欢迎访问 草业科学,今天是2025年4月13日 星期日!

高寒地区牧草根际促生菌的筛选与特性

柴加丽, 姚拓, 王振龙, 韩江茹, 张蔚, 刘晓婷, 李茜

柴加丽,姚拓,王振龙,韩江茹,张蔚,刘晓婷,李茜. 高寒地区牧草根际促生菌的筛选与特性. 草业科学, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553
引用本文: 柴加丽,姚拓,王振龙,韩江茹,张蔚,刘晓婷,李茜. 高寒地区牧草根际促生菌的筛选与特性. 草业科学, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553
CHAI J L, YAO T, WANG Z L, HAN J R, ZHANG W, LIU X T, LI Q. Screening and characterization of plant growth-promoting rhizobacteria from rhizosphere of forage species in an alpine region. Pratacultural Science, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553
Citation: CHAI J L, YAO T, WANG Z L, HAN J R, ZHANG W, LIU X T, LI Q. Screening and characterization of plant growth-promoting rhizobacteria from rhizosphere of forage species in an alpine region. Pratacultural Science, 2022, 39(9): 1752-1762 . DOI: 10.11829/j.issn.1001-0629.2021-0553

高寒地区牧草根际促生菌的筛选与特性

基金项目: 科技部国家重点研发项目(2019YFC0507703);甘肃省林业与草原局草原生态修复治理科技支撑项目(GSAU-TSYF-2021-011)
摘要: 为获得高寒地区优良牧草根际促生菌资源,本研究从高寒地区优良牧草中华羊茅(Festuca sinensis)、草地早熟禾(Poa pretensis)、紫穗鹅观草(Roegneria purpurascens)根际筛选促生菌,研究菌株溶解有机磷、溶解无机磷、固氮、分泌激素特性,并对优良菌株进行分子生物学鉴定。结果表明,从3种牧草根际共筛选出14株溶解有机磷菌株,其溶磷量为6.51~141.49 µg·mL−1,菌株培养液pH为2.97~3.79;16株溶解无机磷菌株,溶磷量为371.29~538.59 µg·mL−1,菌株培养液均呈酸性;22株固氮菌株,固氮酶活性91.71~160.20 nmol·(h·mL)−1 (C2H4);14株分泌植物生长激素IAA菌株,分泌量0.10~0.92 µg·mL−1,同时分泌赤霉素、玉米素,分泌量分别为0.52~139.22和0.12~0.99 µg·mL−1。通过测定菌株综合特性,共筛选出12株促生特性较全面的菌株,经分子生物学鉴定,菌株SPCB4为华西肠杆菌(Enterobacter huaxiensis),其余11株属于假单胞菌属(Pseudomonas)的5个不同种。本研究鉴定的12株植物根际促生菌具有多种促生特性,为后续草地植被恢复和微生物菌剂研制提供菌种资源和理论基础。

 

English

  • [1]

    ZOU J R, LUO C Y, XU X L, ZHAO N, ZHAO L, ZHAO X Q. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecological Research, 2016, 31(6): 841-851. doi: 10.1007/s11284-016-1394-3

    [2] 雷声剑. 祁连县高寒草地生态系统服务价值评估与生态补偿研究. 西安: 陕西师范大学硕士学位论文, 2016.

    LEI S J. Research on ecosystem service value evaluation and ecological compensation of alpine grassland in Qilian County. Master Thesis. Xi'an: Shaanxi Normal University, 2016.

    [3] 齐洋. 放牧制度对玛曲高寒草地植被和土壤的影响. 北京: 北京林业大学硕士学位论文, 2019.

    QI Y. Effects of grazing system on vegetation and soil of on an alpine meadow in Maqu Country, Gansu. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [4] 郑雨馨. 肃南裕固族自治县高寒草地水资源潜力及水草畜平衡配置研究. 北京: 北京林业大学硕士学位论文, 2019.

    ZHENG Y X. Study on water resources potential and balanced configuration of water-grass-livestock in alpine grassland of Sunan Yugu Autonomous County. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [5]

    BAI X J, YANG X, ZHANG S M, AN S S. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57(4): 563-574. doi: 10.1007/s00374-021-01549-1

    [6]

    QIANG L I. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 2014, 6(4): 478-487. doi: 10.1007/s40333-013-0207-6

    [7] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12.

    ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment. Journal of Agricultural Resources and Environment, 2013, 30(4): 7-12.

    [8]

    LIU C J, GONG X W, DANG K, LI J, YANG P, GAO X L, DENG X P, FENG B L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environmental Research, 2020, 184: 109261. doi: 10.1016/j.envres.2020.109261

    [9] 蒋永梅. 四种植物根际促生菌筛选及生物菌肥效果研究. 兰州: 甘肃农业大学硕士学位论文, 2017.

    JIANG Y M. Screening plant growth promoting rhizobacteria from four plants and study on the application of biofertilizer. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.

    [10]

    LI H Y, QIU Y Z, YAO T. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago Sativa, and Cucumis Sativus seedlings. Soil and Tillage Research, 2020, 199(1): 792-801.

    [11] 王伟, 岳政府, 刘孝文, 张瑞福. 低温适应型植物根际促生细菌的筛选及促生效应研究. 南京农业大学学报, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    WANG W, YUE Z F, LIU X W, ZHANG R F. Screening of low temperature adapted plant growth-promoting rhizosphere and investigating of their promoting effects. Journal of Nanjing Agricultural University, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    [12] 崔晓双, 王伟, 张如, 张瑞福. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    CUI X S, WANG W, ZHANG R, ZHANG R F. Screening of plant growth-promoting rhizobacteria based on rhizosphere nutrition competiveness and investigation of their promoting effects. Journal of Nanjing Agricultural University, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    [13] 任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思. 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 2021, 29(10): 2265-2273.

    REN Z R, SHAO X Q, LI J S, LI H, HE Y X, GU W N, WANG R Y, YANG L J, LIU K S. Effects of microbial fertilizer on aboveground biomass and soil physical and properties of degraded alpine meadows. Acta Agrestia Sinica, 2021, 29(10): 2265-2273.

    [14]

    PIROMYOU P, BURANABANYAT B, TANTASAWAT P, TITTABUTR P, BOONKERD N, TEAUMROONG N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. doi: 10.1016/j.ejsobi.2010.11.004

    [15] 杨林, 石莎, 冯金朝, 赵敏杰, 陶季, 蓝智钢. 青海海北高寒草甸植被多样性研究. 中央民族大学学报, 2008, 17(S1): 126-132.

    YANG L, SHI S, FENG J C, ZHAO M J, TAO J, LAN Z G. Plant diversity in alpine meadow in Haibei Regionof Qinghai Province. Journal of Central University for Nationalities, 2008, 17(S1): 126-132.

    [16] 井向前, 王瑞红, 任德智, 白玛玉珍, 潘刚, 周尧治. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194.

    JING X Q, WANG R H, REN D Z, Baimayuzhen, PAN G, ZHOU Y Z. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei region, Qinghai. Acta Agrestia Sinica, 2017, 25(1): 190-194.

    [17] 陈丹阳, 李汉全, 张炳火. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418.

    CHEN D Y, LI H Q, ZHANG B H. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418.

    [18] 刘婷. 高寒草甸优势植物根际促生菌资源评价及菌种鉴定. 兰州: 甘肃农业大学硕士学位论文, 2016.

    LIU T. Evaluating and identifying of plant growth promoting rhizobacteria of dominant alpine meadows. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.

    [19] 李明源, 王继莲, 姚拓, 王振龙, 张惠荣, 柴加丽, 刘晓婷, 李青璞. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究. 农业生物技术学报, 2021, 29(11): 2074-2086.

    LI M Y, WANG J L, YAO T, WANG Z L, ZHANG H R, CHAI J L, LIU X T, LI Q P. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains. Journal of Agricultural Biotechnology, 2021, 29(11): 2074-2086.

    [20] 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182.

    YANG W Q, JING J, ZHU L, GAO Y H. Screening and characteristics of plant growth-promoting rhizosphere from alpine meadow plants in Northwest Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182.

    [21] 刘婷, 姚拓, 陈建纲, 刘欢. 固相萃取–高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206.

    LIU T, YAO T, CHEN J G, LIU H. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction–high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206.

    [22] 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    GAO Y M, YAO T, LI H Y, LUO H Q, ZHANG J G, YANG Y S, LIU T. Isolation, screening and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparumin alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    [23] 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定. 草业学报, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    LI J H, LI X P, LI C N, HAN B, XU W L, YAO T. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1 and determination of its taxonomic status. Acta Prataculturae Sinica, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    [24] 李显刚, 姚拓, 舒键虹, 高巍. 三株优良促生菌的16S rDNA序列初探. 湖北畜牧兽医, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    LI X G, YAO T, SHU J H, GAO W. Preliminary study on the 16S rDNA sequences of three excellent growth-promoting bacteria. Hubei Animal Husbandry and Veterinary Medicine, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    [25] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiology, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    [26]

    NARSIAN V, PATEL H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 2000, 32(4): 559-565. doi: 10.1016/S0038-0717(99)00184-4

    [27] 张亮, 杨宇虹, 李倩, 吴叶宽, 黄建国. 自生固氮菌活化土壤无机磷研究. 生态学报, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    ZHANG L, YANG Y H, LI Q, WU Y K, HUANG J G. Mobilization of inorganic phosphorus from soils by five azotobacters. Acta Ecologica Sinica, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    [28] 康贻军, 胡健, 单君, 何芳, 朴哲, 殷士学. 两株解磷真菌的解磷能力及其解磷机理的初步研究. 微生物学通报, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    KANG Y J, HU J, SHAN J, HE F, PU Z, YIN S X. Solubilization on capacity of insoluble phosphatesand it is mechanism by two phosphate solubilizing fungi. Microbiology China, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    [29]

    SCERVINO J M, MESA M P, MONICA D L, RECCHI M, MORENO N S, GODEAS A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 2010, 46(7): 755-763. doi: 10.1007/s00374-010-0482-8

    [30]

    KIM M S, PARK S J, LEE C H, YUN S G, KO B Y G, YANG J E. Effects of organic acids on availability of phosphate and growth of corn in phosphate and salts accumulated soil. Korean Journal of Soilence & Fertilizer, 2016, 49(3): 265-270.

    [31] 胡梦媛, 李雅颖, 葛超荣, 张迎迎, 姚槐应. 禾本科植物联合固氮的研究现状及应用前景. 中国生态农业学报, 2021, 29(11): 1815-1826.

    HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815-1826.

    [32] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析. 西安: 西北大学硕士学位论文, 2017.

    ZHUO L X. The analysis of soil bacteria and nitrogen fixation microbial diversity in different ecological region soils of Shaanxi Province. Master Thesis. Xi'an: Northwest University, 2017.

    [33] 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38(1): 52-61.

    LUO X F, QI Y, MENG Y J, SHUAI H W, CHEN F, YANG W Y, SHU K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38(1): 52-61.

    [34]

    XIANG Y, SONG X N, QIAO J, ZANG Y M, LI Y P, LIU Y, LIU C S. An ultrahigh-performance liquid chromatography method with electrospray ionizationt tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress. Journal of Natural Medicines, 2015, 69(3): 278-286. doi: 10.1007/s11418-015-0889-5

    [35] 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究. 草业学报, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    LIU T, YAO T, CHEN J G, MA W B, LIU H, MA C Y, JIANG Y M. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis. Acta Prataculturae Sinica, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    [36] 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究. 哈尔滨: 东北林业大学硕士学位论文, 2021.

    TANG P J. Isolation and screening of J2 from pigeon pea [Bacillus safensis (L.) millsp] and its plant growth promoting function. Master Thesis. Harbin: Northeast Forestry University, 2021.

    [37] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016.

    YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.

    [38] 石玉莹, 宋海慧, 苗爽, 宫超, 王慧, 黄海锋, 陈秀玲, 张淑梅, 王傲雪. 番茄灰霉病和叶霉病拮抗细菌WXCDD51的筛选鉴定及其生防促生作用. 园艺学报, 2017, 44(10): 1925-1936.

    SHI Y Y, SONG H H, MIAO S, GONG C, WANG H, HUANG H F, CHEN X L, ZHANG S M, WANG A X. Screening, identification, biocontrol and growth promoting effects of antagonistic bacteria WXCDD51 of tomato gray mold disease and tomato leaf mold disease. Acta Horticulture, 2017, 44(10): 1925-1936.

    [39] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用. 浙江农业科学, 2021, 62(2): 241-246.

    DAI M S, WANG Y Z, CAI D Y, SHI Z B, SUN J. Status of registration of microbial fertilizers in my country and its application in weight loss enhancement of fruit trees. Zhejiang Agricultural Sciences, 2021, 62(2): 241-246.

    [40] 撖冬荣, 侯栋, 姚拓, 兰晓君, 朱瑞婷. 莴笋根部促生菌筛选与促生特性测定. 干旱地区农业研究, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    HAN D R, HOU D, YAO T, LAN X J, ZHU R T. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    [41] 李智燕, 冯今, 张洁, 温洪, 荣良燕, 陆飒, 谭立伟. 豆科牧草微生物肥料研究初探. 甘肃畜牧兽医, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    LI Z Y, FENG J, ZHANG J, WEN H, RONG L Y, LU S, TAN L W. Preliminary study on microbial fertilizers for legume pastures. Gansu Animal Husbandry and Veterinary, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    [42] 孙少志. 根际细菌对番茄生长与抗虫性的影响. 福州: 福建农林大学硕士学位论文, 2019.

    SUN S Z. Effects of rhizoshphere bacteria on growth and anti-herbivore resistance of tomato. Master Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2019.

  • 图  1   细菌菌株牧草根际的数量及分布情况

    RS:根表土壤;RP:根系表面;HP:根内组织;PGPR: 植物根际促生菌。

    Figure  1.   Number and distribution of bacterial strains in the rhizosphere of forage species

    RS: soil adhering to roots; RP: rhizoplane or surface of roots; HP: histoplane or interior of roots; PGPR: plant growth-promoting rhizobacteria.

    表  1   PGPR菌株溶解有机磷能力

    Table  1   Ability of PGPR to dissolve organic phosphorus

    菌株编号
    Strain code
    溶有机磷量
    Dissolved organic
    phosphorus/(µg·mL−1)
    pH
    ZMBJ1 15.83 ± 1.04i 3.13 ± 0.06efg
    ZMBJ2 141.49 ± 0.48a 2.97 ± 0.22g
    ZMBJ3 93.68 ± 8.17c 3.69 ± 0.09abc
    ZMBB1 63.45 ± 0.29e 3.01 ± 0.05fg
    ZMBB2 11.36 ± 0.57j 3.31 ± 0.04def
    ZMBN2 69.87 ± 0.29d 3.79 ± 0.27a
    ZMBN4 120.96 ± 1.00b 3.72 ± 0.39ab
    SMCB3 73.33 ± 2.13d 3.38 ± 0.05cde
    GMDJ1 26.35 ± 0.29h 3.46 ± 0.06bcd
    GMDJ3 44.49 ± 2.19f 3.53 ± 0.12abcd
    GMDJ4 33.97 ± 1.50g 3.41 ± 0.20bcde
    GMDJ5 17.78 ± 0.82i 3.51 ± 0.06abcd
    GMDB1 6.51 ± 0.29k 3.32 ± 0.02def
    GMDB3 9.91 ± 0.29jk 3.21 ± 0.25defg
     不同小写字母表示不同菌株之间差异显著(P < 0.05);下表同。
     Different lowercase letters within the same column indicate significant difference between the different strains at the 0.05 level; this is applicable for the following tables as well.
    下载: 导出CSV

    表  2   PGPR菌株溶解无机磷能力

    Table  2   Ability of PGPR to dissolve inorganic phosphorus

    菌株编号
    Strain code
    溶无机磷量
    Dissolved inorganic
    phosphorus/(µg·mL−1)
    pH
    ZPBJ2 417.52 ± 12.36de 4.34 ± 0.16cde
    ZPBJ3 417.15 ± 15.79de 3.98 ± 0.06f
    ZPBB1 381.24 ± 11.78f 4.52 ± 0.20bc
    ZPBB3 485.05 ± 20.03b 4.09 ± 0.11ef
    ZPBN1 533.93 ± 24.56a 4.04 ± 0.07f
    SPCJ2 498.65 ± 14.15b 4.03 ± 0.06cd
    SPCJ4 443.85 ± 5.54cd 4.19 ± 0.10def
    SPCB1 401.40 ± 27.90ef 4.79 ± 0.04a
    SPCB2 445.36 ± 24.00cd 4.56 ± 0.40abc
    SPCB4 470.31 ± 24.46bc 4.69 ± 0.06ab
    SPCN2 468.29 ± 21.88bc 4.16 ± 0.10def
    GPDJ1 371.29 ± 2.15f 4.36 ± 0.03cd
    GPDJ2 465.39 ± 3.17bc 4.04 ± 0.02f
    GPDB2 374.31 ± 21.21f 4.40 ± 0.19f
    GPDB3 538.59 ± 28.75a 3.98 ± 0.04f
    GPDB4 385.20 ± 16.42ef 3.99 ± 0.05f
    下载: 导出CSV

    表  3   PGPR菌株固氮能力

    Table  3   Nitrogen fixing capacity of PGPR strains

    菌株编号
    Strain code
    固氮酶活性(C2H4)
    Nitrogen capacity/[nmol·(h·mL)−1]
    ZNBJ1152.53 ± 12.58ab
    ZNBJ2135.74 ± 17.84abcd
    ZNBJ3143.63 ± 13.86abc
    ZNBJ4138.96 ± 21.72abcd
    ZNBJ5134.74 ± 21.39abcd
    ZNBJ6143.77 ± 19.73abc
    ZNBB1121.34 ± 8.43abcd
    ZNBB2110.60 ± 29.44bcd
    ZNBB3106.88 ± 10.80bcd
    ZNBN1131.27 ± 26.22abcd
    SNCJ1138.46 ± 13.78abcd
    SNCJ2125.55 ± 25.42abcd
    SNCJ3135.63 ± 4.70abcd
    SNCB2129.15 ± 31.61abcd
    GNDJ1160.20 ± 37.14a
    GNDJ3101.35 ± 5.66cd
    GNDJ4139.38 ± 16.02abcd
    GNDJ5106.62 ± 16.08bcd
    GNDJ6132.27 ± 4.95abcd
    GNDB2107.42 ± 46.28bcd
    GNDN1136.84 ± 17.94abcd
    GNDN291.71 ± 60.49d
    下载: 导出CSV

    表  4   PGPR菌株分泌植物激素能力

    Table  4   Ability of PGPR strains to secrete plant hormones

    菌株编号
    Strain code
    显色反应
    Chromogenic reaction
    赤霉素(GA3)
    Gibberellic acid/(µg·mL−1)
    生长素(IAA)
    Indole-3-acetic acid/(µg·mL−1)
    玉米素(t-Z)
    Trans-zeatin/(µg·mL−1)
    ZNBJ1 ++ 0.27 ± 0.03d 0.12 ± 0.00e
    ZNBJ6 + 0.10 ± 0.01d 0.14 ± 0.01de
    ZMBJ3 + 2.37 ± 0.03bc 0.15 ± 0.01d 0.24 ± 0.00cd
    ZNBB1 + 0.12 ± 0.02d 0.49 ± 0.12b
    ZMBN2 + 5.16 ± 0.63bc 0.17 ± 0.04d 0.13 ± 0.01e
    ZMBN4 ++ 139.22 ± 17.62a 0.34 ± 0.05bc 0.18 ± 0.01cde
    ZPBN1 ++ 0.52 ± 0.02d 0.14 ± 0.02d 0.25 ± 0.05c
    SNCJ3 ++ 12.30 ± 1.49b 0.41 ± 0.06b 0.13 ± 0.01e
    SPCJ2 ++ 1.80 ± 0.09bc 0.13 ± 0.02d 0.12 ± 0.02e
    SPCB4 ++ 2.99 ± 1.30bc 0.92 ± 0.13a 0.99 ± 0.04a
    GMDJ3 + 0.12 ± 0.02d 0.16 ± 0.06cde
    GNDJ4 + 1.00 ± 0.18bc 0.10 ± 0.002d 0.15 ± 0.02cde
    GMDB3 + 3.70 ± 0.19bc 0.11 ± 0.01d 0.16 ± 0.08cde
    GPDB3 + 0.14 ± 0.01d 0.14 ± 0.01de
     IAA显色反应中;“++”表示深粉色;“+”表示浅粉色。
     In the color reaction of IAA; “++” indicates dark pink; “+” indicates light pink.
    下载: 导出CSV

    表  5   优良PGPR菌株综合特性

    Table  5   Comprehensive characteristics of excellent PGPR strains

    菌株编号
    Strain code
    溶有机磷量
    Dissolved organic
    phosphorus/(µg·mL−1)
    溶无机磷量
    Dissolved inorganic
    phosphorus/(µg·mL−1)
    固氮酶活性
    Nitrogen capacity/
    [nmol·(h·mL)−1](C2H4)
    赤霉素(GA3)
    Gibberellic acid/
    (µg·mL−1)
    生长素(IAA)含量
    Indole-3-acetic
    acid/(µg·mL−1)
    玉米素(t-Z)
    Trans-zeatin/
    (µg·mL−1)
    ZMBJ2 141.40 ± 0.48a 307.60 ± 0.19ef 51.11 ± 7.52b
    ZMBJ3 93.68 ± 8.17c 373.03 ± 0.50d 28.06 ± 15.47bc 2.37 ± 0.03bc 0.15 ± 0.01d 0.24 ± 0.00cd
    ZMBN4 120.90 ± 1.00b 288.50 ± 0.29f 37.68 ± 16.97bc 139.20 ± 17.62a 0.34 ± 0.05bc 0.10 ± 0.01cde
    ZPBN1 30.44 ± 0.50g 533.90 ± 24.57a 0.52 ± 0.02d 0.14 ± 0.02d 0.25 ± 0.05c
    ZNBJ1 28.68 ± 0.58g 260.10 ± 0.66g 152.53 ± 12.58a 0.27 ± 0.03d 0.12 ± 0.00e
    ZNBJ3 46.00 ± 0.48f 326.17 ± 0.57e 143.63 ± 13.86a
    SPCJ2 47.45 ± 0.50f 498.60 ± 14.15b 18.50 ± 6.79bc 1.80 ± 0.09bc 0.13 ± 0.02d 0.12 ± 0.02e
    SPCB4 71.70 ± 0.29d 470.30 ± 24.46c 14.96 ± 0.47c 2.99 ± 1.30bc 0.92 ± 0.13a 0.99 ± 0.04a
    GPDB3 32.46 ± 0.22g 538.50 ± 28.75a 15.34 ± 1.49c 0.14 ± 0.01d 0.14 ± 0.01de
    GNDJ1 70.94 ± 0.39d 292.09 ± 4.58f 160.20 ± 37.14a
    GNDJ4 363.90 ± 0.85d 139.38 ± 16.02a 1.00 ± 0.18bc 0.10 ± 0.00 0.15 ± 0.02cde
    GNDN1 64.90 ± 0.48e 319.49 ± 8.95e 136.84 ± 17.94a
    下载: 导出CSV

    表  6   优良PGPR菌株鉴定

    Table  6   Identification of superior PGPR strains

    菌株编号
    Strain code
    宿主植物
    Host plant
    分离部位
    Separation site
    同源性菌株
    Homologous strain
    相似度
    Similarity/%
    SPCB4 草地早熟禾 Poa pratensis RP Enterobacter huaxiensis 98.54
    ZNBJ3 中华羊茅 Festuca sinensis RS Pseudomonas piscium 99.59
    ZNBJ1 中华羊茅 Festuca sinensis RS Pseudomonas piscium 99.35
    SPCJ2 草地早熟禾 Poa pratensis RS Pseudomonas piscium 99.19
    GPDB3 紫穗鹅观草 Roegneria purpurascens RP Pseudomonas piscium 99.59
    GNDN1 紫穗鹅观草 Roegneria purpurascens HP Pseudomonas piscium 99.59
    GNDJ1 紫穗鹅观草 Roegneria purpurascens RS Pseudomonas piscium 99.51
    ZPBN1 中华羊茅 Festuca sinensis HP Pseudomonas neuropathica 98.78
    ZMBJ3 中华羊茅 Festuca sinensis RS Pseudomonas neuropathica 99.19
    ZMBJ2 中华羊茅 Festuca sinensis RS Pseudomonas pisciculturae 99.30
    ZMBN4 中华羊茅 Festuca sinensis HP Pseudomonas bubulae 98.88
    GNDJ4 紫穗鹅观草 Roegneria purpurascens RS Pseudomonas mucoides 99.19
     RP:根表面; RS:根表土;HP:根内。
     RP: rhizoplane or surface of roots; RS: soil adhering to roots; HP: histoplane or interior of roots.
    下载: 导出CSV
  • [1]

    ZOU J R, LUO C Y, XU X L, ZHAO N, ZHAO L, ZHAO X Q. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecological Research, 2016, 31(6): 841-851. doi: 10.1007/s11284-016-1394-3

    [2] 雷声剑. 祁连县高寒草地生态系统服务价值评估与生态补偿研究. 西安: 陕西师范大学硕士学位论文, 2016.

    LEI S J. Research on ecosystem service value evaluation and ecological compensation of alpine grassland in Qilian County. Master Thesis. Xi'an: Shaanxi Normal University, 2016.

    [3] 齐洋. 放牧制度对玛曲高寒草地植被和土壤的影响. 北京: 北京林业大学硕士学位论文, 2019.

    QI Y. Effects of grazing system on vegetation and soil of on an alpine meadow in Maqu Country, Gansu. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [4] 郑雨馨. 肃南裕固族自治县高寒草地水资源潜力及水草畜平衡配置研究. 北京: 北京林业大学硕士学位论文, 2019.

    ZHENG Y X. Study on water resources potential and balanced configuration of water-grass-livestock in alpine grassland of Sunan Yugu Autonomous County. Master Thesis. Beijing: Beijing Forestry University, 2019.

    [5]

    BAI X J, YANG X, ZHANG S M, AN S S. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57(4): 563-574. doi: 10.1007/s00374-021-01549-1

    [6]

    QIANG L I. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 2014, 6(4): 478-487. doi: 10.1007/s40333-013-0207-6

    [7] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12.

    ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment. Journal of Agricultural Resources and Environment, 2013, 30(4): 7-12.

    [8]

    LIU C J, GONG X W, DANG K, LI J, YANG P, GAO X L, DENG X P, FENG B L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environmental Research, 2020, 184: 109261. doi: 10.1016/j.envres.2020.109261

    [9] 蒋永梅. 四种植物根际促生菌筛选及生物菌肥效果研究. 兰州: 甘肃农业大学硕士学位论文, 2017.

    JIANG Y M. Screening plant growth promoting rhizobacteria from four plants and study on the application of biofertilizer. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.

    [10]

    LI H Y, QIU Y Z, YAO T. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago Sativa, and Cucumis Sativus seedlings. Soil and Tillage Research, 2020, 199(1): 792-801.

    [11] 王伟, 岳政府, 刘孝文, 张瑞福. 低温适应型植物根际促生细菌的筛选及促生效应研究. 南京农业大学学报, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    WANG W, YUE Z F, LIU X W, ZHANG R F. Screening of low temperature adapted plant growth-promoting rhizosphere and investigating of their promoting effects. Journal of Nanjing Agricultural University, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022

    [12] 崔晓双, 王伟, 张如, 张瑞福. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    CUI X S, WANG W, ZHANG R, ZHANG R F. Screening of plant growth-promoting rhizobacteria based on rhizosphere nutrition competiveness and investigation of their promoting effects. Journal of Nanjing Agricultural University, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013

    [13] 任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思. 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 2021, 29(10): 2265-2273.

    REN Z R, SHAO X Q, LI J S, LI H, HE Y X, GU W N, WANG R Y, YANG L J, LIU K S. Effects of microbial fertilizer on aboveground biomass and soil physical and properties of degraded alpine meadows. Acta Agrestia Sinica, 2021, 29(10): 2265-2273.

    [14]

    PIROMYOU P, BURANABANYAT B, TANTASAWAT P, TITTABUTR P, BOONKERD N, TEAUMROONG N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. doi: 10.1016/j.ejsobi.2010.11.004

    [15] 杨林, 石莎, 冯金朝, 赵敏杰, 陶季, 蓝智钢. 青海海北高寒草甸植被多样性研究. 中央民族大学学报, 2008, 17(S1): 126-132.

    YANG L, SHI S, FENG J C, ZHAO M J, TAO J, LAN Z G. Plant diversity in alpine meadow in Haibei Regionof Qinghai Province. Journal of Central University for Nationalities, 2008, 17(S1): 126-132.

    [16] 井向前, 王瑞红, 任德智, 白玛玉珍, 潘刚, 周尧治. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194.

    JING X Q, WANG R H, REN D Z, Baimayuzhen, PAN G, ZHOU Y Z. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei region, Qinghai. Acta Agrestia Sinica, 2017, 25(1): 190-194.

    [17] 陈丹阳, 李汉全, 张炳火. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418.

    CHEN D Y, LI H Q, ZHANG B H. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418.

    [18] 刘婷. 高寒草甸优势植物根际促生菌资源评价及菌种鉴定. 兰州: 甘肃农业大学硕士学位论文, 2016.

    LIU T. Evaluating and identifying of plant growth promoting rhizobacteria of dominant alpine meadows. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.

    [19] 李明源, 王继莲, 姚拓, 王振龙, 张惠荣, 柴加丽, 刘晓婷, 李青璞. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究. 农业生物技术学报, 2021, 29(11): 2074-2086.

    LI M Y, WANG J L, YAO T, WANG Z L, ZHANG H R, CHAI J L, LIU X T, LI Q P. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains. Journal of Agricultural Biotechnology, 2021, 29(11): 2074-2086.

    [20] 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182.

    YANG W Q, JING J, ZHU L, GAO Y H. Screening and characteristics of plant growth-promoting rhizosphere from alpine meadow plants in Northwest Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182.

    [21] 刘婷, 姚拓, 陈建纲, 刘欢. 固相萃取–高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206.

    LIU T, YAO T, CHEN J G, LIU H. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction–high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206.

    [22] 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    GAO Y M, YAO T, LI H Y, LUO H Q, ZHANG J G, YANG Y S, LIU T. Isolation, screening and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparumin alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754

    [23] 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定. 草业学报, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    LI J H, LI X P, LI C N, HAN B, XU W L, YAO T. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1 and determination of its taxonomic status. Acta Prataculturae Sinica, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005

    [24] 李显刚, 姚拓, 舒键虹, 高巍. 三株优良促生菌的16S rDNA序列初探. 湖北畜牧兽医, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    LI X G, YAO T, SHU J H, GAO W. Preliminary study on the 16S rDNA sequences of three excellent growth-promoting bacteria. Hubei Animal Husbandry and Veterinary Medicine, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002

    [25] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiology, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017

    [26]

    NARSIAN V, PATEL H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 2000, 32(4): 559-565. doi: 10.1016/S0038-0717(99)00184-4

    [27] 张亮, 杨宇虹, 李倩, 吴叶宽, 黄建国. 自生固氮菌活化土壤无机磷研究. 生态学报, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    ZHANG L, YANG Y H, LI Q, WU Y K, HUANG J G. Mobilization of inorganic phosphorus from soils by five azotobacters. Acta Ecologica Sinica, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930

    [28] 康贻军, 胡健, 单君, 何芳, 朴哲, 殷士学. 两株解磷真菌的解磷能力及其解磷机理的初步研究. 微生物学通报, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    KANG Y J, HU J, SHAN J, HE F, PU Z, YIN S X. Solubilization on capacity of insoluble phosphatesand it is mechanism by two phosphate solubilizing fungi. Microbiology China, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005

    [29]

    SCERVINO J M, MESA M P, MONICA D L, RECCHI M, MORENO N S, GODEAS A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 2010, 46(7): 755-763. doi: 10.1007/s00374-010-0482-8

    [30]

    KIM M S, PARK S J, LEE C H, YUN S G, KO B Y G, YANG J E. Effects of organic acids on availability of phosphate and growth of corn in phosphate and salts accumulated soil. Korean Journal of Soilence & Fertilizer, 2016, 49(3): 265-270.

    [31] 胡梦媛, 李雅颖, 葛超荣, 张迎迎, 姚槐应. 禾本科植物联合固氮的研究现状及应用前景. 中国生态农业学报, 2021, 29(11): 1815-1826.

    HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815-1826.

    [32] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析. 西安: 西北大学硕士学位论文, 2017.

    ZHUO L X. The analysis of soil bacteria and nitrogen fixation microbial diversity in different ecological region soils of Shaanxi Province. Master Thesis. Xi'an: Northwest University, 2017.

    [33] 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38(1): 52-61.

    LUO X F, QI Y, MENG Y J, SHUAI H W, CHEN F, YANG W Y, SHU K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38(1): 52-61.

    [34]

    XIANG Y, SONG X N, QIAO J, ZANG Y M, LI Y P, LIU Y, LIU C S. An ultrahigh-performance liquid chromatography method with electrospray ionizationt tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress. Journal of Natural Medicines, 2015, 69(3): 278-286. doi: 10.1007/s11418-015-0889-5

    [35] 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究. 草业学报, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    LIU T, YAO T, CHEN J G, MA W B, LIU H, MA C Y, JIANG Y M. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis. Acta Prataculturae Sinica, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026

    [36] 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究. 哈尔滨: 东北林业大学硕士学位论文, 2021.

    TANG P J. Isolation and screening of J2 from pigeon pea [Bacillus safensis (L.) millsp] and its plant growth promoting function. Master Thesis. Harbin: Northeast Forestry University, 2021.

    [37] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016.

    YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.

    [38] 石玉莹, 宋海慧, 苗爽, 宫超, 王慧, 黄海锋, 陈秀玲, 张淑梅, 王傲雪. 番茄灰霉病和叶霉病拮抗细菌WXCDD51的筛选鉴定及其生防促生作用. 园艺学报, 2017, 44(10): 1925-1936.

    SHI Y Y, SONG H H, MIAO S, GONG C, WANG H, HUANG H F, CHEN X L, ZHANG S M, WANG A X. Screening, identification, biocontrol and growth promoting effects of antagonistic bacteria WXCDD51 of tomato gray mold disease and tomato leaf mold disease. Acta Horticulture, 2017, 44(10): 1925-1936.

    [39] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用. 浙江农业科学, 2021, 62(2): 241-246.

    DAI M S, WANG Y Z, CAI D Y, SHI Z B, SUN J. Status of registration of microbial fertilizers in my country and its application in weight loss enhancement of fruit trees. Zhejiang Agricultural Sciences, 2021, 62(2): 241-246.

    [40] 撖冬荣, 侯栋, 姚拓, 兰晓君, 朱瑞婷. 莴笋根部促生菌筛选与促生特性测定. 干旱地区农业研究, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    HAN D R, HOU D, YAO T, LAN X J, ZHU R T. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17

    [41] 李智燕, 冯今, 张洁, 温洪, 荣良燕, 陆飒, 谭立伟. 豆科牧草微生物肥料研究初探. 甘肃畜牧兽医, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    LI Z Y, FENG J, ZHANG J, WEN H, RONG L Y, LU S, TAN L W. Preliminary study on microbial fertilizers for legume pastures. Gansu Animal Husbandry and Veterinary, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036

    [42] 孙少志. 根际细菌对番茄生长与抗虫性的影响. 福州: 福建农林大学硕士学位论文, 2019.

    SUN S Z. Effects of rhizoshphere bacteria on growth and anti-herbivore resistance of tomato. Master Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2019.

图(1)  /  表(6)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 姚拓
  • 收稿日期:  2021-09-09
  • 接受日期:  2022-01-05
  • 网络出版日期:  2022-04-17
  • 发布日期:  2022-09-14

目录

/

返回文章
返回