欢迎访问 草业科学,今天是2025年4月13日 星期日!

昆明市城市化及城市热岛效应对植被净初级生产力的影响

师静, 鲁雪媛, 陈旭

师静,鲁雪媛,陈旭. 昆明市城市化及城市热岛效应对植被净初级生产力的影响. 草业科学, 2022, 39(12): 2589-2603 . DOI: 10.11829/j.issn.1001-0629.2022-0511
引用本文: 师静,鲁雪媛,陈旭. 昆明市城市化及城市热岛效应对植被净初级生产力的影响. 草业科学, 2022, 39(12): 2589-2603 . DOI: 10.11829/j.issn.1001-0629.2022-0511
SHI J, LU X Y, CHEN X. Study on the impact of urbanization and urban heat island effect on net primary productivity in Kunming. Pratacultural Science, 2022, 39(12): 2589-2603 . DOI: 10.11829/j.issn.1001-0629.2022-0511
Citation: SHI J, LU X Y, CHEN X. Study on the impact of urbanization and urban heat island effect on net primary productivity in Kunming. Pratacultural Science, 2022, 39(12): 2589-2603 . DOI: 10.11829/j.issn.1001-0629.2022-0511

昆明市城市化及城市热岛效应对植被净初级生产力的影响

基金项目: 农业联合专项“云南省植被净初级生产力时空分布模式及时空变异机制研究”(202101BD07001-042);云南省教育厅重点项目“基于多源遥感的昆明市城市化对NPP影响模式研究”(2021J0151)
摘要: 城市化极大地影响了城市区域植被净初级生产力(NPP),但城市化对城市植被NPP的时空驱动机制尚不明确。本研究将城市化对NPP的影响分离为直接影响(NPPdir)和间接影响(NPPind),基于地理探测器和地理加权回归分别分析了城市化对NPPdir与城市热岛效应对NPPind的影响和驱动机制。结果表明:1)城市化是NPP时空分异性的主导因素,城市化与城市热岛效应的交互作用对NPP的解释力均大于单因子对NPP分布影响的解释力。2)不透水面丰度(IS)对城市化区域NPP有着强烈的负面影响,而城市热岛效应在城市中心城区对NPP有着正面促进作用,城市热岛效应在一定程度上补偿了城市化对NPP的负面影响。3)相对于普通最小二乘法回归(OLS)模型,地理加权回归模型(GWR)在城市化对NPPdir和城市热岛效应对NPPind的相关性分析中都具有更高的拟合度。本研究对于可持续化城市发展和城市化对NPP的影响以及碳循环等研究具有一定的参考价值。

 

English

  • [1]

    IMHOFF M L, BOUNOUA L, DEFRIES R, LAERENCE W T, STUTZER D, TUCKER C J, RICHETTS T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment, 2004, 89(4): 434-443. doi: 10.1016/j.rse.2003.10.015

    [2]

    TIAN G J, QIAO Z. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environmental Pollution, 2014, 184: 320-326. doi: 10.1016/j.envpol.2013.09.012

    [3]

    WU S H, ZHOU S L, CHEN D X, WEI Z Q, DAI L, LI X G. Determining the contributions of urbanization and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Science of The Total Environment, 2014, 472: 397-406. doi: 10.1016/j.scitotenv.2013.10.128

    [4]

    VITOUSEK P M, MOONEY H A, LUBCHENCO J, MELILLO J M. Human domination of Earth’s ecosystems. Science, 2008, 277: 494-499.

    [5]

    GREGG J W, JONES C G, DAWSON T E. Urbanization effects on tree growth in the vicinity of New York City. Nature, 2003, 424: 183-187. doi: 10.1038/nature01728

    [6]

    CARREIRO M M, TRIPLER C E. Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems, 2005, 8(5): 568-582. doi: 10.1007/s10021-003-0172-6

    [7]

    ZHOU D C, ZHAO S Q, ZHANG L X, LIU S G. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sensing of Environment, 2016, 176: 272-281. doi: 10.1016/j.rse.2016.02.010

    [8]

    YAN Y C, LIU X P, WANG F Y, LI X, OU J P, WEN Y Y, LIANG X. Assessing the impacts of urban sprawl on net primary productivity using fusion of Landsat and MODIS data. Science of The Total Environment, 2018, 613: 1417-1429.

    [9]

    OKE T R. The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 1989, 324: 335-349.

    [10]

    POTTER C S, RANDERSON J T, FIELD C B, MATSON P A, KLOOSTER S A. Terrestrial eco-system production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. doi: 10.1029/93GB02725

    [11]

    HARDIMAN B S, WANG J A, HUTYRA L R, GATELY C K, GETSON J M, FRIED M A. Accounting for urban biogenic fluxes in regional carbon budgets. Remote Sensing of Environment, 2017, 592: 366-372.

    [12]

    FIELD C B, BEHRENFELD M J, RANDERSON J T, FALKOWSKI P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, 281: 237-240. doi: 10.1126/science.281.5374.237

    [13]

    PIAO S L, FANG J Y, ZHOU L M, ZHU B, TAN K, TAO S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem Cycles, 2005, 19(2): 183-196.

    [14]

    FANG Y, LI J, QING H. Quantitative assessment of the human appropriation of net primary production (HANPP) in the coastal areas of Jiangsu, China. Sustainability, 2015, 7(12): 15857-15870. doi: 10.3390/su71215793

    [15]

    PIAO S L, FANG J Y, HE J S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climate Change, 2006, 74(1): 253-267.

    [16]

    TIAN Y H, HUANG W L, WU X C, JIM C Y, LIU Y Q. Dominant control of climate variations over land-use change on net primary productivity under different urbanization intensities in Beijing, China. Acta Ecologica Sinica, 2019, 39(5): 416-424. doi: 10.1016/j.chnaes.2019.07.002

    [17]

    ZHAO S Q, LIU S G, ZHOU D C. Prevalent vegetation growth enhancement in urban environment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6313-6318. doi: 10.1073/pnas.1602312113

    [18]

    GUAN X B, SHEN H F, LI X H, GAN W X, ZHANG L P. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Science of The Total Environment, 2019, 669: 342-352. doi: 10.1016/j.scitotenv.2019.02.361

    [19]

    BUYANTUYEV A, WU J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. Journal of Arid Environments, 2009, 73 (4–5): 512-520.

    [20]

    JIA W X, ZHAO S Q, LIU S G. Vegetation growth enhancement in urban environments of the conterminous United States. Global Change Biology, 2018, 24(9): 4084-4094. doi: 10.1111/gcb.14317

    [21]

    ZHONG J, LIU J F, JIAO L M, LIAN X H, XU Z B, ZHOU Z Z. Assessing the comprehensive impacts of different urbanization process on vegetation net primary productivity in Wuhan, China, from 1990 to 2020. Sustainable Cities and Society, 2021, 75: 103295. doi: 10.1016/j.scs.2021.103295

    [22]

    LU X Y, CHEN X, ZHAO X L, LYU D J, ZHANG Y. Assessing the impact of land surface temperature on urban net primary productivity increment based on geographically weighted regression model. Scientific Reports, 2021, 11: 22282. doi: 10.1038/s41598-021-01757-7

    [23]

    WANG S J, SHI C Y, FANG C L, FENG K S. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Applied Energy, 2019, 235: 95-105. doi: 10.1016/j.apenergy.2018.10.083

    [24]

    FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression: The analysis of spatially varying relationships. American Journal of Agricultural Economics, 2004, 86(2): 554-556. doi: 10.1111/j.0002-9092.2004.600_2.x

    [25]

    KASHKI A, KARAMI M, ZANDI R, ROKI R. Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Climate, 2021, 37: 100832. doi: 10.1016/j.uclim.2021.100832

    [26]

    XU B, XU L, XU R J, LUO L Q. Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically weighted regression model. Journal of Cleaner Production, 2017, 166: 628-640. doi: 10.1016/j.jclepro.2017.08.052

    [27] 孙绩华, 冯健武, 段玮. 昆明城市热岛效应变化特征研究. 气候与环境研究, 2015, 20(6): 645-653. doi: 10.3878/j.issn.1006-9585.2015.15072

    SUN J H, FENG J W, DUAN W. Change in the urban heat island effect in Kunming. Climatic and Environmental Research, 2015, 20(6): 645-653. doi: 10.3878/j.issn.1006-9585.2015.15072

    [28] 李俊晓, 李朝奎, 殷智慧. 基于ArcGIS的克里金插值方法及其应用. 测绘通报, 2013(9): 87-90.

    LI J X, LI Z K, YIN Z H. The Kriging interpolation method based on ArcGIS and its application. Bulletin of Surveying and Mapping, 2013(9): 87-90.

    [29]

    DALY C, HELMER E H, QUIONES M. Mapping the climate of Puerto Rico, Vieques and Culebra. International Journal of Climatology, 2003, 23(11): 1359-1381. doi: 10.1002/joc.937

    [30]

    HASENAUER H, MERGANICOVA K, PETRITSCH R, PIETSCH S A, THORNTON P E. Validation daily climate interpolations over complex terrain in Austria. Agricultural & Forest Meteorology, 2003, 119(1-2): 8-107.

    [31] 岳文泽, 吴次芳. 基于混合光谱分解的城市不透水面分布估算. 遥感学报, 2007, 11(6): 914-922. doi: 10.11834/jrs.200706123

    YUE W F, WU C F. Urban impervious surface distribution estimation by spectral mixture analysis. National Remote Sensing Bulletin, 2007, 11(6): 914-922. doi: 10.11834/jrs.200706123

    [32]

    YU X L, GUO X L, WU Z C. Land surface temperature retrieval from Landsat 8 TIRS: Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 2014, 6(10): 9829-9852. doi: 10.3390/rs6109829

    [33]

    YUAN F, BAUER M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 2007, 106(3): 375-386. doi: 10.1016/j.rse.2006.09.003

    [34]

    LI J X, SONG C H, CAO L, ZHU F G, MENG X L, WU J G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 2011, 115(12): 3249-3263. doi: 10.1016/j.rse.2011.07.008

    [35] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chinese Journal of Plant Ecology, 2007, 31(3): 413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    [36]

    ICHII K, MATSUI Y, YAMAGUCHI Y, OGAWA K. Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model. Global Biogeochemical Cycles, 2001, 15(2): 351-363. doi: 10.1029/2000GB001296

    [37]

    TOBLER W R. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 1970, 46(sup1): 234-240.

    [38]

    GOODCHILD M F. GIScience, geography, form, and process. Annals of the Association of American Geographers, 2004, 94: 709-714.

    [39]

    LUO W, JASIEWICZ J, STEPINSKI T, PIETSCH S A, THORNTON P E. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Letters, 2016, 43(2): 692-700. doi: 10.1002/2015GL066941

    [40]

    XU Q, DONG Y X, WANG Y Y, YANG R, XU C D. Determinants and identification of the northern boundary of China’s tropical zone. Journal of Geographical Sciences, 2018, 28(1): 31-45. doi: 10.1007/s11442-018-1457-1

    [41] 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134. doi: 10.11821/dlxb201701010

    WANG J F, XU C D. Geodetector: Principle and prospective. Acta Geographical Sinica, 2017, 72(1): 116-134. doi: 10.11821/dlxb201701010

    [42]

    FOTHERINGHAM A S, CHARLTON M, BRUNSDON C. The geography of parameter space: An investigation into spatial non-stationarity. International Journal of Geographical Information Systems, 1996, 10(5): 605-627. doi: 10.1080/02693799608902100

    [43] 王新闯, 王世东, 张合兵. 基于MOD17A3的河南省NPP时空格局. 生态学杂志, 2013(10): 2797-2805.

    WANG X C, WANG S D, ZHANG H B. Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3. Chinese Journal of Ecology, 2013(10): 2797-2805.

    [44]

    REN Q, HE C Y, HUANG Q X, SHI P J, ZHANG D, GÜNERALP B. Impacts of urban expansion on natural habitats in global drylands. Nature Sustainability, 2022, 5: 869-878. doi: 10.1038/s41893-022-00930-8

    [45]

    ZHANG L, YANG L, ZOHNER C M, CROWTHER T W, LI M C, SHEN F X, GUO M, QIN J, YAO L, ZHOU C H. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Science Advances, 2022, 8(27): 95. doi: 10.1126/sciadv.abo0095

  • 图  1   研究区概况

    Figure  1.   Study area profile

    图  2   昆明市净初级生产力分布图

    Figure  2.   Net primary product distribution map in Kunming

    图  3   昆明市城市化对净初级生产力的直接影响(NPPdir)和间接影响(NPPind)分布图

    Figure  3.   Distribution map of the direct (NPPdir) and indirect (NPPind) effects of urbanization on net primary productivity (NPP) in Kunming City

    图  4   昆明市不透水面丰度分布图

    Figure  4.   Distribution maps of the impervious surface abundance (IS) in Kunming

    图  5   昆明市2001-2017年不同土地覆盖变化类型的空间分布(A)与土地利用转换类型所占面积(B)

    Figure  5.   The spatial distribution of different types of land cover change in Kunming from 2001 to 2017 (A) and the percentage of each type of land use conversion (B)

    Veg–Imp: vegetation–impervious surface; Imp–Imp: impervious surface–impervious surface; Imp–Veg: impervious surface–vegetation.

    图  6   地表温度分布图

    Figure  6.   Distribution maps of the land surface temperature (LST)

    图  7   昆明市不透水面丰度对直接NPP地理加权回归系数分布

    Figure  7.   Distribution maps of GWR coefficients of IS to NPPdir in Kunming

    图  8   昆明市地表温度对间接NPP地理加权回归系数分布

    Figure  8.   Distribution maps of GWR coefficients of LST to NPPind in Kunming

    图  9   昆明市地表温度对间接NPP地理加权回归正相关系数占主城区百分比及面积

    Figure  9.   Percentage of positive GWR correlation coefficients and the effect of LST on NPPind in the urban area of Kunming

    表  1   研究数据来源

    Table  1   The sources of research data

    数据类型
    Data type
    数据
    Data
    时间
    Time
    分辨率
    Spatial resolution/m
    来源
    Source
    遥感数据
    Remote sensing data
    Landsat5,8 2001
    2005
    2009
    2013
    2017
    30 地理空间数据云
    Geospatial data cloud
    MCD12Q1土地利用
    Land use
    500 NASA官网
    NASA official website
    MOD17A3 500
    气象数据
    Meteorological data
    平均气温、降水
    Temperature, precipitation
    2001
    2005
    2009
    2013
    2017
    国家气象科学数据中心
    The National Meteorological Science Data Center
    太阳辐射
    Solar radiation
    国家青藏高原科学数据中心
    The National Qinghai-Tibet Plateau
    Scientific Data Center
    其他数据
    Other data
    FROM-GLC土地利用分类
    Land use classification
    2017 10 http://www.globallandcover.com
    GlobeLand30土地利用分类
    Land use classification
    2000 30 http://data.ess.tsinghua.edu.cn/
    数字高程模型
    Digital elevation model
    30 NASA官网
    NASA official website
    研究区矢量数据
    Study area vector data
    2018 GADM数据库
    Database
    下载: 导出CSV

    表  2   Landsat遥感影像信息

    Table  2   Landsat image information

    成像日期
    Imaging date/(YYYY-MM-DD)
    轨道号
    Track number
    传感器
    Sensor
    用途
    Application
    2001-04-03129/043Landsat TM反演NDVI Reverse NDVI
    反演不透水面丰度
    Reverse the impervious surface abundance
    反演地表温度 Reverse surface temperature
    2005-04-30129/043Landsat TM
    2009-04-09129/043Landsat TM
    2013-04-20129/043Landsat OLI
    2017-05-01129/043Landsat OLI
    下载: 导出CSV

    表  3   全局莫兰指数

    Table  3   The Globle Moran’s Index (GMI)

    年份
    Year
    植被净初级生产力
    Net primary productivity
    vegetation NPP-GMI
    直接NPP
    Direct NPP
    NPPdir-GMI
    间接NPP
    Indirect NPP
    NPPind-GMI
    地表温度
    Land surface
    temperature LST-GMI
    不透水面丰度
    Impervious surface
    abundance IS-GMI
    20010.5120.3350.584
    20050.5020.2330.4050.3820.655
    20090.4990.1900.3980.3200.599
    20130.4570.2000.3530.3320.588
    20170.4670.2100.2910.3590.519
    下载: 导出CSV

    表  4   IS与LST对NPP的交互探测结果

    Table  4   The interaction results for IS and LST with NPP

    年份
    Year
    IS解释力
    Explanatory power
    q (IS)
    LST解释力
    Explanatory power
    q (LST)
    二者共同解释力
    Interactive explanatory
    power q (IS∩LST)
    交互作用
    Interaction
    20010.3440.1230.485非线性增强
    Nonlinear enhancement
    20050.2600.1930.513非线性增强
    Nonlinear enhancement
    20090.2380.1680.408非线性增强
    Nonlinear enhancement
    20130.3750.1300.468双因子增强
    Bivariate enhancement
    20170.3990.2540.521双因子增强
    Bivariate enhancement
     以上q值均通过显著性检验(P < 0.001)。
     All q values passed the significance test (P < 0.001).
    下载: 导出CSV

    表  5   最小二乘法回归系数

    Table  5   The ordinary least square regression coefficients

    年份 YearIS-NPPdirLST-NPPindP
    2005−41.276−5.6380.001
    2009−79.817−5.3250.001
    2013−83.111−5.9700.001
    2017−78.702−4.9250.001
    下载: 导出CSV

    表  6   OLS与GWR模型拟合度对比

    Table  6   The comparison of model fits between OLS and GWR

    年份
    Year
    参数
    Parameters
    IS对直接NPP的
    OLS拟合度
    OLS_IS-NPPdir
    IS对直接NPP的
    GWR拟合度
    GWR_IS-GWR
    LST对间接NPP的
    OLS拟合度
    OLS_LST-OLS
    LST对间接NPP的
    GWR拟合度
    GWR_LST-GWR
    2005Adjusted R20.5820.6430.3580.613
    AIC111 550.679108 338.964121 419.537116 146.886
    2009Adjusted R20.2190.4630.2000.541
    AIC112 523.222109 292.109124 905.137119 019.784
    2013Adjusted R20.1500.4840.3140.520
    AIC116 395.342111 891.572122 807.178118 971.067
    2017Adjusted R20.1000.4960.2510.471
    AIC118 076.220112 927.655131 065.518127 378.100
     AIC:赤池信息量准则。
     AIC: Akaike information criterion.
    下载: 导出CSV
  • [1]

    IMHOFF M L, BOUNOUA L, DEFRIES R, LAERENCE W T, STUTZER D, TUCKER C J, RICHETTS T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment, 2004, 89(4): 434-443. doi: 10.1016/j.rse.2003.10.015

    [2]

    TIAN G J, QIAO Z. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environmental Pollution, 2014, 184: 320-326. doi: 10.1016/j.envpol.2013.09.012

    [3]

    WU S H, ZHOU S L, CHEN D X, WEI Z Q, DAI L, LI X G. Determining the contributions of urbanization and climate change to NPP variations over the last decade in the Yangtze River Delta, China. Science of The Total Environment, 2014, 472: 397-406. doi: 10.1016/j.scitotenv.2013.10.128

    [4]

    VITOUSEK P M, MOONEY H A, LUBCHENCO J, MELILLO J M. Human domination of Earth’s ecosystems. Science, 2008, 277: 494-499.

    [5]

    GREGG J W, JONES C G, DAWSON T E. Urbanization effects on tree growth in the vicinity of New York City. Nature, 2003, 424: 183-187. doi: 10.1038/nature01728

    [6]

    CARREIRO M M, TRIPLER C E. Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems, 2005, 8(5): 568-582. doi: 10.1007/s10021-003-0172-6

    [7]

    ZHOU D C, ZHAO S Q, ZHANG L X, LIU S G. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sensing of Environment, 2016, 176: 272-281. doi: 10.1016/j.rse.2016.02.010

    [8]

    YAN Y C, LIU X P, WANG F Y, LI X, OU J P, WEN Y Y, LIANG X. Assessing the impacts of urban sprawl on net primary productivity using fusion of Landsat and MODIS data. Science of The Total Environment, 2018, 613: 1417-1429.

    [9]

    OKE T R. The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 1989, 324: 335-349.

    [10]

    POTTER C S, RANDERSON J T, FIELD C B, MATSON P A, KLOOSTER S A. Terrestrial eco-system production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. doi: 10.1029/93GB02725

    [11]

    HARDIMAN B S, WANG J A, HUTYRA L R, GATELY C K, GETSON J M, FRIED M A. Accounting for urban biogenic fluxes in regional carbon budgets. Remote Sensing of Environment, 2017, 592: 366-372.

    [12]

    FIELD C B, BEHRENFELD M J, RANDERSON J T, FALKOWSKI P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, 281: 237-240. doi: 10.1126/science.281.5374.237

    [13]

    PIAO S L, FANG J Y, ZHOU L M, ZHU B, TAN K, TAO S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem Cycles, 2005, 19(2): 183-196.

    [14]

    FANG Y, LI J, QING H. Quantitative assessment of the human appropriation of net primary production (HANPP) in the coastal areas of Jiangsu, China. Sustainability, 2015, 7(12): 15857-15870. doi: 10.3390/su71215793

    [15]

    PIAO S L, FANG J Y, HE J S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climate Change, 2006, 74(1): 253-267.

    [16]

    TIAN Y H, HUANG W L, WU X C, JIM C Y, LIU Y Q. Dominant control of climate variations over land-use change on net primary productivity under different urbanization intensities in Beijing, China. Acta Ecologica Sinica, 2019, 39(5): 416-424. doi: 10.1016/j.chnaes.2019.07.002

    [17]

    ZHAO S Q, LIU S G, ZHOU D C. Prevalent vegetation growth enhancement in urban environment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6313-6318. doi: 10.1073/pnas.1602312113

    [18]

    GUAN X B, SHEN H F, LI X H, GAN W X, ZHANG L P. A long-term and comprehensive assessment of the urbanization-induced impacts on vegetation net primary productivity. Science of The Total Environment, 2019, 669: 342-352. doi: 10.1016/j.scitotenv.2019.02.361

    [19]

    BUYANTUYEV A, WU J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. Journal of Arid Environments, 2009, 73 (4–5): 512-520.

    [20]

    JIA W X, ZHAO S Q, LIU S G. Vegetation growth enhancement in urban environments of the conterminous United States. Global Change Biology, 2018, 24(9): 4084-4094. doi: 10.1111/gcb.14317

    [21]

    ZHONG J, LIU J F, JIAO L M, LIAN X H, XU Z B, ZHOU Z Z. Assessing the comprehensive impacts of different urbanization process on vegetation net primary productivity in Wuhan, China, from 1990 to 2020. Sustainable Cities and Society, 2021, 75: 103295. doi: 10.1016/j.scs.2021.103295

    [22]

    LU X Y, CHEN X, ZHAO X L, LYU D J, ZHANG Y. Assessing the impact of land surface temperature on urban net primary productivity increment based on geographically weighted regression model. Scientific Reports, 2021, 11: 22282. doi: 10.1038/s41598-021-01757-7

    [23]

    WANG S J, SHI C Y, FANG C L, FENG K S. Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Applied Energy, 2019, 235: 95-105. doi: 10.1016/j.apenergy.2018.10.083

    [24]

    FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression: The analysis of spatially varying relationships. American Journal of Agricultural Economics, 2004, 86(2): 554-556. doi: 10.1111/j.0002-9092.2004.600_2.x

    [25]

    KASHKI A, KARAMI M, ZANDI R, ROKI R. Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Climate, 2021, 37: 100832. doi: 10.1016/j.uclim.2021.100832

    [26]

    XU B, XU L, XU R J, LUO L Q. Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically weighted regression model. Journal of Cleaner Production, 2017, 166: 628-640. doi: 10.1016/j.jclepro.2017.08.052

    [27] 孙绩华, 冯健武, 段玮. 昆明城市热岛效应变化特征研究. 气候与环境研究, 2015, 20(6): 645-653. doi: 10.3878/j.issn.1006-9585.2015.15072

    SUN J H, FENG J W, DUAN W. Change in the urban heat island effect in Kunming. Climatic and Environmental Research, 2015, 20(6): 645-653. doi: 10.3878/j.issn.1006-9585.2015.15072

    [28] 李俊晓, 李朝奎, 殷智慧. 基于ArcGIS的克里金插值方法及其应用. 测绘通报, 2013(9): 87-90.

    LI J X, LI Z K, YIN Z H. The Kriging interpolation method based on ArcGIS and its application. Bulletin of Surveying and Mapping, 2013(9): 87-90.

    [29]

    DALY C, HELMER E H, QUIONES M. Mapping the climate of Puerto Rico, Vieques and Culebra. International Journal of Climatology, 2003, 23(11): 1359-1381. doi: 10.1002/joc.937

    [30]

    HASENAUER H, MERGANICOVA K, PETRITSCH R, PIETSCH S A, THORNTON P E. Validation daily climate interpolations over complex terrain in Austria. Agricultural & Forest Meteorology, 2003, 119(1-2): 8-107.

    [31] 岳文泽, 吴次芳. 基于混合光谱分解的城市不透水面分布估算. 遥感学报, 2007, 11(6): 914-922. doi: 10.11834/jrs.200706123

    YUE W F, WU C F. Urban impervious surface distribution estimation by spectral mixture analysis. National Remote Sensing Bulletin, 2007, 11(6): 914-922. doi: 10.11834/jrs.200706123

    [32]

    YU X L, GUO X L, WU Z C. Land surface temperature retrieval from Landsat 8 TIRS: Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 2014, 6(10): 9829-9852. doi: 10.3390/rs6109829

    [33]

    YUAN F, BAUER M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 2007, 106(3): 375-386. doi: 10.1016/j.rse.2006.09.003

    [34]

    LI J X, SONG C H, CAO L, ZHU F G, MENG X L, WU J G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 2011, 115(12): 3249-3263. doi: 10.1016/j.rse.2011.07.008

    [35] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chinese Journal of Plant Ecology, 2007, 31(3): 413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010

    [36]

    ICHII K, MATSUI Y, YAMAGUCHI Y, OGAWA K. Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model. Global Biogeochemical Cycles, 2001, 15(2): 351-363. doi: 10.1029/2000GB001296

    [37]

    TOBLER W R. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 1970, 46(sup1): 234-240.

    [38]

    GOODCHILD M F. GIScience, geography, form, and process. Annals of the Association of American Geographers, 2004, 94: 709-714.

    [39]

    LUO W, JASIEWICZ J, STEPINSKI T, PIETSCH S A, THORNTON P E. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Letters, 2016, 43(2): 692-700. doi: 10.1002/2015GL066941

    [40]

    XU Q, DONG Y X, WANG Y Y, YANG R, XU C D. Determinants and identification of the northern boundary of China’s tropical zone. Journal of Geographical Sciences, 2018, 28(1): 31-45. doi: 10.1007/s11442-018-1457-1

    [41] 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134. doi: 10.11821/dlxb201701010

    WANG J F, XU C D. Geodetector: Principle and prospective. Acta Geographical Sinica, 2017, 72(1): 116-134. doi: 10.11821/dlxb201701010

    [42]

    FOTHERINGHAM A S, CHARLTON M, BRUNSDON C. The geography of parameter space: An investigation into spatial non-stationarity. International Journal of Geographical Information Systems, 1996, 10(5): 605-627. doi: 10.1080/02693799608902100

    [43] 王新闯, 王世东, 张合兵. 基于MOD17A3的河南省NPP时空格局. 生态学杂志, 2013(10): 2797-2805.

    WANG X C, WANG S D, ZHANG H B. Spatiotemporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3. Chinese Journal of Ecology, 2013(10): 2797-2805.

    [44]

    REN Q, HE C Y, HUANG Q X, SHI P J, ZHANG D, GÜNERALP B. Impacts of urban expansion on natural habitats in global drylands. Nature Sustainability, 2022, 5: 869-878. doi: 10.1038/s41893-022-00930-8

    [45]

    ZHANG L, YANG L, ZOHNER C M, CROWTHER T W, LI M C, SHEN F X, GUO M, QIN J, YAO L, ZHOU C H. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Science Advances, 2022, 8(27): 95. doi: 10.1126/sciadv.abo0095

图(9)  /  表(6)
计量
  • PDF下载量:  18
  • 文章访问数:  505
  • HTML全文浏览量:  166
  • 被引次数: 0
文章相关
  • 通讯作者: 陈旭
  • 收稿日期:  2022-06-21
  • 接受日期:  2022-09-24
  • 网络出版日期:  2023-03-07
  • 发布日期:  2022-12-14

目录

/

返回文章
返回