]

    LIU R, WELLS M S, GARCIA Y GARCIA A. Cover crop potential of winter oilseed crops in the Northern US corn belt. Archives of Agronomy and Soil Science, 2019, 65(13): 1845-1859. doi: 10.1080/03650340.2019.1578960

    [18]

    MALONE L C, MOURTZINIS S, GASKA J M, LAUER J G, RUARK M D, CONLEY S P. Cover crops in a Wisconsin annual cropping system: Feasibility and yield effects. Agronomy Journal, 2022, 114(2): 1052-1067. doi: 10.1002/agj2.21029

    [19]

    NEGRINI A C A, DE MELO P C T, AMBROSANO E J, SAKAI R H, SCHAMMASS E A, ROSSI F. Performance of lettuce in sole cropping and intercropping with green manures. Horticultura Brasileira, 2010, 28(1): 58-63. doi: 10.1590/S0102-05362010000100011

    [20]

    DA SILVA E, MURAOKA T, BASTOS A V S, FRANZIN V I, BUZETTI S, SOARES F A L, TEIXEIRA M B, BENDASSOLLI J A. Biomass and nutrient accumulation by cover crops and upland rice grown in succession under no tillage system as affected by nitrogen fertilizer rate. Journal of Crop Science and Biotechnology, 2020, 23(2): 117-126. doi: 10.1007/s12892-019-0288-0

    [21]

    FERNANDES A M, CAMPOS L G, SENNA M S, DA SILVA C L, ASSUNCAO N S. Yield and nitrogen use efficiency of sweet potato in response to cover crop and nitrogen management. Agronomy Journal, 2018, 110(5): 2004-2015. doi: 10.2134/agronj2017.12.0721

    [22]

    BRITO L F, GALVÃO J C C, GIEHL J, CAMPOS S D A, COELHO S P. Agronomic traits and yield of organic maize under no tillage system. Pesquisa Agropecuária Tropical, 2017, 47(1): 72-79.

    [23]

    KASPAR T C, BAKKER M G. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no till corn yield. Journal of Soil and Water Conservation, 2015, 70(6): 353-364. doi: 10.2489/jswc.70.6.353

    [24]

    PIVA J T, BRATTI F, LOCATELLI J L, RIBEIRO R H, BESEN M R, BRANCALEONI E, SCHMITT D E. Use of winter cover crops improves maize productivity under reduced nitrogen fertilization: A long term study. Bragantia, 2021, 80: 1-11.

    [25] 李梦璐, 胡雪峰, 代会会, 罗凡, 张培枫, 安柏年. 豆科绿肥间作对小青菜品质和土壤酶活性的影响. 上海大学学报(自然科学版), 2019, 25(2): 275-281.

    LI M L, HU X F, DAI H H, LUO F, ZHANG P F, AN B N. Effects of Brassica chinensis intercropping leguminous green manure on vegetable quality and soil enzyme activities. Journal of Shanghai University (Natural Science Edition), 2019, 25(2): 275-281.

    [26] 谢克孝, 薛志慧, 陈志丹. 茶园间作不同植物对茶叶产量和品质及茶园土壤的影响. 茶叶通讯, 2021, 48(3): 422-429.

    XIE K X, XUE Z H, CHEN Z D. Effects of intercropping different plants in tea garden on yield and quality of tea and soil of tea garden. Journal of Tea Communication, 2021, 48(3): 422-429.

    [27]

    KRENCHINSKI F H, CESCO V J S, RODRIGUES D M, ALBRECHT L P, WOBETO K S, ALBRECHT A J P. Agronomic performance of soybean grown in succession to winter cover crops. Pesquisa Agropecuária Brasileira, 2018, 53(8): 909-917.

    [28]

    KADZIENE G, SUPRONIENE S, AUSKALNIENE O, PRANAITIENE S, SVEGZDA P, VERSULIENE A, CESEVICIENE J, JANUSAUSKAITE D, FEIZA V. Tillage and cover crop influence on weed pressure and Fusarium infection in spring cereals. Crop Protection, 2020, 127: 104966. doi: 10.1016/j.cropro.2019.104966

    [29]

    HANDISENI M, JO Y K, ZHOU X G. Integration of Brassica cover crop with host resistance and azoxystrobin for management of rice sheath blight. Plant Disease, 2015, 99(6): 883-885. doi: 10.1094/PDIS-08-14-0845-RE

    [30] 杨劲明, 王禹童, 陈冰, 刘满意, 王蓓蓓, 阮云泽, 赵艳. 豆科绿肥作物残体对连作蕉园土壤肥力的影响. 热带作物学报, 2020, 41(3): 433-440.

    YANG J M, WANG Y T, CHEN B, LIU M Y, WANG B B, RUAN Y Z, ZHAO Y. Effects of leguminous green manure crop residues on soil fertility in continuous cropping banana garden. Journal of Tropical Crops, 2020, 41(3): 433-440.

    [31]

    AIT KACI AHMED N, GALAUP B, DESPLANQUES J, DECHAMP-GUILLAUME G, SEASSAU C. Ecosystem services provided by cover crops and biofumigation in sunflower cultivation. Agronomy, 2022, 12(1): 120. doi: 10.3390/agronomy12010120

    [32]

    PARAJULI M, PANTH M, GONZALEZ A, ADDESSO K M, WITCHER A, SIMMONS T, BAYSAL-GUREL F. Cover crop usage for the sustainable management of soilborne diseases in woody ornamental nursery production system. Canadian Journal of Plant Pathology, 2022, 44(3): 432-452. doi: 10.1080/07060661.2021.2020336

    [33]

    LARKIN R P, HALLORAN J M. Management effects of disease suppressive rotation crops on potato yield and soilborne disease and their economic implications in potato production. American Journal of Potato Research, 2014, 91(5): 429-439. doi: 10.1007/s12230-014-9366-z

    [34]

    WEN L, LEE MARZANO S, ORTIZ RIBBING L M, GRUVER J, HARTMAN G L, EASTBURN D M. Suppression of soilborne diseases of soybean with cover crops. Plant Disease, 2017, 101(11): 1918-1928. doi: 10.1094/PDIS-07-16-1067-RE

    [35]

    HOSSAIN S, BERGKVIST G, GLINWOOD R, BERGLUND K, MARTENSSON A, HALLIN S, PERSSON P. Brassicaceae cover crops reduce Aphanomyces pea root rot without suppressing genetic potential of microbial nitrogen cycling. Plant and Soil, 2015, 392(1): 227-238.

    [36] 贾曦, 王璐, 刘振林, 李长松, 殷复伟, 王莹莹, 万书波. 玉米||花生间作模式对作物病害发生的影响及分析. 花生学报, 2016, 45(4): 55-60.

    JIA X, WANG L, LIU Z L, LI C S, YIN F W, WANG Y Y, WAN S B. Effects and analyses of intercropping pattern for maize andpeanut on crops disease occurrence. Journal of Peanut Science, 2016, 45(4): 55-60.

    [37]

    GANDARIASBEITIA M, OJINAGA M, ORBEGOZO E, ORTIZ-BARREDO A, NUNEZ-ZOFIO M, MENDARTE S, LARREGLA S. Winter biodisinfestation with Brassica green manure is a promising management strategy for Phytophthora capsici control of protected pepper crops in humid temperate climate regions of northern Spain. Spanish Journal of Agricultural Research, 2019, 17(1): e1005. doi: 10.5424/sjar/2019171-13808

    [38]

    HIMMELSTEIN J C, MAUL J E, EVERTS K L. Impact of five cover crop green manures and actinovate on fusarium wilt of watermelon. Plant Disease, 2014, 98(3): 965-972.

    [39] 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展. 智慧农业, 2019, 1(2): 1-19.

    LAN Y B, DENG X L, ZENG G L. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing. Smart Agriculture, 2019, 1(2): 1-19.

    [40] 李春广, OERKE E C, DEHNE H W. 主要农作物病虫害防控措施的作用及损失率分析. 中国植保导刊, 2014, 34(7): 89-92.

    LI C G, OERKE E C, DEHNE H W. Safeguarding production-losses in major crops and the role of crop protection. China Plant Protection, 2014, 34(7): 89-92.

    [41] 张蕾, 霍治国, 王丽, 姜玉英. 气候变化对中国农作物虫害发生的影响. 生态学杂志, 2012, 31(6): 1499-1507.

    ZHANG L, HUO Z G, WANG L, JIANG Y Y. Effects of climate change on the occurrence of crop insect pests in China. Chinese Journal of Ecology, 2012, 31(6): 1499-1507.

    [42]

    SOHEILI A, SAEEDIZADEH A. Suppression of brassicaceous tissue on Meloidogyne javanica in a Rhizosphere. International Journal of Agriculture and Biology, 2017, 19(5): 1012-1018. doi: 10.17957/IJAB/15.0400

    [43]

    NGALA B M, HAYDOCK P P J, WOODS S, BACK M A. Biofumigation with Brassica juncea, Raphanus sativus and Eruca sativa for the management of field populations of the potato cyst nematode Globodera pallida. Pest Management Science, 2015, 71(5): 759-769. doi: 10.1002/ps.3849

    [44] 刘领, 李继伟, 任鹏, 赵世民, 王慧, 李友军. 不同芸薹属绿肥对烤烟生长及产量的影响. 河南农业科学, 2017, 46(8): 52-56, 76.

    LIU L, LI J W, REN P, ZHAO S M, WANG H, LI Y J. Effects of different brassica green manure on growth and yield of tobacco. Journal of Henan Agricultural Sciences, 2017, 46(8): 52-56, 76.

    [45]

    DO NASCIMENTO D D, VIDAL R L, PIMENTA A A, DE COSTA C M G, SOARES P L. Crotalaria and millet as alternative controls of root knot nematodes infecting okra. Bioscience Journal, 2020, 36(3): 713-719.

    [46]

    DJIAN-CAPORALINO C, MATEILLE T, BAILLY-BECHET M, MARTEU N, FAZARI A, BAUTHEAC P, RAPTOPOULO A, LUAN V D, TAVOILLOT J, MARTINY B, GOILLON C, CASTAGNONE-SERENO P. Evaluating sorghums as green manure against root knot nematodes. Crop Protection, 2019, 122: 142-150. doi: 10.1016/j.cropro.2019.05.002

    [47] 吴菲菲, 张蕾, 程云霞, 江幸福, 苏建亚. 3种绿肥对黏虫营养生理的影响. 植物保护, 2020, 46(6): 111-116.

    WU F F, ZHANG L, CHENG Y X, JIANG X F, SU J Y. Effects of three green manures on nutritional physiology of Mythimna separata. Plant Protection, 2020, 46(6): 111-116.

    [48]

    DA CONSOLAÇÃO ROSADO M, DE ARAÚJO G J, PALLINI A, VENZON M. Cover crop intercropping increases biological control in coffee crops. Biological Control, 2021, 160: 104675. doi: 10.1016/j.biocontrol.2021.104675

    [49]

    PAGE W W, SMITH M C, HOLT J, KYETERE D. Intercrops, Cicadulina spp. and maize streak virus disease. Annals of Applied Biology, 2008, 135(1): 385-393.

    [50] 房宁. 强化科技支撑推进草害综合治理. 农民日报, (2021-10-26)[2022-07-14].

    FANG N. Strengthening scientific and technological support promote comprehensive control of grass damage. Farmers’ Daily, (2021-10-26) [2022-07-14].

    [51]

    GFELLER A, HERRERA J M, TSCHUY F, WIRTH J. Explanations for Amaranthus retroflexus growth suppression by cover crops. Crop Protection, 2018, 104: 11-20. doi: 10.1016/j.cropro.2017.10.006

    [52]

    CUTTI L, LAMEGO F P, AGUIAR A C M D, KASPARY T E, RIGON C A G. Winter cover crops on weed infestation and maize yield. Revista Caatinga, 2016, 29(4): 885-891. doi: 10.1590/1983-21252016v29n413rc

    [53]

    SODRÉ FILHO J, CARMONA R, MARCHÃO R L, CARVALHO A M D. Weed infestations in soybean grown in succession to cropping systems with sorghum and cover plants. Pesquisa Agropecuaria Brasileira, 2021, 55: e01640.

    [54]

    BARAIBAR B, MORTENSEN D A, HUNTER M C, BARBERCHECK M E, KAYE J P, FINNEY D M, CURRAN W S, BUNCHEK J, WHITE C M. Growing degree days and cover crop type explain weed biomass in winter cover crops. Agronomy for Sustainable Development, 2018, 38(6): 1-9.

    [55]

    MENALLED F D, SMITH R G, DAUER J T, FOX T B. Impact of agricultural management on carabid communities and weed seed predation. Agriculture Ecosystems & Environment, 2007, 118(1-4): 49-54.

    [56]

    BHASKAR V, BELLINDER R R, DITOMMASO A, WALTER M F. Living mulch performance in a tropical cotton system and impact on yield and weed control. Agriculture, 2018, 8(2): 19-36. doi: 10.3390/agriculture8020019

    [57] 程滨, 赵瑞芬, 滑小赞, 王森, 王钊. 果园绿肥对土壤生境调控的研究进展. 天津农业科学, 2021, 27(12): 59-62.

    CHENG B, ZHAO R F, HUA X Z, WANG S, WANG Z. Research progress of green manure mulching between rows of orchard on soil habitat regulation. Tianjin Agricultural Sciences, 2021, 27(12): 59-62.

    [58]

    DEIMLING K A A, SEIDEL E P, ROSSET J S, MOTTIN M C, HERRMANN D D R, FAVORITO A C. Soil physical properties and soybean productivity in succession to cover crops. Revista Ceres, 2019, 66(4): 316-322. doi: 10.1590/0034-737x201966040010

    [59] 何娜娜, 贾如浩, 叶苗泰, 赵西宁, 高晓东. 黄土高原旱地苹果园油菜间作对土壤大孔隙结构的影响. 水土保持学报, 2021, 35(1): 259-264.

    HE N N, JIA R H, YE M T, ZHAO X N, GAO X D. Effect of rape intercropping on soil macropore structure in dryland apple orchard of the loess plateau. Journal of Soil and Water Conservation, 2021, 35(1): 259-264.

    [60]

    KHAN R, FAROOQUE A A, BROWN H C P, ZAMAN Q U, ACHARYA B, ABBAS F, MCKENZIE-GOPSILL A. The role of cover crop types and residue incorporation in improving soil chemical properties. Agronomy, 2021, 11(10): 2091. doi: 10.3390/agronomy11102091

    [61] 杨露, 毛云飞, 胡艳丽, 王芸芸, 张璐璐, 尹伊君, 庞会灵, 宿夏菲, 刘业萍, 沈向. 生草改善果园土壤肥力和苹果树体营养的效果. 植物养与肥料学报, 2020, 26(2): 325-337.

    YANG L, MAO Y F, HU Y L, WANG Y Y, ZHANG L L, YIN Y J, PANG H L, SU X F, LIU Y P, SHEN X. Effects of orchard grass on soil fertility and apple tree nutrition. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 325-337.

    [62] 赵茜, 施龙清, 何海芳, 李天璞, 李亚勍, 张力文, 杨广. 间作不同绿肥植物组合对茶园土壤改良的效果. 福建农业学报, 2021, 36(5): 602-609.

    ZHAO Q, SHI L Q, HE H F, LI T P, LI Y Q, ZHANG L W, YANG G. Improvement of plantation soil by intercropping tea plants with green manures. Fujian Journal of Agricultural Sciences, 2021, 36(5): 602-609.

    [63] 朱亚琼, 简大为, 郑伟, 王朴, 黎松松, 郝帅, 娜尔克孜, 刘岳含, 艾丽菲热. 不同种植模式下豆科绿肥对土壤改良效果的影响. 草业科学, 2020, 37(5): 889-900.

    ZHU Y Q, JIAN D W, ZHENG W, WANG P, LI S S, HAO S, Naerkezi, LIU Y H, Ailifeire. Effects of improving soil fertility by planting different leguminous green manure plants under different mixed cropping patterns. Pratacultural Science, 2020, 37(5): 889-900.

    [64]

    VERAS M D S, RAMOS M L G, OLIVEIRA D N S, FIGUEIREDO C C D, CARVALHO A M D, PULROLNIK K, SOUZA K W D. Cover crops and nitrogen fertilization effects on nitrogen soil fractions under corn cultivation in a no tillage System. Revista Brasileira de Ciencia do Solo, 2016, 40: e0150092.

    [65]

    ALMEIDA E F A, SOUZA R R, LESSA M A, REIS S N, CARVALHO L M. Green manure affects cut flower yield and quality of 'Vegas’ rose bushes. Ornamental Horticulture, 2017, 23(1): 38-44. doi: 10.14295/oh.v23i1.881

    [66]

    BLANCO-CANQUI H. Cover crops and water quality. Agronomy Journal, 2018, 110(5): 1633-1647. doi: 10.2134/agronj2018.02.0077

    [67]

    çERçIOğLU M, ANDERSON S H, UDAWATTA R P, ALAGELE S. Effect of cover crop management on soil hydraulic properties. Geoderma, 2019, 343: 247-253. doi: 10.1016/j.geoderma.2019.02.027

    [68] 李晓龙, 窦云萍, 马丁, 王春良, 刘相泉, 贾永华. 宁夏地区果园生草对土壤温、湿度及天敌数量的影响. 北方园艺, 2020, 451(4): 93-101.

    LI X L, DOU Y P, MA D, WANG C L, LIU X Q, JIA Y H. Effects of grass on soil temperature, soil moisture and natural enemy quantity in orchard in Ningxia. Northern Horticulture, 2020, 451(4): 93-101.

    [69]

    TYLER H L. Winter cover crops and no till management enhance enzyme activities in soybean field soils. Pedobiologia, 2020, 81: 150666.

    [70]

    WANG Y, LIU L, TIAN Y, WU X P, YANG J F, LUO Y, LI H K, AWASTHI M K, ZHAO Z Y. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover. Soil and Tillage Research, 2020, 202: 104666. doi: 10.1016/j.still.2020.104666

    [71]

    BUYER J S, BALIGAR V C, HE Z, AREVALO-GARDINI E. Soil microbial communities under cacao agroforestry and cover crop systems in Peru. Applied Soil Ecology, 2017, 120: 273-280. doi: 10.1016/j.apsoil.2017.09.009

    [72]

    SHU X, ZOU Y, SHAW L J, TODMAN L, TIBBETT M, SIZMUR T. Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Research, 2021, 60(4): 349-359. doi: 10.1071/SR21105

    [73] 庞建光, 朱铮, 武龙. 桑园生草对土壤养分、微生物及桑葚品质的影响. 河北大学学报 (自然科学版), 2017, 37(3): 267-273.

    PANG J G, ZHU Z, WU L. Effects of inter row planting grasses on soil nutrient, microbial quantity and fruit quality in mulberry field. Journal of Hebei University (Natural Science Edition), 2017, 37(3): 267-273.

图(3)  /  表(4)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 段廷玉
  • 收稿日期:  2022-07-13
  • 接受日期:  2022-10-10
  • 网络出版日期:  2023-07-16
  • 刊出日期:  2023-09-03

目录

/

返回文章
返回