欢迎访问 草业科学,今天是2025年4月12日 星期六!

生长季增温对黄土高原甘青针茅和铁杆蒿群落及其土壤养分的影响

朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁

朵莹,邓军,程杰,程积民,彭长辉,郭梁. 生长季增温对黄土高原甘青针茅和铁杆蒿群落及其土壤养分的影响. 草业科学, 2022, 39(10): 2029-2037 . DOI: 10.11829/j.issn.1001-0629.2021-0758
引用本文: 朵莹,邓军,程杰,程积民,彭长辉,郭梁. 生长季增温对黄土高原甘青针茅和铁杆蒿群落及其土壤养分的影响. 草业科学, 2022, 39(10): 2029-2037 . DOI: 10.11829/j.issn.1001-0629.2021-0758
DUO Y, DENG J, CHENG J, CHENG J M, PENG C H, GUO L. Effects of growing season warming on and communities and soil nutrients on the Loess Plateau. Pratacultural Science, 2022, 39(10): 2029-2037 . DOI: 10.11829/j.issn.1001-0629.2021-0758
Citation: DUO Y, DENG J, CHENG J, CHENG J M, PENG C H, GUO L. Effects of growing season warming on and communities and soil nutrients on the Loess Plateau. Pratacultural Science, 2022, 39(10): 2029-2037 . DOI: 10.11829/j.issn.1001-0629.2021-0758

生长季增温对黄土高原甘青针茅和铁杆蒿群落及其土壤养分的影响

基金项目: 国家自然科学基金(41701606)、国家重点研发计划(2016YFC0500700)、中央高校基本科研业务费专项资金(2452020009)
摘要: 为探究全球变暖背景下草原优势种变化规律及其土壤养分作用机制,本研究以黄土高原典型草原−宁夏云雾山国家级自然保护区优势种甘青针茅(Stipa przewalskyi)和铁杆蒿(Artemisia sacrorum)群落为研究对象,探究植物生长季增温条件下群落地上生物量及地下不同土层土壤有机碳、全氮、速效磷、微生物生物量碳、微生物生物量氮、硝态氮、铵态氮含量变化规律。结果表明:1)生长季增温分别使甘青针茅和铁杆蒿群落地上生物量提高了122.87%和36.65%,两者对增温响应的差异与其对磷等养分利用的差异有关。2)生长季增温使不同深度土壤平均温度升高2.03~2.93 ℃,表层(0-5 cm)土壤温度增幅高于深层;土壤温度的升高导致土壤水分含量降低。3)表层土壤养分对于增温的响应程度强于下层,增温使甘青针茅和铁杆蒿群落表层土壤有机碳含量分别显著降低了18.47%和2.35% (P < 0.05)。此外,在甘青针茅群落中,增温极显著提高了表层土壤速效磷含量、降低了微生物生物量氮含量(P < 0.01)。总之,生长季增温通过影响土壤温度、水分条件进而对甘青针茅、铁杆蒿群落的土壤养分状况及其地上生物量产生影响,甘青针茅群落对增温的响应更为敏感。本研究对了解全球增温黄土高原草地生态系统不同优势种的群落变化特征以及土壤养分变化及驱动机制具有重要意义。

 

English

  • 全球气温升高、降水格局等非生物环境因子变化,首先在物种水平上引发均匀度或优势度的变化,进而对植物群落组成、结构和生态系统过程产生级联效应,最终影响生态系统功能[1]。因此,优势种的变化标志着后续群落和生态系统的变化[2-4],其对气候变化的响应得到了人们广泛关注。国内外已有研究探讨了不同群落优势种对气候变暖的响应,指出气候变暖引发的特定物种或少数功能群的不均衡增长导致种间竞争加剧、物种多样性降低[5-6];然而也有研究表明,温度升高促进了半干旱草原区4种杂草(Biscutella laevigataScabiosa canescensVeronica spicataFilipendula vulgaris)的生长并抑制了优势种沟叶羊茅(Festuca rupicola)的生长;增温使草地植物优势种的优势度降低,甚至可被其他物种替代[7]

    气候变暖深刻影响着陆地生态系统地上植物群落物种组成[8-9]与地下生态过程和功能[10-11]。草地生态系统对气候变化高度敏感,气候变暖显著影响植物群落组成和结构、群落稳定性和草地生产力水平等[12-13]。增温通常会加快草地生态系统土壤养分循环的速度,增加土壤水溶液可溶性有机碳含量、有机质分解及总氮矿化[14-15]

    草地占黄土高原面积的30%,是其生态屏障建设的重要组成部分[16]。虽然已有研究探究了黄土高原典型草原近30年优势种演变特征[17]及不同植被下土壤养分变化规律[18],但将优势物种演替和气候变化相结合,从气候因子变化,特别是温度变化角度阐述不同优势物种响应特征及其作用机制的研究较少[19-21],亟待加强。甘青针茅(Stipa przewalskyi)和铁杆蒿(Artemisia sacrorum)是黄土高原典型草原的两个主要优势种。研究表明,增温能促进植物生长,增加植物的地上生物量;且禾草类植物对增温较敏感,能在短时间内迅速生长[22]。此外,近30年长期监测表明,云雾山典型草原初期优势种群为长芒草(S. bungeana),其在演替过程中逐渐被同属植物大针茅(S. grandis)、甘青针茅所取代,针茅群落一直以来都是研究区优势草地群落[23]。基于甘青针茅对增温具有更高敏感性的特质,以及长期演变趋势下的优势地位,本研究预测在增温条件下,甘青针茅比铁杆蒿具有更强的生态适应性,未来全球变暖趋势将更有利于甘青针茅维持其优势地位。

    本研究拟利用野外开顶式生长室(open-top chamber, OTC)增温以模拟未来气候变暖情景,比较甘青针茅和铁杆蒿两种群落地上生物量、土壤理化特性及其对增温的响应特征,探究气候变化对草地不同优势种影响规律,阐明黄土高原不同草地优势种的气候响应敏感性差异及土壤养分作用机制是否存在差异,以期为揭示全球变化下黄土高原植被演变趋势提供科学依据,为提高未来气候情景下草地生态系统保护与管理提供参考。

    黄土高原典型草原云雾山国家级自然保护区位于宁夏固原市东北部(36°10′~36°17′ N, 106°21′~106°27′ E,海拔1 800~2 100 m),是我国西北地区保存最完整的典型草原生态系统。年均温5 ℃,年均降水量400~450 mm,7月-9月降水量占全年降水量的65%~75%,具有典型半干旱气候特征。土壤类型为黑垆土和黄绵土。经过近30年的自然演替,目前优势种主要有甘青针茅、铁杆蒿、百里香(Thymus mongolicus)、星毛委陵菜(Potentilla acaulis)和大针茅等[24]

    2019年生长季初期(4月1日),选取地势相对平坦、植物生长较为集中的甘青针茅和铁杆蒿群落分别布置试验样地。针对每种植物群落,采用随机区组设计,设置4个区组,每个区组包含2个处理,分别为对照(自然条件、无增温)和增温。野外增温处理采用OTC进行操作。温室用6 mm厚的透明有机玻璃纤维建造,加工成上底直径为0.7 m,下底直径为1.2 m,高度为0.6 m的圆台。待研究的直径0.6 m的试验样方圈设于OTC中央部位,以消除温度影响的边界效应,详细增温样方构建可见郭梁课题组前期工作[25],不同样方相隔5 m以上。

    2019年4月初至2019年8月底,采用AZS-2C土壤墒情监测系统(澳作生态仪器有限公司,北京)的WM212型数据采集器进行土壤温度实时监测,具体操作如下:通过在样方内预先埋设温度传感器,测定生长季增温和对照样方内5、10、15 cm深度土壤温度,每隔30 min测定并记录一次,以量化增温处理对土壤温度影响。土壤水分测定于生长季增温试验结束时(8月底)进行,分层采集不同处理的土壤样品,采用烘干法(105 ℃烘干至恒重)测定土壤水分含量(soil water content, SWC)。

    2019年植物生长季生物量最大时期(8月底),即生长季(4月初-8月底)增温控制试验结束后撤去增温装置,采集直径0.6 m样方内所有植物地上部分,经105 ℃杀青30 min,70 ℃烘干24 h后称干重,以测定不同处理下不同优势物种群落生物量。采集两个植物群落不同处理下每个样方内0-5、5-10和10-15 cm剖面处足量土壤样品,用自封袋密封低温带回实验室。将采集的土样各分为两份:一份自然风干,去除植物根系等杂物,过1和0.25 mm筛,用于测定土壤有机碳(soil organic carbon, SOC)、全氮(total nitrogen, TN)及速效磷(available phosphorus, AP)等指标;另一份过2 mm 筛去除根系等杂物后,放4 ℃冰箱保鲜,用于测定土壤微生物生物量碳(soil microbial carbon, MBC)、微生物生物量氮(soil microbial nitrogen, MBN)、铵态氮(NH4+-N)、硝态氮(NO3-N)等指标。

    采用重铬酸盐氧化法测定样品中土壤有机碳含量,凯式定氮仪(Kjeltec8400, FOSS Corporation, Hillerod, Denmark) 测定总氮含量。速效磷含量用0.5 mol·L−1 NaHCO3浸提微生物量钼锑抗比色法测定。硝态氮和铵态氮含量利用流动分析仪(Alpkem, OI Analytical, CollegeStation, USA) 测定。土壤pH 用酸度计分析。微生物生物量碳和微生物生物量氮采用氯仿熏蒸-K2SO4浸提法测定[26]。以上土壤样品理化性质详细测定步骤参考《土壤农化分析》[27]

    采用单因素方差分析分别探究土壤有机碳、全氮、速效磷、微生物量碳、微生物量氮、硝态氮、铵态氮含量和植物地上生物量对增温响应的显著性(P < 0.05),Pearson相关性分析探究各指标之间的相关关系。数据分析及作图均在R 3.6.0中进行。

    增温对甘青针茅群落和铁杆蒿群落0-5、5-10、10-15 cm 3层土壤温度的影响规律相似。以甘青针茅群落下土壤微环境响应为例(图1),与对照相比,增温处理后3层土壤温度分别提升了2.93、2.03和2.40 ℃,其中以表层(0-5 cm)增温最为明显,温度增幅随深度有所下降。同时,生长季增温处理降低了土壤水分含量(表1),特别是在甘青针茅群落中,0-5和5-10 cm土层土壤水分含量在增温后极显著下降(P < 0.01)。

    图  1  试验期甘青针茅群落0-15 cm土层土壤温度的变化趋势
    5、10、15分别为0-5、5-10和10-15 cm土层;CK为对照;W为增温。
    Figure  1.  The trend of soil temperature on 0-15 cm layer of Stipa ganqinata community during the experiment period in 2019
    5, 10, and 15 were 0-5, 5-10, and 10-15 cm soil layers, respectively; CK: control; W: warming.
    表  1  不同土层生长季增温处理与对照组甘青针茅及铁杆蒿群落土壤理化性质(n = 4)
    Table  1.  Soil physical and chemical properties of Stipa przewalskyi and Artemisia sacrorum community in different soil layers under growing season warming and control (n = 4)
    指标
    Index
    植物
    Plant
    0-5 cm5-10 cm10-15 cm
    增温
    Warming
    对照
    Control
    增温
    Warming
    对照
    Control
    增温
    Warming
    对照
    Control
    SOC/
    (g·kg−1)
    甘青针茅
    Stipa przewalskyi
    24.77 ± 1.27* 30.38 ± 1.70 23.83 ± 1.13 24.97 ± 1.49 24.31 ± 1.92 23.30 ± 0.94
    铁杆蒿
    Artemisia sacrorum
    33.78 ± 2.61* 34.59 ± 2.23 28.15 ± 0.52 30.19 ± 0.56 26.13 ± 0.43 27.11 ± 1.87
    TN/
    (g·kg−1)
    甘青针茅
    S. przewalskyi
    3.64 ± 0.30 4.04 ± 0.64 3.98 ± 0.65 3.50 ± 0.53 3.57 ± 0.42 3.63 ± 0.17
    铁杆蒿
    A. sacrorum
    4.41 ± 0.54 4.89 ± 0.72 4.02 ± 0.08 4.40 ± 0.38 3.75 ± 0.19 3.90 ± 0.25
    NO3-N/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    14.40 ± 0.09 15.65 ± 1.66 12.78 ± 1.21 10.51 ± 0.97 11.05 ± 1.20* 8.41 ± 0.24
    铁杆蒿
    A. sacrorum
    16.90 ± 7.34 20.40 ± 1.08 9.94 ± 1.38 10.41 ± 1.47 10.99 ± 2.47 9.06 ± 0.32
    NH4 + -N/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    2.35 ± 0.46 2.41 ± 0.63 2.78 ± 1.14 2.28 ± 0.22 2.20 ± 0.39 2.27 ± 0.08
    铁杆蒿
    A. sacrorum
    1.95 ± 0.91 3.57 ± 0.80 2.98 ± 0.99 2.24 ± 0.18 3.70 ± 0.54 2.44 ± 0.20
    AP/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    16.80 ± 0.67** 12.43 ± 0.90 14.98 ± 0.60 13.20 ± 1.68 13.89 ± 1.15 12.35 ± 1.51
    铁杆蒿
    A. sacrorum
    18.63 ± 1.87 16.40 ± 0.34 16.28 ± 1.29 17.21 ± 0.67 15.06 ± 0.64 15.14 ± 0.92
    MBC/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    641.98 ± 51.08 743.59 ± 49.48 540.55 ± 24.78 576.73 ± 24.47 543.84 ± 44.56 498.28 ± 16.71
    铁杆蒿
    A. sacrorum
    742.16 ± 66.72 815.91 ± 52.61 669.76 ± 73.86 601.00 ± 14.38 614.39 ± 101.08 508.58 ± 43.92
    MBN/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    110.49 ± 4.47** 142.91 ± 10.59 93.69 ± 8.18 107.29 ± 5.75 89.42 ± 10.88 93.96 ± 0.85
    铁杆蒿
    A. sacrorum
    135.39 ± 9.11 152.90 ± 9.68 114.76 ± 8.35 98.19 ± 6.53 100.11 ± 18.07* 65.63 ± 2.38
    SWC/% 甘青针茅
    S. przewalskyi
    27.65 ± 0.42** 30.36 ± 0.47 27.63 ± 0.34** 31.44 ± 0. 24 27.17 ± 0.12 27.52 ± 0.29
    铁杆蒿
    A. sacrorum
    33.23 ± 21.13 37.47 ± 6.53 24.36 ± 7.17 29.98 ± 0.29 27.55 ± 0. 07 27.51 ± 0.10
    pH 甘青针茅
    S. przewalskyi
    7.85 ± 0.01 7.79 ± 0.10 7.88 ± 0.03 7.92 ± 0.03 7.93 ± 0.03 7.92 ± 0.03
    铁杆蒿
    A. sacrorum
    7.85 ± 0.05 7.76 ± 0.05 7.86 ± 0.02 7.83 ± 0.05 7.88 ± 0.03 7.83 ± 0.01
     SOC:有机碳;TN:全氮;NO3-N:硝态氮;NH4+ -N:铵态氮;AP:土壤速效磷;MBC:微生物生物量碳;MBN: 微生物生物量氮;SWC:土壤水分含量。*和**分别表示同一土层间增温和对照间差异显著(P < 0.05)或者极显著(P < 0.01)。下图同。
     SOC: soil organic carbon; TN: total nitrogen; NO3-N: nitrate nitrogen: NH4 + -N: ammonia nitrogen; AP: available phosphorus; MBC: soil microbialcarbon; MBN: soil microbial nitrogen; SWC: soil moisture. * and ** indicate significant differences at 0.05 and 0.01 levels between warming and controls in the same soil layer. This is applicable for the following figures as well.
    下载: 导出CSV 
    | 显示表格

    生长季增温使甘青针茅群落地上生物量显著增加了122.87% (P < 0.05),亦使铁杆蒿群落地上生物量增加了36.65% (P > 0.05)(图2)。增温对两种植物群落地下不同层土壤的pH均无影响(表1)。增温显著降低了两种植物群落0-5 cm土层土壤有机碳含量,分别降低了18.47%和2.35%;而土壤速效磷含量变化则相反,在增温后分别增加了35.16% (P < 0.01)和13.60%,但在其他土层变化趋势不明显。此外,两种植物群落0-5 cm土层土壤中全氮、硝态氮、铵态氮、微生物生物量氮在增温处理下均呈现下降趋势,特别是甘青针茅群落下土壤微生物生物量氮含量减少了22.69% (P < 0.01)。与表层土壤响应不同,深层土壤中,除甘青针茅群落下10-15 cm土层土壤硝态氮含量在增温处理后显著增加了31.39%,铁杆蒿群落下土壤微生物生物量氮显著增加了52.54%外,其他土壤养分指标变化均未呈现显著性变化。

    图  2  生长季增温对甘青针茅、铁杆蒿群落地上生物量的影响
    *表示增温和对照间差异显著(P < 0.05)。
    Figure  2.  The effect of growing season warming treatments on the above ground biomass of Stipa przewalskyi and Artemisia sacrorum
    * indicate significant differences between warming and control at 0.05 level.

    由于增温处理下两种植物群落0-5 cm土层土壤养分指标变化较明显(表1),故研究选取两种植物群落地上生物量与0-5 cm土层土壤养分指标进行后续Pearson相关性分析(图3)。结果表明,在甘青针茅群落下,土壤速效磷含量与地上生物量呈显著正相关关系(P < 0.05),与土壤有机碳(P < 0.05)、全氮、硝、铵态氮及微生物生物量碳和微生物生物量氮均呈负相关关系;土壤有机碳与微生物生物量碳(P < 0.05)和微生物生物量氮(P < 0.01)呈显著正相关关系;土壤水分含量与土壤速效磷和地上生物量呈显著负相关关系,而与微生物生物量氮呈显著正相关关系。铁杆蒿群落中,土壤有机碳与土壤全氮含量呈极显著正相关关系(P < 0.01),与土壤水分含量呈显著负相关关系(P < 0.01)。

    图  3  甘青针茅和铁杆蒿群落地上生物量和土壤理化性质的Pearson相关性分析
    AGB: 地上生物量。 AGB: aboveground biomass.  *, P < 0.05;  * *, P < 0.01.
    Figure  3.  Pearson correlation analysis of above-ground biomass and soil physical and chemical properties of Stipa przewalskyi and Artemisia sacrorum

    温度是影响土壤养分变化的重要因素[28]。生长季OTC增温后表层(0-5 cm)土壤温度升高更为显著。同时,温度上升导致土壤水分含量下降,这与大多数研究表层土壤水分变化的结果一致[29-30]。增温对甘青针茅和铁杆蒿群落土壤理化指标的影响也在各土层之间存在明显差异,表现为表层土壤理化性质对增温的响应更加敏感。增温后两种植物群落0-5 cm土层土壤有机碳含量均显著下降(P < 0.05),总氮、硝铵态氮也呈现下降趋势;相反,土壤速效磷含量呈上升趋势,且在甘青针茅群落达到显著水平(P < 0.01)。增温使微生物活性增强,酶活性升高[31],加快了土壤有机态碳、氮的分解速率,从而导致0-5 cm土层有机碳和总氮含量减少。土壤速效磷的来源主要是土壤中矿物的解离,随着增温后植被与微生物的快速增长,整个生态系统对磷的需求提升,一定程度上促进了磷的矿化,使得土壤速效磷含量增加[32]。与表层响应不同,下层土壤理化性质对于增温的响应都不显著(P > 0.05),这可能与下层土壤增温幅度小于表层,增温效果并不明显有关。

    甘青针茅群落下0-10 cm 层土壤水分含量显著降低(表1),OTC内地表蒸散(土壤的蒸发和植被的蒸腾)相对较高,导致增温处理样方地表至植物层内出现暂时的相对干燥的低湿度环境,形成了适宜禾草类植物生长发育需要的温湿度条件[33-34]。且本研究中土壤含水量与地上植物生物量显著负相关(图3),这也验证了本研究中作为禾本科植物的甘青针茅对增温的响应更敏感,生长季增温后生物量迅速增长(P < 0.05),而同为优势种的铁杆蒿群落生物量在增温后,虽有增长趋势但不显著。

    有研究表明,蒿属植物的N-P化学计量特征受温度和降水影响弱[35],这与本研究铁杆蒿群落下土壤养分对增温的响应结果吻合。本研究中土壤速效磷、微生物量氮对增温的响应在甘青针茅群落中显著,而在铁杆蒿群落并不显著(表1)。甘青针茅群落地上生物量与土壤速效磷显著正相关(P < 0.05),表明磷是主要影响甘青针茅生长的关键养分因子,土壤速效磷的增加促进了地上生物量的累积。同时,土壤速效磷与有机碳显著负相关(P < 0.05),可能是由于植物生物量的显著提高加剧了土壤微生物和植物之间的养分竞争,导致微生物需要矿化、分解更多的土壤有机质来获得养分[36]。本研究中,甘青针茅群落土壤速效磷与土壤养分均负相关。植物地上生物量的提高导致大量土壤氮素被植物吸收利用,减弱了增温对土壤有效氮的促进作用[37]。增温引起土壤含水率降低的同时会抑制土壤氮周转速率[38],导致土壤中硝态氮、铵态氮含量下降。对于铁杆蒿群落,土壤有机碳与全氮的相关系数高达0.92 (P < 0.01),铁杆蒿群落土壤碳氮对增温响应的变化具有一致性,增温后铁杆蒿群落土壤碳氮组成的变异性小。由于不同群落对氮和磷利用途径的差异,增温引起的土壤养分状况变化会使不同优势种产生不同的适应性,甚至引起优势度的转换[39]。显然两种植物群落在增温后对养分的利用,尤其是对土壤速效磷的利用规律存在差异,而其具体作用机制还有待进一步探讨。

    本研究旨在阐明不同优势物种响应气候变暖的特征及养分响应的差异性,重点关注了生长季增温后两个优势种群落土壤理化、地上生物量变化的差异。基于上述研究,发现两种植物群落对生长季增温的响应存在明显差异,但结果仅是生长季增温后群落的即时响应,虽已呈现出明显的物种响应差异性,达到了研究预期,且与试验之初假设相符,短期生长季增温后甘青针茅表现出的生物量迅速累积及其对增温后的养分利用情况,可以初步推测未来全球变暖趋势更有利于甘青针茅维持其优势地位。但由于数据局限性,对于两个优势种在增温下生态响应差异性机制无法进行更深入的讨论,亟待开展更为系统性及长期性的研究,特别是将土壤养分循环、土壤酶学和土壤微生物群落组成及功能分析结合,综合地上植被群落变化特征和地下生态过程和功能分析,从而为更全面、准确地理解气候变暖下生态系统响应特征及群落演变规律提供基础数据。

    黄土高原生长季增温提高了0-5、5-10、10-15 cm土层土壤温度,表层(0-5 cm)土壤温度增幅高于中下层,增温降低了土壤水分含量。与中下层相比,表层土壤温湿度和土壤养分含量对增温的响应更强烈。甘青针茅群落对增温的响应强于铁杆蒿群落,表现在增温后生物量的迅速累积和土壤养分改变等方面,特别是土壤磷含量变化。推测两者对增温响应的差异可能与其对限制性元素(磷)的养分利用的差异有关,未来全球变暖趋势更有利于甘青针茅维持其优势地位。

    [1]

    HILLEBRAND H, BENNETT D M, CADOTTE M W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 2008, 89(6): 1510-1520. doi: 10.1890/07-1053.1

    [2] 白乌云, 侯向阳. 气候变化对草地植物优势种的影响研究进展. 中国草地, 2021, 43(4): 107-114.

    BAI W Y, HOU X Y. Research progress on the effects of climate change on dominant plant species of grassland. Chinese Journal of Grassland, 2021, 43(4): 107-114.

    [3]

    PAU S, DEE L E. Remote sensing of species dominance and the value for quantifying ecosystem services. Remote Sensing in Ecology and Conservation, 2016, 2(3): 141-151. doi: 10.1002/rse2.23

    [4]

    GITLIN A R, STHULTZ C M, BOWKER M A, STUMPF S, PAXTON K L, KENNEDY K, MUNOZ A, BAILEY J K, WHITHAM T G. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 2006, 20(5): 1477-1486. doi: 10.1111/j.1523-1739.2006.00424.x

    [5]

    OLSEN S L, TÖPPER J P, SKARPAAS O, VANDVIK, V, KLANDERUD K. From facilitation to competition: Temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Global Change Biology, 2016, 22(5): 1915-1926. doi: 10.1111/gcb.13241

    [6]

    ZHAO J Z, LIU W, YE R, LU X F, ZHOU Y B, YANG Y Q, PENG M. Responses of reproduction and important value of dominant plant species in different plant functional type in Kobresia meadow to temperature increase. Russian Journal of Ecology, 2013, 44(6): 484-491. doi: 10.1134/S1067413613060131

    [7]

    PARTZSCH M. Warming differently affects the inter-and intraspecific interactions among semi-dry grassland species. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40: 125481. doi: 10.1016/j.ppees.2019.125481

    [8]

    SAXE H, CANNELL M G R, JOHNSEN Ø, RYAN M G, VOURLITIS G. Tree and forest functioning in response to global warming. New Phytologist, 2001, 149(3): 369-399. doi: 10.1046/j.1469-8137.2001.00057.x

    [9]

    WANG S P, DUAN J H, XU G P, WANG Y F, ZHANG Z H, RUI Y C, LUO C Y, XU B, ZHU X X, CHANG X F, CUI X Y, NIU H S, ZHAO X Q, WANG W Y. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365-2376. doi: 10.1890/11-1408.1

    [10]

    HURSH A, BALLANTYNE A, COOPER L, MANETA L, KIMBALL J, WATTS J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 2017, 23(5): 2090-2103. doi: 10.1111/gcb.13489

    [11]

    POST E, FORCHHAMMER M C, BRET-HARTE M S, CALLAGHAN T V, CHRISTENSEN T R, ELBERLING B, FOX A D, GILG O, HIK D S, Høye T T, IMS R A, JEPPESEN E, KLEIN D R, MADSEN J, MCGUIRE D A, RYSGAARD S, SCHINDLER D E, STIRLING I, TAMSTORF M P, TYLER N J C, WAL R V D, WELKER J, WOOKEY P A, SCHMIDT N M, AASTRUP P. Ecological dynamics across the Arctic associated with recent climate change. Science, 2009, 325: 1355-1358. doi: 10.1126/science.1173113

    [12]

    KNAPP A K, SMITH M D. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291: 481-484. doi: 10.1126/science.291.5503.481

    [13]

    BAI Y F, HAN X G, WU J G, CHEN Z Z, LI L H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. doi: 10.1038/nature02850

    [14]

    BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451. doi: 10.1111/nph.12252

    [15]

    LUO C Y, XU G P, WANG Y F, WANG S P, LIN X W, HU Y G, ZHANG Z H, CHANG X F, DUAN J C, SU A L, ZHAO X Q. Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biology and Biochemistry, 2009, 41(12): 2493-2500. doi: 10.1016/j.soilbio.2009.09.006

    [16] 李宗善, 杨磊, 王国梁, 侯建, 信忠保, 刘国华, 傅伯杰. 黄土高原水土流失治理现状、问题及对策. 生态学报, 2019, 39(20): 7398-7409.

    LI Z S, YANG L, WANG G L, HOU J, XIN B Z, LIU G H, FU B J. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Phytoecological Sinica, 2019, 39(20): 7398-7409.

    [17] 程积民, 井赵斌, 金晶炜, 高阳. 黄土高原半干旱区退化草地恢复与利用过程研究. 中国科学:生命科学, 2014, 44(3): 267-279. doi: 10.1360/052013-280

    CHENG J M, JING Z B, JIN J W, GAO Y. Restoration and utilization mechanism of degraded grassland in the semi-arid region of Loess Plateau. Scientia Sinica Vitae, 2014, 44(3): 267-279. doi: 10.1360/052013-280

    [18] 曾全超, 李鑫, 董扬红, 安韶山. 黄土高原延河流域不同植被类型下土壤生态化学计量学特征. 自然资源学报, 2016, 31(11): 1881-1891. doi: 10.11849/zrzyxb.20160038

    ZENG Q C, LI X, DONG Y H, AN S S. Ecological stoichiometry of soils in the Yanhe watershed in the Loess Plateau: The Influence of different vegetation zones. Journal of Natural Resources, 2016, 31(11): 1881-1891. doi: 10.11849/zrzyxb.20160038

    [19] 王琼芳, 陈云明, 刘小梅, 崔静, 艾泽民. 黄土丘陵区铁杆蒿群落表层土壤有机碳动态及其影响因子. 草业科学, 2013, 30(1): 1-8.

    WANG Q F, CHEN Y M, LIU X M, CUI J, AI Z M. Dynamics of top soil organic carbon in Artemisia gmelinii communities and its relationship with environmental factors in loess hilly region. Pratacultural Science, 2013, 30(1): 1-8.

    [20] 程杰, 呼天明, 程积民. 黄土高原铁杆蒿群落分布格局对气候的响应. 中国水土保持科学, 2011, 9(6): 51-56. doi: 10.3969/j.issn.1672-3007.2011.06.009

    CHENG J, HU T M, CHENG J M. Responses of distribution of Artemisia sacrorum community to climate in semi-arid and semi-humid areas of Loess Plateau. Science of Soil and Water Conservation, 2011, 9(6): 51-56. doi: 10.3969/j.issn.1672-3007.2011.06.009

    [21] 徐满厚, 杨晓辉, 杜荣, 秦瑞敏, 温静. 增温改变高寒草甸植物群落异速生长关系. 草业科学, 2021, 38(4): 618-629. doi: 10.11829/j.issn.1001-0629.2020-0694

    XU M H, YANG X H, DU R, QIN R M, WEN J. Effects of simulated warming on the allometric growth patterns of an alpine meadow community on the Qinghai-Tibet Plateau. Pratacultural Science, 2021, 38(4): 618-629. doi: 10.11829/j.issn.1001-0629.2020-0694

    [22] 周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究. 植物生态学报, 2000, 24(5): 547-553. doi: 10.3321/j.issn:1005-264X.2000.05.007

    ZHOU H K, ZHOU X M, ZHAO X Q. A preliminary study of the influence of simulated greenhouse effect on a Kobresia Humilis meadow. Acta Phytoecological Sinica, 2000, 24(5): 547-553. doi: 10.3321/j.issn:1005-264X.2000.05.007

    [23] 史晓晓, 程积民, 于飞, 朱仁斌, 赵新宇. 云雾山天然草地30年恢复演替过程中优势草种生态位动态. 草地学报, 2014, 22(4): 677-684.

    SHI X X, CHENG J M, YU F, ZHU R B, ZHAO X Y. Niche dynamics of dominant species during the 30 years restoration process of natural grassland in Yunwu Mountain. Acta Agrestla Sinica, 2014, 22(4): 677-684.

    [24] 程积民. 黄土高原草原生态系统研究: 云雾山国家级自然保护区. 北京: 科学出版社, 2014.

    CHENG J M. Grassland Ecosystem of the Loess Plateau in China: Yunwushan National Nature Reserve. Beijing: Science Press, 2014.

    [25] 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响. 植物生态学报, 2021, 45(8): 891-902. doi: 10.17521/cjpe.2021.0085

    MAO J, DUO Y, DENG J, CHENG J, CHENG J M, PENG C H, GUO L. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau. Acta Phytoecological Sinica, 2021, 45(8): 891-902. doi: 10.17521/cjpe.2021.0085

    [26]

    VANCE E D, BROOKERS P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. doi: 10.1016/0038-0717(87)90052-6

    [27] 鲍士旦. 土壤农化分析. 北京: 农业出版社, 2000.

    BAO S D. Soil Agrochemical Analysis. Beijing: Agricultural Press, 2000.

    [28]

    RUSTAD L E, CAMPBELL J L, MARION G M, NORBY R J, MITCHELL M J, HARTLEY A E, CORNELISSEN J H C, GUREVITCH J. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126(4): 543-562. doi: 10.1007/s004420000544

    [29]

    LI Y Y, ZHOU G Y, HUANG W J, LIU J X, FANG X. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest. Plant and Soil, 2016, 409(1): 247-257.

    [30]

    CAREY J C, TANG J, TEMPLER P H, KROEGER K D, CROWTHER T W, BURTON A J, DUKES J S, EMMETT B, FREY S D, HESKEL M A, JIANG L F, MACHMULLER M B, MOHAN J, PANETTA A M, REICH P B, REINSCH S, WANG X, ALLISON S D, BAMMINGER C, BRIDGHAM S, COLLINS S L, DE DATO G, EDDY W C, ENQUIST B J, ESTIARTE M, HARTE J, HENDERSON A, JOHNSON B R, LARSEN K S, LUO Y Q, MARHAN S, MELILLO J M, PE Ñ UELAS J, PFEIFER-MEISTER L, POLL C, RASTETTER E, REINMANN A B, REYNOLDS L L, SCHMIDT I K, SHAVER G R, STRONG A L, SUSEELA V, TIETAME A. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences, 2016, 113(48): 13797-13802. doi: 10.1073/pnas.1605365113

    [31]

    YUE H W, WANG M M, WANG S P, GILBERT J A, SUN X, WU L W, LIN Q Y, HU Y Q, LI X Z, HE Z L, ZHOU J Z, YANG Y F. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. The ISME Journal, 2015, 9(9): 2012-2020. doi: 10.1038/ismej.2015.19

    [32]

    PRACH K, PYŠEK P. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering, 2001, 17(1): 55-62. doi: 10.1016/S0925-8574(00)00132-4

    [33] 李英年, 赵亮, 赵新全, 周华坤. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 2004, 12(3): 236-239.

    LI Y N, ZHAO L, ZHAO X Q, ZHOU H K. Effects of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow. Acta Agrestia Sinica, 2004, 12(3): 236-239.

    [34]

    SHI F S, WU Y, WU N, LUO P. Different growth and physiological responses to experimental warming of two dominant plant species Elymus nutans and Potentilla anserina in an alpine meadow of the eastern Tibetan Plateau. Photosynthetica, 2010, 48(3): 437-445. doi: 10.1007/s11099-010-0058-8

    [35]

    YANG X J, HUANG Z Y, ZHANG K L, CORNELISSEN J H C. C ꞉ N ꞉ P stoichiometry of Artemisia species and close relatives across northern China: Unravelling effects of climate, soil and taxonomy. Journal of Ecology, 2015, 103(4): 1020-1031. doi: 10.1111/1365-2745.12409

    [36] 宗宁, 石培礼. 冬季升温对高山生态系统碳氮循环过程的影响. 生态学报, 2020, 40(9): 3131-3143.

    ZONG N, SHI P L. Effects of winter warming on carbon and nitrogen cycling in alpine ecosystems: A review. Acta Ecologica Sinica, 2020, 40(9): 3131-3143.

    [37]

    RINNAN R, STARK S, TOLVANEN A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology, 2009, 97(4): 788-800. doi: 10.1111/j.1365-2745.2009.01506.x

    [38]

    ZHANG Q F, XIE J S, LYU M K, XIONG D C, WANG J, CHEN Y M, LI Y Q, WANG M K, YANG Y S. Short-term effects of soil warming and nitrogen addition on the N ꞉ P stoichiometry of Cunninghamia lanceolata in subtropical regions. Plant and Soil, 2017, 411(1): 395-407.

    [39] 刘文亭, 卫智军, 吕世杰, 孙世贤. 中国草原生态化学计量学研究进展. 草地学报, 2015, 23(5): 914-926.

    LIU W T, WEI Z J, LYU S J, SUN S X. Research advances in stoichiometry of grassland in China. Acta Agrestia Sinica, 2015, 23(5): 914-926.

  • 图  1   试验期甘青针茅群落0-15 cm土层土壤温度的变化趋势

    5、10、15分别为0-5、5-10和10-15 cm土层;CK为对照;W为增温。

    Figure  1.   The trend of soil temperature on 0-15 cm layer of Stipa ganqinata community during the experiment period in 2019

    5, 10, and 15 were 0-5, 5-10, and 10-15 cm soil layers, respectively; CK: control; W: warming.

    图  2   生长季增温对甘青针茅、铁杆蒿群落地上生物量的影响

    *表示增温和对照间差异显著(P < 0.05)。

    Figure  2.   The effect of growing season warming treatments on the above ground biomass of Stipa przewalskyi and Artemisia sacrorum

    * indicate significant differences between warming and control at 0.05 level.

    图  3   甘青针茅和铁杆蒿群落地上生物量和土壤理化性质的Pearson相关性分析

    AGB: 地上生物量。 AGB: aboveground biomass.  *, P < 0.05;  * *, P < 0.01.

    Figure  3.   Pearson correlation analysis of above-ground biomass and soil physical and chemical properties of Stipa przewalskyi and Artemisia sacrorum

    表  1   不同土层生长季增温处理与对照组甘青针茅及铁杆蒿群落土壤理化性质(n = 4)

    Table  1   Soil physical and chemical properties of Stipa przewalskyi and Artemisia sacrorum community in different soil layers under growing season warming and control (n = 4)

    指标
    Index
    植物
    Plant
    0-5 cm5-10 cm10-15 cm
    增温
    Warming
    对照
    Control
    增温
    Warming
    对照
    Control
    增温
    Warming
    对照
    Control
    SOC/
    (g·kg−1)
    甘青针茅
    Stipa przewalskyi
    24.77 ± 1.27* 30.38 ± 1.70 23.83 ± 1.13 24.97 ± 1.49 24.31 ± 1.92 23.30 ± 0.94
    铁杆蒿
    Artemisia sacrorum
    33.78 ± 2.61* 34.59 ± 2.23 28.15 ± 0.52 30.19 ± 0.56 26.13 ± 0.43 27.11 ± 1.87
    TN/
    (g·kg−1)
    甘青针茅
    S. przewalskyi
    3.64 ± 0.30 4.04 ± 0.64 3.98 ± 0.65 3.50 ± 0.53 3.57 ± 0.42 3.63 ± 0.17
    铁杆蒿
    A. sacrorum
    4.41 ± 0.54 4.89 ± 0.72 4.02 ± 0.08 4.40 ± 0.38 3.75 ± 0.19 3.90 ± 0.25
    NO3-N/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    14.40 ± 0.09 15.65 ± 1.66 12.78 ± 1.21 10.51 ± 0.97 11.05 ± 1.20* 8.41 ± 0.24
    铁杆蒿
    A. sacrorum
    16.90 ± 7.34 20.40 ± 1.08 9.94 ± 1.38 10.41 ± 1.47 10.99 ± 2.47 9.06 ± 0.32
    NH4 + -N/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    2.35 ± 0.46 2.41 ± 0.63 2.78 ± 1.14 2.28 ± 0.22 2.20 ± 0.39 2.27 ± 0.08
    铁杆蒿
    A. sacrorum
    1.95 ± 0.91 3.57 ± 0.80 2.98 ± 0.99 2.24 ± 0.18 3.70 ± 0.54 2.44 ± 0.20
    AP/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    16.80 ± 0.67** 12.43 ± 0.90 14.98 ± 0.60 13.20 ± 1.68 13.89 ± 1.15 12.35 ± 1.51
    铁杆蒿
    A. sacrorum
    18.63 ± 1.87 16.40 ± 0.34 16.28 ± 1.29 17.21 ± 0.67 15.06 ± 0.64 15.14 ± 0.92
    MBC/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    641.98 ± 51.08 743.59 ± 49.48 540.55 ± 24.78 576.73 ± 24.47 543.84 ± 44.56 498.28 ± 16.71
    铁杆蒿
    A. sacrorum
    742.16 ± 66.72 815.91 ± 52.61 669.76 ± 73.86 601.00 ± 14.38 614.39 ± 101.08 508.58 ± 43.92
    MBN/
    (mg·kg−1)
    甘青针茅
    S. przewalskyi
    110.49 ± 4.47** 142.91 ± 10.59 93.69 ± 8.18 107.29 ± 5.75 89.42 ± 10.88 93.96 ± 0.85
    铁杆蒿
    A. sacrorum
    135.39 ± 9.11 152.90 ± 9.68 114.76 ± 8.35 98.19 ± 6.53 100.11 ± 18.07* 65.63 ± 2.38
    SWC/% 甘青针茅
    S. przewalskyi
    27.65 ± 0.42** 30.36 ± 0.47 27.63 ± 0.34** 31.44 ± 0. 24 27.17 ± 0.12 27.52 ± 0.29
    铁杆蒿
    A. sacrorum
    33.23 ± 21.13 37.47 ± 6.53 24.36 ± 7.17 29.98 ± 0.29 27.55 ± 0. 07 27.51 ± 0.10
    pH 甘青针茅
    S. przewalskyi
    7.85 ± 0.01 7.79 ± 0.10 7.88 ± 0.03 7.92 ± 0.03 7.93 ± 0.03 7.92 ± 0.03
    铁杆蒿
    A. sacrorum
    7.85 ± 0.05 7.76 ± 0.05 7.86 ± 0.02 7.83 ± 0.05 7.88 ± 0.03 7.83 ± 0.01
     SOC:有机碳;TN:全氮;NO3-N:硝态氮;NH4+ -N:铵态氮;AP:土壤速效磷;MBC:微生物生物量碳;MBN: 微生物生物量氮;SWC:土壤水分含量。*和**分别表示同一土层间增温和对照间差异显著(P < 0.05)或者极显著(P < 0.01)。下图同。
     SOC: soil organic carbon; TN: total nitrogen; NO3-N: nitrate nitrogen: NH4 + -N: ammonia nitrogen; AP: available phosphorus; MBC: soil microbialcarbon; MBN: soil microbial nitrogen; SWC: soil moisture. * and ** indicate significant differences at 0.05 and 0.01 levels between warming and controls in the same soil layer. This is applicable for the following figures as well.
    下载: 导出CSV
  • [1]

    HILLEBRAND H, BENNETT D M, CADOTTE M W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology, 2008, 89(6): 1510-1520. doi: 10.1890/07-1053.1

    [2] 白乌云, 侯向阳. 气候变化对草地植物优势种的影响研究进展. 中国草地, 2021, 43(4): 107-114.

    BAI W Y, HOU X Y. Research progress on the effects of climate change on dominant plant species of grassland. Chinese Journal of Grassland, 2021, 43(4): 107-114.

    [3]

    PAU S, DEE L E. Remote sensing of species dominance and the value for quantifying ecosystem services. Remote Sensing in Ecology and Conservation, 2016, 2(3): 141-151. doi: 10.1002/rse2.23

    [4]

    GITLIN A R, STHULTZ C M, BOWKER M A, STUMPF S, PAXTON K L, KENNEDY K, MUNOZ A, BAILEY J K, WHITHAM T G. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 2006, 20(5): 1477-1486. doi: 10.1111/j.1523-1739.2006.00424.x

    [5]

    OLSEN S L, TÖPPER J P, SKARPAAS O, VANDVIK, V, KLANDERUD K. From facilitation to competition: Temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Global Change Biology, 2016, 22(5): 1915-1926. doi: 10.1111/gcb.13241

    [6]

    ZHAO J Z, LIU W, YE R, LU X F, ZHOU Y B, YANG Y Q, PENG M. Responses of reproduction and important value of dominant plant species in different plant functional type in Kobresia meadow to temperature increase. Russian Journal of Ecology, 2013, 44(6): 484-491. doi: 10.1134/S1067413613060131

    [7]

    PARTZSCH M. Warming differently affects the inter-and intraspecific interactions among semi-dry grassland species. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40: 125481. doi: 10.1016/j.ppees.2019.125481

    [8]

    SAXE H, CANNELL M G R, JOHNSEN Ø, RYAN M G, VOURLITIS G. Tree and forest functioning in response to global warming. New Phytologist, 2001, 149(3): 369-399. doi: 10.1046/j.1469-8137.2001.00057.x

    [9]

    WANG S P, DUAN J H, XU G P, WANG Y F, ZHANG Z H, RUI Y C, LUO C Y, XU B, ZHU X X, CHANG X F, CUI X Y, NIU H S, ZHAO X Q, WANG W Y. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365-2376. doi: 10.1890/11-1408.1

    [10]

    HURSH A, BALLANTYNE A, COOPER L, MANETA L, KIMBALL J, WATTS J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 2017, 23(5): 2090-2103. doi: 10.1111/gcb.13489

    [11]

    POST E, FORCHHAMMER M C, BRET-HARTE M S, CALLAGHAN T V, CHRISTENSEN T R, ELBERLING B, FOX A D, GILG O, HIK D S, Høye T T, IMS R A, JEPPESEN E, KLEIN D R, MADSEN J, MCGUIRE D A, RYSGAARD S, SCHINDLER D E, STIRLING I, TAMSTORF M P, TYLER N J C, WAL R V D, WELKER J, WOOKEY P A, SCHMIDT N M, AASTRUP P. Ecological dynamics across the Arctic associated with recent climate change. Science, 2009, 325: 1355-1358. doi: 10.1126/science.1173113

    [12]

    KNAPP A K, SMITH M D. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291: 481-484. doi: 10.1126/science.291.5503.481

    [13]

    BAI Y F, HAN X G, WU J G, CHEN Z Z, LI L H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. doi: 10.1038/nature02850

    [14]

    BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451. doi: 10.1111/nph.12252

    [15]

    LUO C Y, XU G P, WANG Y F, WANG S P, LIN X W, HU Y G, ZHANG Z H, CHANG X F, DUAN J C, SU A L, ZHAO X Q. Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biology and Biochemistry, 2009, 41(12): 2493-2500. doi: 10.1016/j.soilbio.2009.09.006

    [16] 李宗善, 杨磊, 王国梁, 侯建, 信忠保, 刘国华, 傅伯杰. 黄土高原水土流失治理现状、问题及对策. 生态学报, 2019, 39(20): 7398-7409.

    LI Z S, YANG L, WANG G L, HOU J, XIN B Z, LIU G H, FU B J. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Phytoecological Sinica, 2019, 39(20): 7398-7409.

    [17] 程积民, 井赵斌, 金晶炜, 高阳. 黄土高原半干旱区退化草地恢复与利用过程研究. 中国科学:生命科学, 2014, 44(3): 267-279. doi: 10.1360/052013-280

    CHENG J M, JING Z B, JIN J W, GAO Y. Restoration and utilization mechanism of degraded grassland in the semi-arid region of Loess Plateau. Scientia Sinica Vitae, 2014, 44(3): 267-279. doi: 10.1360/052013-280

    [18] 曾全超, 李鑫, 董扬红, 安韶山. 黄土高原延河流域不同植被类型下土壤生态化学计量学特征. 自然资源学报, 2016, 31(11): 1881-1891. doi: 10.11849/zrzyxb.20160038

    ZENG Q C, LI X, DONG Y H, AN S S. Ecological stoichiometry of soils in the Yanhe watershed in the Loess Plateau: The Influence of different vegetation zones. Journal of Natural Resources, 2016, 31(11): 1881-1891. doi: 10.11849/zrzyxb.20160038

    [19] 王琼芳, 陈云明, 刘小梅, 崔静, 艾泽民. 黄土丘陵区铁杆蒿群落表层土壤有机碳动态及其影响因子. 草业科学, 2013, 30(1): 1-8.

    WANG Q F, CHEN Y M, LIU X M, CUI J, AI Z M. Dynamics of top soil organic carbon in Artemisia gmelinii communities and its relationship with environmental factors in loess hilly region. Pratacultural Science, 2013, 30(1): 1-8.

    [20] 程杰, 呼天明, 程积民. 黄土高原铁杆蒿群落分布格局对气候的响应. 中国水土保持科学, 2011, 9(6): 51-56. doi: 10.3969/j.issn.1672-3007.2011.06.009

    CHENG J, HU T M, CHENG J M. Responses of distribution of Artemisia sacrorum community to climate in semi-arid and semi-humid areas of Loess Plateau. Science of Soil and Water Conservation, 2011, 9(6): 51-56. doi: 10.3969/j.issn.1672-3007.2011.06.009

    [21] 徐满厚, 杨晓辉, 杜荣, 秦瑞敏, 温静. 增温改变高寒草甸植物群落异速生长关系. 草业科学, 2021, 38(4): 618-629. doi: 10.11829/j.issn.1001-0629.2020-0694

    XU M H, YANG X H, DU R, QIN R M, WEN J. Effects of simulated warming on the allometric growth patterns of an alpine meadow community on the Qinghai-Tibet Plateau. Pratacultural Science, 2021, 38(4): 618-629. doi: 10.11829/j.issn.1001-0629.2020-0694

    [22] 周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究. 植物生态学报, 2000, 24(5): 547-553. doi: 10.3321/j.issn:1005-264X.2000.05.007

    ZHOU H K, ZHOU X M, ZHAO X Q. A preliminary study of the influence of simulated greenhouse effect on a Kobresia Humilis meadow. Acta Phytoecological Sinica, 2000, 24(5): 547-553. doi: 10.3321/j.issn:1005-264X.2000.05.007

    [23] 史晓晓, 程积民, 于飞, 朱仁斌, 赵新宇. 云雾山天然草地30年恢复演替过程中优势草种生态位动态. 草地学报, 2014, 22(4): 677-684.

    SHI X X, CHENG J M, YU F, ZHU R B, ZHAO X Y. Niche dynamics of dominant species during the 30 years restoration process of natural grassland in Yunwu Mountain. Acta Agrestla Sinica, 2014, 22(4): 677-684.

    [24] 程积民. 黄土高原草原生态系统研究: 云雾山国家级自然保护区. 北京: 科学出版社, 2014.

    CHENG J M. Grassland Ecosystem of the Loess Plateau in China: Yunwushan National Nature Reserve. Beijing: Science Press, 2014.

    [25] 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响. 植物生态学报, 2021, 45(8): 891-902. doi: 10.17521/cjpe.2021.0085

    MAO J, DUO Y, DENG J, CHENG J, CHENG J M, PENG C H, GUO L. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau. Acta Phytoecological Sinica, 2021, 45(8): 891-902. doi: 10.17521/cjpe.2021.0085

    [26]

    VANCE E D, BROOKERS P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. doi: 10.1016/0038-0717(87)90052-6

    [27] 鲍士旦. 土壤农化分析. 北京: 农业出版社, 2000.

    BAO S D. Soil Agrochemical Analysis. Beijing: Agricultural Press, 2000.

    [28]

    RUSTAD L E, CAMPBELL J L, MARION G M, NORBY R J, MITCHELL M J, HARTLEY A E, CORNELISSEN J H C, GUREVITCH J. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126(4): 543-562. doi: 10.1007/s004420000544

    [29]

    LI Y Y, ZHOU G Y, HUANG W J, LIU J X, FANG X. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest. Plant and Soil, 2016, 409(1): 247-257.

    [30]

    CAREY J C, TANG J, TEMPLER P H, KROEGER K D, CROWTHER T W, BURTON A J, DUKES J S, EMMETT B, FREY S D, HESKEL M A, JIANG L F, MACHMULLER M B, MOHAN J, PANETTA A M, REICH P B, REINSCH S, WANG X, ALLISON S D, BAMMINGER C, BRIDGHAM S, COLLINS S L, DE DATO G, EDDY W C, ENQUIST B J, ESTIARTE M, HARTE J, HENDERSON A, JOHNSON B R, LARSEN K S, LUO Y Q, MARHAN S, MELILLO J M, PE Ñ UELAS J, PFEIFER-MEISTER L, POLL C, RASTETTER E, REINMANN A B, REYNOLDS L L, SCHMIDT I K, SHAVER G R, STRONG A L, SUSEELA V, TIETAME A. Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences, 2016, 113(48): 13797-13802. doi: 10.1073/pnas.1605365113

    [31]

    YUE H W, WANG M M, WANG S P, GILBERT J A, SUN X, WU L W, LIN Q Y, HU Y Q, LI X Z, HE Z L, ZHOU J Z, YANG Y F. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. The ISME Journal, 2015, 9(9): 2012-2020. doi: 10.1038/ismej.2015.19

    [32]

    PRACH K, PYŠEK P. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering, 2001, 17(1): 55-62. doi: 10.1016/S0925-8574(00)00132-4

    [33] 李英年, 赵亮, 赵新全, 周华坤. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 2004, 12(3): 236-239.

    LI Y N, ZHAO L, ZHAO X Q, ZHOU H K. Effects of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow. Acta Agrestia Sinica, 2004, 12(3): 236-239.

    [34]

    SHI F S, WU Y, WU N, LUO P. Different growth and physiological responses to experimental warming of two dominant plant species Elymus nutans and Potentilla anserina in an alpine meadow of the eastern Tibetan Plateau. Photosynthetica, 2010, 48(3): 437-445. doi: 10.1007/s11099-010-0058-8

    [35]

    YANG X J, HUANG Z Y, ZHANG K L, CORNELISSEN J H C. C ꞉ N ꞉ P stoichiometry of Artemisia species and close relatives across northern China: Unravelling effects of climate, soil and taxonomy. Journal of Ecology, 2015, 103(4): 1020-1031. doi: 10.1111/1365-2745.12409

    [36] 宗宁, 石培礼. 冬季升温对高山生态系统碳氮循环过程的影响. 生态学报, 2020, 40(9): 3131-3143.

    ZONG N, SHI P L. Effects of winter warming on carbon and nitrogen cycling in alpine ecosystems: A review. Acta Ecologica Sinica, 2020, 40(9): 3131-3143.

    [37]

    RINNAN R, STARK S, TOLVANEN A. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology, 2009, 97(4): 788-800. doi: 10.1111/j.1365-2745.2009.01506.x

    [38]

    ZHANG Q F, XIE J S, LYU M K, XIONG D C, WANG J, CHEN Y M, LI Y Q, WANG M K, YANG Y S. Short-term effects of soil warming and nitrogen addition on the N ꞉ P stoichiometry of Cunninghamia lanceolata in subtropical regions. Plant and Soil, 2017, 411(1): 395-407.

    [39] 刘文亭, 卫智军, 吕世杰, 孙世贤. 中国草原生态化学计量学研究进展. 草地学报, 2015, 23(5): 914-926.

    LIU W T, WEI Z J, LYU S J, SUN S X. Research advances in stoichiometry of grassland in China. Acta Agrestia Sinica, 2015, 23(5): 914-926.

图(3)  /  表(1)
计量
  • PDF下载量:  33
  • 文章访问数:  1195
  • HTML全文浏览量:  390
  • 被引次数: 0
文章相关
  • 通讯作者: 郭梁
  • 收稿日期:  2021-12-18
  • 接受日期:  2022-04-26
  • 网络出版日期:  2022-06-28
  • 发布日期:  2022-10-14

目录

/

返回文章
返回