SGM模型牦牛子模型生长发育模块校验及应用
基于前期构建的Sustainable Grassland Model (SGM)模型框架,选用并改进GRAZPLAN动物模型和不完全小区模拟方法,在MATLAB平台对SGM模型进行二次开发,建立牦牛子模型生长发育模块,以期为青藏高原可持续放牧生产体系的构建提供研究工具及决策支持。采用局部敏感度分析法,筛选并计算敏感度系数确定牦牛子模型生长发育模块下放牧采食量和体重变化模拟中的敏感参数,以已发表的研究数据为基础,利用最小二乘法建立敏感参数校准模型并完成模块校准,校准后运行模型,得到的增重模拟结果与前人发表的研究数据比对后进行统计分析,完成模型检验。检验后的模型以甘肃省玛曲县高寒草甸典型牦牛牧户(草地中度退化)为研究对象进行模型示范。结果表明:经参数校验后的SGM牦牛子模型在模拟牦牛放牧采食量和增重方面切实可行。示范结果证明SGM模型能够合理地模拟粗放型生产管理下放牧压力的降低对高寒草甸牦牛放牧生产体系草地地上生物量、植物群落功能组成、家畜放牧采食量和体重变化的长期影响,说明SGM模型在青藏高原高寒草甸模拟放牧压力对放牧生产体系的长期影响具有可行性。该模型采用不同的参数,基于同一套数学公式实现对放牧牛羊生长发育的模拟,在未来牛羊放牧系统模型开发中具有良好的应用前景,但需要针对模拟对象的实际实施校准,且对牦牛产奶量和放牧采食量的模拟仍需进一步开发和改进。
English
-
参考文献
[1] MIEHE G, MIEHE S, KAISER K, REUDENBACH C, BEHRENDES L, LA DUO F, SCHLÜTZ F. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeography, 2009, 276(1): 130-147.
[2] LI X L, GAO J, BRIERLEY G, QIAO Y M, ZHANG J, YANG Y W. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degradation & Development, 2013, 24(1): 72-80.
[3] LIU H B, WU J P, TIAN X H, DU W H. Dynamic of aboveground biomass and soil moisture as affected by short-term grazing exclusion on eastern alpine meadow of Qinghai-Tibet plateau, China. Chilean Journal of Agricultural Research, 2016, 76(3): 321-329. doi: 10.4067/S0718-58392016000300009
[4] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. doi: 10.1016/j.jaridenv.2009.06.014
[5] HERRERO M, THORNTON P K. Livestock and global change: emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences, 2013, 110(52): 20878-20881. doi: 10.1073/pnas.1321844111
[6] 吴建平. 草地畜牧业生产体系导论. 北京: 科学出版社, 2020. WU J P. Introduction to Production Systems of Animal Husbandry in Rangeland. Beijing: Science Press, 2020.
[7] 刘海波. 青藏高原草甸区草地资源可持续利用模型的建立和应用. 兰州: 甘肃农业大学博士学位论文, 2017. LIU H B. Simulation and application on the sustainable grasslands model in the meadow area of Qinghai-Tibetan Plateau. PhD Thesis. Lanzhou: Gansu Agricultural University, 2017.
[8] KEMP D R, HAN G D, HOU X Y, MICHALK D L, HOU F J, WU J P, ZHANG Y J. Innovative grassland management systems for environmental and livelihood benefits. Proceedings of the National Academy of Sciences, 2013, 110(21): 8369-8374. doi: 10.1073/pnas.1208063110
[9] JONES J W, ANTLE J M, BASSO B, BOOTE K J, CONANT R T, FOSTER I, GODFRAY H, CHARLES J, HERRERO M, HOWITT, R E, JANSSEN S. Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155: 240-254. doi: 10.1016/j.agsy.2016.05.014
[10] SNOW V O, ROTZ C A, MOORE A D, MARTIN-CLOUAIRE R, JOHNSON I R, HUTCHINGS N J, ECKARD R J. The challenges and some solutions to process-based modelling of grazed agricultural systems. Environmental Modelling and Software, 2014, 62: 420-436. doi: 10.1016/j.envsoft.2014.03.009
[11] 李治国, 韩国栋, 赵萌莉, 王忠武, 王静. 家庭牧场研究现状及展望. 草业学报, 2015, 24(1): 158-167. LI Z G, HAN G D, ZHAO M L, WANG Z W, WANG J. An overview of the prospects for family farms. Acta Prataculturae Sinica, 2015, 24(1): 158-167.
[12] BEHRENDT K, LIU H B, KEMP D R, TAKAHASHI T. Sustainability modelling of grassland systemsSustainable. //KEMP D. (eds). Sustainable Chinese Grasslands. Canberra: Australian Centre for International Agricultural Research, 2020: 97-124.
[13] BEHRENDT K, TAKAHASHI T, KEMP D R, HAN G D, LIU H B. Modelling Chinese grassland systems to improve herder livelihoods and grassland sustainability. The Rangeland Journal, 2020, 42(5): 329-338. doi: 10.1071/RJ20053
[14] FREER M, MOORE A, DONNELLY J. The GRAZPLAN animal biology model for sheep and cattle and the GrazFeed decision support tool. (2012-12) [2022-06-16]. https://grazplan.csiro.au/wp-content/uploads/2007/08/TechPaperMay12.pdf.
[15] CSIRO. Nutrient requirements of domesticated ruminants. Collingwood: CSIRO Publishing, 2007.
[16] 胡令浩, 谢敖云, 韩兴泰. 生长牦牛与生长黄牛体表面积的研究. 中国畜牧杂志, 1994(6): 9-10. HU L H, XIE A Y, HAN X T. The study of body surface area of growing yaks and cattle. Chinese Journal of Animal Science, 1994(6): 9-10.
[17] THORNLEY J H, FRANCE J. Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. 2nd Edition. Wallingford: CABI Publishing, 2007.
[18] MAYBERRY D E, SYAHNIAR T M, ANTARI R, NINGRUM G P, MARSETYO, PAMUNGKAS D, POPPI D P. Predicting feed intake and liveweight gain of Ongole ( Bos indicus) cattle in Indonesia. Animal Production Science, 2014, 54(12): 2089-2096. doi: 10.1071/AN14538
[19] SMITH P, SMITH J, POWLSON D, MCGILL W, ARAH J, CHERTOV O, COLEMAN K, FRANKO U, FROLKING S, JENKINSON D. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81(1-2): 153-225. doi: 10.1016/S0016-7061(97)00087-6
[20] DING L M, WANG Y P, BROSH A, CHEN J Q, GIBB M J, SHANG Z H, GUO X S, MI J D, ZHOU J W, WANG H C, QIU Q, LONG R J. Seasonal heat production and energy balance of grazing yaks on the Qinghai-Tibetan plateau. Animal Feed Science and Technology, 2014, 198: 83-93. doi: 10.1016/j.anifeedsci.2014.09.022
[21] DONG Q M, ZHAO X Q, XU Y S, DONG S X, MA Q Y, DONG Q Y, LI Q Y. Live-weight gain, apparent digestibility, and economic benefits of yaks fed different diets during winter on the Tibetan plateau. Livestock Science, 2006, 101(1-3): 199-207. doi: 10.1016/j.livprodsci.2005.11.009
[22] 杨俊, 王之盛, 保善科, 王威, 薛白, 张海波, 邹华围. 精料补充料能量水平对早期断奶犊牦牛生产性能和营养物质表观消化率的影响. 动物营养学报, 2013, 25(9): 2021-2027. YANG J, WANG Z S, BAO S K, WANG W, XUE B, ZHANG H B, ZOU H W. Effects of energy level of concentrate supplement on performance and nutrient apparent digestibility of early-weaner yak calves. Chinese Journal of Animal Nutrition, 2013, 25(9): 2021-2027.
[23] PITTROFF W, KOTHMANN M M. Quantitative prediction of feed intake in ruminants: II. Conceptual and mathematical analysis of models for cattle. Livestock Production Science, 2001, 71(2-3): 151-169. doi: 10.1016/S0301-6226(01)00217-2
[24] SHAO B, LONG R J, DING Y, WANG J, DING L M, WANG H. Morphological adaptations of yak ( Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau. Journal of Animal Science, 2010, 88(8): 2594-2603. doi: 10.2527/jas.2009-2398
[25] DING L M, LONG R J, WANG C, SHANG Z H. Grazing behavior of lactating and non-lactating yaks in the summer season of the Qinghai-Tibetan plateau. Israel Journal of Ecology & Evolution, 2006, 52(2): 141-149.
[26] KONDO S. Recent progress in the study of behavior and management in grazing cattle. Animal Science Journal, 2011, 82(1): 26-35. doi: 10.1111/j.1740-0929.2010.00821.x
[27] 宋仁德, 长谷川信美, 李国梅, 徐宁, 才尕, 张青兰. 天然草地放牧牦牛采食行为及食性选择的研究. 家畜生态学报, 2008, 29(5): 31-35. SONG R D, CHANGGU C X M, LI G M, XU N, Caiga, ZHANG Q L. Botanical composition and grazing behaviour of Qinghai yaks of plateau type in the natural rangeland. Journal of Domestic Animal Ecology, 2008, 29(5): 31-35.
[28] 韩兴泰, 谢敖云, 胡令浩. 生长牦牛采食量的研究. 青海畜牧兽医杂志, 1990(6): 5-6, 39. HAN X T, XIE A Y, HU L H. The study of dry matter intake of growing yaks. Chinese Qinghai Journal of Animal and Veterinary Sciences, 1990(6): 5-6, 39.
[29] MAYES R W, DOVE H. Measurement of dietary nutrient intake in free-ranging mammalian herbivores. Nutrition Research Reviews, 2000, 13(1): 107-38. doi: 10.1079/095442200108729025
[30] XUE B, ZHAO X Q, ZHANG Y S. Seasonal changes in weight and body composition of yak grazing on alpine-meadow grassland in the Qinghai-Tibetan plateau of China. Journal of Animal Science, 2005, 83(8): 1908-1913. doi: 10.2527/2005.8381908x
[31] PLANTUREUX S, PEETERS A, MCCRACKEN D. Biodiversity in intensive grasslands: Effect of management, improvement and challenges. Agronomy Research, 2005, 3(2): 153-164.
[32] OLFF H, RITCHIE M E. Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 1998, 13(7): 261-265.
[33] KEMP D R, HAN G D, HOU F J, HOU X Y, LI Z G, SUN Y, WANG Z, WU J P, ZHANG X, ZHANG Y, GONG X Y. Sustainable management of Chinese grasslands-issues and knowledge. Frontiers of Agricultural Science and Engineering, 2018, 5(1): 9-23. doi: 10.15302/J-FASE-2018204
[34] DONG Q M, ZHAO X Q, WU G L, CHANG X F. Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China. Environmental Earth Sciences, 2015, 73(5): 2497-2503. doi: 10.1007/s12665-014-3597-7
[35] 刘海波, 李林渊, 蒲小剑, 杜文华. 基于静态模拟模型的青藏高原东缘高寒草甸区草畜平衡研究. 草原与草坪, 2017, 37(4): 26-37. LIU H B, LI L Y, PU X J, DU W H. Study on the grassland-livestock balance based on static model in the alpine meadow on the eastern edge of the Qinghai Titetan Plateau. Grassland and Turf, 2017, 37(4): 26-37.
[36] BERNTSEN J, PETERSEN B M, JACOBSEN B H, OLESEN J E, HUTCHINGS N J. Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems, 2003, 76(3): 817-839. doi: 10.1016/S0308-521X(02)00111-7
[37] ROTZ C A, CORSON M S, CHIANESE D S, MONTES F, HAFNER S D, COINER C U. The integrated farm system model reference manual, version 3.6. (2012-09-01) [2022-06-16]. https://www.researchgate.net/publication/242713478_THE_INTEGRATED_FARM_SYSTEM_MODEL/link/004635321ac7a10beb000000/download.
[38] SNIFFEN C J, OCONNOR J D, VANSOEST P J, FOX D G, RUSSELL J B. A net carbohydrate and protein system for evaluating cattle diets. 2. carbohydrate and protein availability. Journal of Animal Science, 1992, 70(11): 3562-3577.
[39] ZHOU J W, LIU H, ZHONG C L, DEGEN A A, YANG G, ZHANG Y, QIAN J L, WANG W W, HAO L Z, QIU Q, SHANG Z H, GUO X S, DING L M, LONG R J. Apparent digestibility, rumen fermentation, digestive enzymes and urinary purine derivatives in yaks and Qaidam cattle offered forage-concentrate diets differing in nitrogen concentration. Livestock Science, 2018, 208: 14-21. doi: 10.1016/j.livsci.2017.11.020
[40] ZHOU J W, ZHONG C L, LIU H, DEGEN A A, TITGEMEYER E C, DING L M, SHANG Z H, GUO X S, QIU Q, LI Z P, YANG G, LONG R J. Comparison of nitrogen utilization and urea kinetics between yaks ( Bos grunniens) and indigenous cattle ( Bos taurus). Journal of Animal Science, 2017, 95(10): 4600-4612. doi: 10.2527/jas2017.1428
-
图 2 SGM模型MATLAB模拟运行示意图
箭头表示软件运行时的数据流方向,其中双向箭头表示产生的数据会在下一个函数或者模块中被调用;长方形标注文字的文本框代表自主编程的MATLAB函数;虚线框内是牦牛生长发育模块部分。
Figure 2. A diagrammatic outline of SGM model simulation execution in MATLAB
The arrows represent the directions of data flow during execution; double arrows represent data produced and used in the coming functions or modules; rectangular textboxes with texts represent the functions built in MATLAB; dotted boxes represent the yak growth and development module.
图 4 牦牛营养与生长模拟的MATLAB函数编程流程图
箭头表示软件运行数据流方向,其中Input是模型输入,NWmax是家畜标准体重的上限,MEp是母畜妊娠代谢能需求,PIp是临时估测最大采食量,DMIsim,是放牧采食量模拟,MEgraze是放牧代谢能需求,MEm是维持代谢能需求,MEl 是母畜泌乳所需代谢能,Prsim是蛋白平衡模拟,MEcold是御寒代谢能需求,PIf是最终最大采食量,LWG是体重变化,RR是母畜繁殖率,Output是模型输出。
Figure 4. A flow chart demonstrating the execution sequence in yak nutrition and growth simulation in MATLAB function
Arrows represent the directions of the execution, in which Input is the simulation input required. NWmax is the upper limit of normal weight in kg, MEp is metabolizable energy used for pregnancy, and PIp is provisional estimation for potential intake. DMIsim is daily grazing dry matter intake simulation, MEgraze is metabolizable energy used for grazing, and MEm is metabolizable energy used for maintenance. MEl is metabolizable energy used for lactation, Prsim is protein balance simulation, and MEcold is the metabolizable energy cost of chilling. PIf is the final estimation for potential intake, LWG is live weight change, RR is the reproductive rate of females, and Output is the simulation output produced.
表 1 敏感参数及敏感度分析及结果
Table 1 Candidates for parameter sensitivity analysis and results of the statistic sensitivity coefficient
参数及单位
Parameter and unit参数含义
Parameter description肉牛参数
Bos taurus parameter敏感度系数 Sensitivity coefficient + 10% + 20% + 40% CR4/(head·kg−1) 放牧压 ꞉ 地上现存量
Stocking density ꞉ herbage availability0.000 78 0.48 0.46 0.42 CG8/(MJ·kg−1) EVG ꞉ 参考值 EVG ꞉ reference value 27 1.96 1.96 1.96 CG9/(MJ·kg−1) EVG ꞉ 成年参考值(L = 1, BC = 1)
EVG ꞉ EVG range with maturity at L = 1 and BC = 120.3 0.88 0.88 0.89 EVG是空腹体重变化所需能量,L是饲喂水平,BC是体况指数, + 10%表示敏感参数按照原始数值增加10%以后求得的敏感度系数, + 20%和 + 40%表示敏感参数按照原始数值增加20%和40%以后求得的敏感度系数。
EVG is the energy content in empty body weight change, L is the feeding level, and BC is the body condition score. + 10% represents the sensitivity coefficients calculated as the absolute values of the ratio of + 10% change in the simulation results (output of the model) to + 10% change in parameter. + 20% or + 40% represents the sensitivity coefficients calculated as the absolute values of the ratio of + 20% or + 40% change in the simulation results (output of the model) to + 20% or 40% change in parameter.表 2 牦牛生长发育模块放牧采食量模拟的参数校准数据
Table 2 Data for parameter calibration for grazing yak dry matter intake simulation for the yak growth and development module
日期
Date/d日龄
Days after
birth/d采食量
DMI/
(kg·d−1)代谢能浓度
ME content/
(MJ·kg−1)代谢能摄入
MEI/
[MJ·(head·d)−1]体重
Live
weight/kg地上生物量比例*
Green biomass/total
biomass/(kg·hm−2) *放牧压力*
SD/
(head·hm−2)*坡度*
Slope/
°*227 2 722 6.7 10.4 70.1 253 248/248 5 0 349 2 844 5.7 3.4 19.4 254 0/208 5 0 135 2 995 2.4 12.8 30.6 187 67.8/158.2 5 0 288 3 148 7.1 3.8 27.1 243 0/351 5 0 Date是一年1到365天内的某一天,用于模型时间模拟,*表示因原文中未有数据表述而做出的合理假设。
Date is the day of the year used for time simulation, DMI is dry matter intake, ME is the metabolizable energy, MEI is the metabolizable energy intake, SD is the stocking density, and *represents assumptions made owing to the lack of information in the initial paper, which are the inputs required in the current module calibration.表 3 牦牛生长发育模块体重变化模拟的参数校准数据
Table 3 Data for parameter calibration for the yak liveweight change simulation for the yak growth and development module
年龄
Age/year代谢能浓度
Metabolizable energy
content/(MJ·kg−1)采食量
Dry matter intake/
[kg·(head·d)−1]育肥前体重
Live weight
starter/kg育肥后体重
Live weight
finisher/kg平均日增重
Average daily
gain/(g·d−1)3 10.26 3.48 118.00 140.60 452.00 3 8.44 2.51 117.50 134.20 334.00 2 9.67 2.28 109.50 124.60 302.00 2 8.32 2.03 110.40 124.20 276.00 2 8.00 1.54 110.90 122.60 234.00 表 4 典型牦牛牧户基础信息输入
Table 4 General information and inputs for a typical yak farm
输入
Input冬季放牧场
Winter pasture夏季放牧场
Summer pasture草地面积 Pasture area/hm2 133 213 轮牧制度或利用时间
Rotation management/d215 150 草地植物群落结构(喜食/非喜食)
Pasture composition
(desirable/undesirable)0.3/0.7 0.4/0.6 牦牛初期数量
Yak number initial/head123 产犊日期 Calving date 60 出栏日期 Selling date 280 标准参考体重
Standard reference weight/kg300 初生重 Birth weight/kg 15 Date是一年1到365天内的某一天,用于模型时间模拟。
Date is the day of the year used for time simulation.表 5 牦牛生长发育模块校验后参数数值及比较(校准参数已用于本研究示范模拟)
Table 5 Demonstration and comparison of calibrated and validated parameters for the yak growth and development module used in the model demonstration
参数及单位
Parameter
and unit参数含义
Parameter
description肉牛参数数值
Bos taurus
parameter瘤牛参数数值
Bos indicus
parameter牦牛参数数值
Bos gruniens
parameter value
adopted校准方法
Calibration
method参考文献
ReferenceCN1/(kg0.27·d−1)* 生长速率常数 Growth rate constant 0.011 5 0.011 5 0.004 1 LSM [7] CM2/(MJ·kg−0.75)* 基础代谢 ꞉ 代谢体重
Basal metabolism ꞉ metabolic weight0.36 0.31 0.37 LSM [7] CR4/(head·kg−1) 放牧压 ꞉ 地上现存量
Stocking density ꞉ herbage availability0.000 78 0.000 78 0.000 78 LSM − CG8/(MJ·kg−1) EVG ꞉ 参考值 EVG ꞉ reference value 27 23.2 14.3 LSM − CG9/(MJ·kg−1) EVG ꞉ 成年参考值(L = 1, BC = 1)
EVG ꞉ EVG range with
maturity at L = 1 and BC = 120.3 16.5 30 LSM − CL0,1/(MJ·kg−0.75)* 泌乳峰值标量(带犊一头)
Peak yield scalar (suckling for one calf)0.375 0.375 0.019 7 LSM [7] CL2/d* 泌乳高峰日 Peak time 30 30 83.31 LSM [7] CL3/* 带犊的泌乳曲线形状标量
Shape scalar with one calf0.6 0.6 2.029 LSM [7] CL6/(MJ·kg−1)* 乳能量浓度
Milk energy content3.1 3.1 3.8 文献调研
Literature review[7] EVG是空腹体重变化所需能量,L是饲喂水平,BC是体况指数,LSM代表最小二乘法,*表示前期已有校准结果,详见参考文献[7]。
EVG is the energy content in empty body weight change. L is the feeding level, BC is the body condition score, LSM represents the least squares method, and * represents the calibration results from a previous report. See reference [7] for a detailed description.表 6 牦牛生长发育模块检验数据及结果
Table 6 Validation data and results for the yak growth and development module
处理
Treatment检验平均日
增重数据
ADG-V/(kg·d−1)标准误
SE模拟平均日
增重数据
ADG-S/(kg·d−1)低能
Low energy0.12 0.03 0.133 61 中能
Medium energy0.25 0.07 0.233 62 高能
High energy0.20 0.05 0.221 22 RMSE 9.14 RMSE95% 203.15 ADG-V is the average daily gain used for validation, and ADG-S is the average daily gain from the simulation. -
[1] MIEHE G, MIEHE S, KAISER K, REUDENBACH C, BEHRENDES L, LA DUO F, SCHLÜTZ F. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeography, 2009, 276(1): 130-147.
[2] LI X L, GAO J, BRIERLEY G, QIAO Y M, ZHANG J, YANG Y W. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degradation & Development, 2013, 24(1): 72-80.
[3] LIU H B, WU J P, TIAN X H, DU W H. Dynamic of aboveground biomass and soil moisture as affected by short-term grazing exclusion on eastern alpine meadow of Qinghai-Tibet plateau, China. Chilean Journal of Agricultural Research, 2016, 76(3): 321-329. doi: 10.4067/S0718-58392016000300009
[4] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. doi: 10.1016/j.jaridenv.2009.06.014
[5] HERRERO M, THORNTON P K. Livestock and global change: emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences, 2013, 110(52): 20878-20881. doi: 10.1073/pnas.1321844111
[6] 吴建平. 草地畜牧业生产体系导论. 北京: 科学出版社, 2020. WU J P. Introduction to Production Systems of Animal Husbandry in Rangeland. Beijing: Science Press, 2020.
[7] 刘海波. 青藏高原草甸区草地资源可持续利用模型的建立和应用. 兰州: 甘肃农业大学博士学位论文, 2017. LIU H B. Simulation and application on the sustainable grasslands model in the meadow area of Qinghai-Tibetan Plateau. PhD Thesis. Lanzhou: Gansu Agricultural University, 2017.
[8] KEMP D R, HAN G D, HOU X Y, MICHALK D L, HOU F J, WU J P, ZHANG Y J. Innovative grassland management systems for environmental and livelihood benefits. Proceedings of the National Academy of Sciences, 2013, 110(21): 8369-8374. doi: 10.1073/pnas.1208063110
[9] JONES J W, ANTLE J M, BASSO B, BOOTE K J, CONANT R T, FOSTER I, GODFRAY H, CHARLES J, HERRERO M, HOWITT, R E, JANSSEN S. Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155: 240-254. doi: 10.1016/j.agsy.2016.05.014
[10] SNOW V O, ROTZ C A, MOORE A D, MARTIN-CLOUAIRE R, JOHNSON I R, HUTCHINGS N J, ECKARD R J. The challenges and some solutions to process-based modelling of grazed agricultural systems. Environmental Modelling and Software, 2014, 62: 420-436. doi: 10.1016/j.envsoft.2014.03.009
[11] 李治国, 韩国栋, 赵萌莉, 王忠武, 王静. 家庭牧场研究现状及展望. 草业学报, 2015, 24(1): 158-167. LI Z G, HAN G D, ZHAO M L, WANG Z W, WANG J. An overview of the prospects for family farms. Acta Prataculturae Sinica, 2015, 24(1): 158-167.
[12] BEHRENDT K, LIU H B, KEMP D R, TAKAHASHI T. Sustainability modelling of grassland systemsSustainable. //KEMP D. (eds). Sustainable Chinese Grasslands. Canberra: Australian Centre for International Agricultural Research, 2020: 97-124.
[13] BEHRENDT K, TAKAHASHI T, KEMP D R, HAN G D, LIU H B. Modelling Chinese grassland systems to improve herder livelihoods and grassland sustainability. The Rangeland Journal, 2020, 42(5): 329-338. doi: 10.1071/RJ20053
[14] FREER M, MOORE A, DONNELLY J. The GRAZPLAN animal biology model for sheep and cattle and the GrazFeed decision support tool. (2012-12) [2022-06-16]. https://grazplan.csiro.au/wp-content/uploads/2007/08/TechPaperMay12.pdf.
[15] CSIRO. Nutrient requirements of domesticated ruminants. Collingwood: CSIRO Publishing, 2007.
[16] 胡令浩, 谢敖云, 韩兴泰. 生长牦牛与生长黄牛体表面积的研究. 中国畜牧杂志, 1994(6): 9-10. HU L H, XIE A Y, HAN X T. The study of body surface area of growing yaks and cattle. Chinese Journal of Animal Science, 1994(6): 9-10.
[17] THORNLEY J H, FRANCE J. Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. 2nd Edition. Wallingford: CABI Publishing, 2007.
[18] MAYBERRY D E, SYAHNIAR T M, ANTARI R, NINGRUM G P, MARSETYO, PAMUNGKAS D, POPPI D P. Predicting feed intake and liveweight gain of Ongole ( Bos indicus) cattle in Indonesia. Animal Production Science, 2014, 54(12): 2089-2096. doi: 10.1071/AN14538
[19] SMITH P, SMITH J, POWLSON D, MCGILL W, ARAH J, CHERTOV O, COLEMAN K, FRANKO U, FROLKING S, JENKINSON D. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81(1-2): 153-225. doi: 10.1016/S0016-7061(97)00087-6
[20] DING L M, WANG Y P, BROSH A, CHEN J Q, GIBB M J, SHANG Z H, GUO X S, MI J D, ZHOU J W, WANG H C, QIU Q, LONG R J. Seasonal heat production and energy balance of grazing yaks on the Qinghai-Tibetan plateau. Animal Feed Science and Technology, 2014, 198: 83-93. doi: 10.1016/j.anifeedsci.2014.09.022
[21] DONG Q M, ZHAO X Q, XU Y S, DONG S X, MA Q Y, DONG Q Y, LI Q Y. Live-weight gain, apparent digestibility, and economic benefits of yaks fed different diets during winter on the Tibetan plateau. Livestock Science, 2006, 101(1-3): 199-207. doi: 10.1016/j.livprodsci.2005.11.009
[22] 杨俊, 王之盛, 保善科, 王威, 薛白, 张海波, 邹华围. 精料补充料能量水平对早期断奶犊牦牛生产性能和营养物质表观消化率的影响. 动物营养学报, 2013, 25(9): 2021-2027. YANG J, WANG Z S, BAO S K, WANG W, XUE B, ZHANG H B, ZOU H W. Effects of energy level of concentrate supplement on performance and nutrient apparent digestibility of early-weaner yak calves. Chinese Journal of Animal Nutrition, 2013, 25(9): 2021-2027.
[23] PITTROFF W, KOTHMANN M M. Quantitative prediction of feed intake in ruminants: II. Conceptual and mathematical analysis of models for cattle. Livestock Production Science, 2001, 71(2-3): 151-169. doi: 10.1016/S0301-6226(01)00217-2
[24] SHAO B, LONG R J, DING Y, WANG J, DING L M, WANG H. Morphological adaptations of yak ( Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau. Journal of Animal Science, 2010, 88(8): 2594-2603. doi: 10.2527/jas.2009-2398
[25] DING L M, LONG R J, WANG C, SHANG Z H. Grazing behavior of lactating and non-lactating yaks in the summer season of the Qinghai-Tibetan plateau. Israel Journal of Ecology & Evolution, 2006, 52(2): 141-149.
[26] KONDO S. Recent progress in the study of behavior and management in grazing cattle. Animal Science Journal, 2011, 82(1): 26-35. doi: 10.1111/j.1740-0929.2010.00821.x
[27] 宋仁德, 长谷川信美, 李国梅, 徐宁, 才尕, 张青兰. 天然草地放牧牦牛采食行为及食性选择的研究. 家畜生态学报, 2008, 29(5): 31-35. SONG R D, CHANGGU C X M, LI G M, XU N, Caiga, ZHANG Q L. Botanical composition and grazing behaviour of Qinghai yaks of plateau type in the natural rangeland. Journal of Domestic Animal Ecology, 2008, 29(5): 31-35.
[28] 韩兴泰, 谢敖云, 胡令浩. 生长牦牛采食量的研究. 青海畜牧兽医杂志, 1990(6): 5-6, 39. HAN X T, XIE A Y, HU L H. The study of dry matter intake of growing yaks. Chinese Qinghai Journal of Animal and Veterinary Sciences, 1990(6): 5-6, 39.
[29] MAYES R W, DOVE H. Measurement of dietary nutrient intake in free-ranging mammalian herbivores. Nutrition Research Reviews, 2000, 13(1): 107-38. doi: 10.1079/095442200108729025
[30] XUE B, ZHAO X Q, ZHANG Y S. Seasonal changes in weight and body composition of yak grazing on alpine-meadow grassland in the Qinghai-Tibetan plateau of China. Journal of Animal Science, 2005, 83(8): 1908-1913. doi: 10.2527/2005.8381908x
[31] PLANTUREUX S, PEETERS A, MCCRACKEN D. Biodiversity in intensive grasslands: Effect of management, improvement and challenges. Agronomy Research, 2005, 3(2): 153-164.
[32] OLFF H, RITCHIE M E. Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 1998, 13(7): 261-265.
[33] KEMP D R, HAN G D, HOU F J, HOU X Y, LI Z G, SUN Y, WANG Z, WU J P, ZHANG X, ZHANG Y, GONG X Y. Sustainable management of Chinese grasslands-issues and knowledge. Frontiers of Agricultural Science and Engineering, 2018, 5(1): 9-23. doi: 10.15302/J-FASE-2018204
[34] DONG Q M, ZHAO X Q, WU G L, CHANG X F. Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China. Environmental Earth Sciences, 2015, 73(5): 2497-2503. doi: 10.1007/s12665-014-3597-7
[35] 刘海波, 李林渊, 蒲小剑, 杜文华. 基于静态模拟模型的青藏高原东缘高寒草甸区草畜平衡研究. 草原与草坪, 2017, 37(4): 26-37. LIU H B, LI L Y, PU X J, DU W H. Study on the grassland-livestock balance based on static model in the alpine meadow on the eastern edge of the Qinghai Titetan Plateau. Grassland and Turf, 2017, 37(4): 26-37.
[36] BERNTSEN J, PETERSEN B M, JACOBSEN B H, OLESEN J E, HUTCHINGS N J. Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems, 2003, 76(3): 817-839. doi: 10.1016/S0308-521X(02)00111-7
[37] ROTZ C A, CORSON M S, CHIANESE D S, MONTES F, HAFNER S D, COINER C U. The integrated farm system model reference manual, version 3.6. (2012-09-01) [2022-06-16]. https://www.researchgate.net/publication/242713478_THE_INTEGRATED_FARM_SYSTEM_MODEL/link/004635321ac7a10beb000000/download.
[38] SNIFFEN C J, OCONNOR J D, VANSOEST P J, FOX D G, RUSSELL J B. A net carbohydrate and protein system for evaluating cattle diets. 2. carbohydrate and protein availability. Journal of Animal Science, 1992, 70(11): 3562-3577.
[39] ZHOU J W, LIU H, ZHONG C L, DEGEN A A, YANG G, ZHANG Y, QIAN J L, WANG W W, HAO L Z, QIU Q, SHANG Z H, GUO X S, DING L M, LONG R J. Apparent digestibility, rumen fermentation, digestive enzymes and urinary purine derivatives in yaks and Qaidam cattle offered forage-concentrate diets differing in nitrogen concentration. Livestock Science, 2018, 208: 14-21. doi: 10.1016/j.livsci.2017.11.020
[40] ZHOU J W, ZHONG C L, LIU H, DEGEN A A, TITGEMEYER E C, DING L M, SHANG Z H, GUO X S, QIU Q, LI Z P, YANG G, LONG R J. Comparison of nitrogen utilization and urea kinetics between yaks ( Bos grunniens) and indigenous cattle ( Bos taurus). Journal of Animal Science, 2017, 95(10): 4600-4612. doi: 10.2527/jas2017.1428