高寒地区牧草根际促生菌的筛选与特性
English
-
参考文献
[1] ZOU J R, LUO C Y, XU X L, ZHAO N, ZHAO L, ZHAO X Q. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecological Research, 2016, 31(6): 841-851. doi: 10.1007/s11284-016-1394-3
[2] 雷声剑. 祁连县高寒草地生态系统服务价值评估与生态补偿研究. 西安: 陕西师范大学硕士学位论文, 2016. LEI S J. Research on ecosystem service value evaluation and ecological compensation of alpine grassland in Qilian County. Master Thesis. Xi'an: Shaanxi Normal University, 2016.
[3] 齐洋. 放牧制度对玛曲高寒草地植被和土壤的影响. 北京: 北京林业大学硕士学位论文, 2019. QI Y. Effects of grazing system on vegetation and soil of on an alpine meadow in Maqu Country, Gansu. Master Thesis. Beijing: Beijing Forestry University, 2019.
[4] 郑雨馨. 肃南裕固族自治县高寒草地水资源潜力及水草畜平衡配置研究. 北京: 北京林业大学硕士学位论文, 2019. ZHENG Y X. Study on water resources potential and balanced configuration of water-grass-livestock in alpine grassland of Sunan Yugu Autonomous County. Master Thesis. Beijing: Beijing Forestry University, 2019.
[5] BAI X J, YANG X, ZHANG S M, AN S S. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57(4): 563-574. doi: 10.1007/s00374-021-01549-1
[6] QIANG L I. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 2014, 6(4): 478-487. doi: 10.1007/s40333-013-0207-6
[7] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12. ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment. Journal of Agricultural Resources and Environment, 2013, 30(4): 7-12.
[8] LIU C J, GONG X W, DANG K, LI J, YANG P, GAO X L, DENG X P, FENG B L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environmental Research, 2020, 184: 109261. doi: 10.1016/j.envres.2020.109261
[9] 蒋永梅. 四种植物根际促生菌筛选及生物菌肥效果研究. 兰州: 甘肃农业大学硕士学位论文, 2017. JIANG Y M. Screening plant growth promoting rhizobacteria from four plants and study on the application of biofertilizer. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.
[10] LI H Y, QIU Y Z, YAO T. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago Sativa, and Cucumis Sativus seedlings. Soil and Tillage Research, 2020, 199(1): 792-801.
[11] 王伟, 岳政府, 刘孝文, 张瑞福. 低温适应型植物根际促生细菌的筛选及促生效应研究. 南京农业大学学报, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022 WANG W, YUE Z F, LIU X W, ZHANG R F. Screening of low temperature adapted plant growth-promoting rhizosphere and investigating of their promoting effects. Journal of Nanjing Agricultural University, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022
[12] 崔晓双, 王伟, 张如, 张瑞福. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013 CUI X S, WANG W, ZHANG R, ZHANG R F. Screening of plant growth-promoting rhizobacteria based on rhizosphere nutrition competiveness and investigation of their promoting effects. Journal of Nanjing Agricultural University, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013
[13] 任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思. 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 2021, 29(10): 2265-2273. REN Z R, SHAO X Q, LI J S, LI H, HE Y X, GU W N, WANG R Y, YANG L J, LIU K S. Effects of microbial fertilizer on aboveground biomass and soil physical and properties of degraded alpine meadows. Acta Agrestia Sinica, 2021, 29(10): 2265-2273.
[14] PIROMYOU P, BURANABANYAT B, TANTASAWAT P, TITTABUTR P, BOONKERD N, TEAUMROONG N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. doi: 10.1016/j.ejsobi.2010.11.004
[15] 杨林, 石莎, 冯金朝, 赵敏杰, 陶季, 蓝智钢. 青海海北高寒草甸植被多样性研究. 中央民族大学学报, 2008, 17(S1): 126-132. YANG L, SHI S, FENG J C, ZHAO M J, TAO J, LAN Z G. Plant diversity in alpine meadow in Haibei Regionof Qinghai Province. Journal of Central University for Nationalities, 2008, 17(S1): 126-132.
[16] 井向前, 王瑞红, 任德智, 白玛玉珍, 潘刚, 周尧治. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194. JING X Q, WANG R H, REN D Z, Baimayuzhen, PAN G, ZHOU Y Z. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei region, Qinghai. Acta Agrestia Sinica, 2017, 25(1): 190-194.
[17] 陈丹阳, 李汉全, 张炳火. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418. CHEN D Y, LI H Q, ZHANG B H. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418.
[18] 刘婷. 高寒草甸优势植物根际促生菌资源评价及菌种鉴定. 兰州: 甘肃农业大学硕士学位论文, 2016. LIU T. Evaluating and identifying of plant growth promoting rhizobacteria of dominant alpine meadows. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.
[19] 李明源, 王继莲, 姚拓, 王振龙, 张惠荣, 柴加丽, 刘晓婷, 李青璞. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究. 农业生物技术学报, 2021, 29(11): 2074-2086. LI M Y, WANG J L, YAO T, WANG Z L, ZHANG H R, CHAI J L, LIU X T, LI Q P. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains. Journal of Agricultural Biotechnology, 2021, 29(11): 2074-2086.
[20] 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182. YANG W Q, JING J, ZHU L, GAO Y H. Screening and characteristics of plant growth-promoting rhizosphere from alpine meadow plants in Northwest Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182.
[21] 刘婷, 姚拓, 陈建纲, 刘欢. 固相萃取–高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206. LIU T, YAO T, CHEN J G, LIU H. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction–high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206.
[22] 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754 GAO Y M, YAO T, LI H Y, LUO H Q, ZHANG J G, YANG Y S, LIU T. Isolation, screening and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparumin alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754
[23] 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定. 草业学报, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005 LI J H, LI X P, LI C N, HAN B, XU W L, YAO T. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1 and determination of its taxonomic status. Acta Prataculturae Sinica, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005
[24] 李显刚, 姚拓, 舒键虹, 高巍. 三株优良促生菌的16S rDNA序列初探. 湖北畜牧兽医, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002 LI X G, YAO T, SHU J H, GAO W. Preliminary study on the 16S rDNA sequences of three excellent growth-promoting bacteria. Hubei Animal Husbandry and Veterinary Medicine, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002
[25] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017 ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiology, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017
[26] NARSIAN V, PATEL H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 2000, 32(4): 559-565. doi: 10.1016/S0038-0717(99)00184-4
[27] 张亮, 杨宇虹, 李倩, 吴叶宽, 黄建国. 自生固氮菌活化土壤无机磷研究. 生态学报, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930 ZHANG L, YANG Y H, LI Q, WU Y K, HUANG J G. Mobilization of inorganic phosphorus from soils by five azotobacters. Acta Ecologica Sinica, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930
[28] 康贻军, 胡健, 单君, 何芳, 朴哲, 殷士学. 两株解磷真菌的解磷能力及其解磷机理的初步研究. 微生物学通报, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005 KANG Y J, HU J, SHAN J, HE F, PU Z, YIN S X. Solubilization on capacity of insoluble phosphatesand it is mechanism by two phosphate solubilizing fungi. Microbiology China, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005
[29] SCERVINO J M, MESA M P, MONICA D L, RECCHI M, MORENO N S, GODEAS A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 2010, 46(7): 755-763. doi: 10.1007/s00374-010-0482-8
[30] KIM M S, PARK S J, LEE C H, YUN S G, KO B Y G, YANG J E. Effects of organic acids on availability of phosphate and growth of corn in phosphate and salts accumulated soil. Korean Journal of Soilence & Fertilizer, 2016, 49(3): 265-270.
[31] 胡梦媛, 李雅颖, 葛超荣, 张迎迎, 姚槐应. 禾本科植物联合固氮的研究现状及应用前景. 中国生态农业学报, 2021, 29(11): 1815-1826. HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815-1826.
[32] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析. 西安: 西北大学硕士学位论文, 2017. ZHUO L X. The analysis of soil bacteria and nitrogen fixation microbial diversity in different ecological region soils of Shaanxi Province. Master Thesis. Xi'an: Northwest University, 2017.
[33] 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38(1): 52-61. LUO X F, QI Y, MENG Y J, SHUAI H W, CHEN F, YANG W Y, SHU K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38(1): 52-61.
[34] XIANG Y, SONG X N, QIAO J, ZANG Y M, LI Y P, LIU Y, LIU C S. An ultrahigh-performance liquid chromatography method with electrospray ionizationt tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress. Journal of Natural Medicines, 2015, 69(3): 278-286. doi: 10.1007/s11418-015-0889-5
[35] 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究. 草业学报, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026 LIU T, YAO T, CHEN J G, MA W B, LIU H, MA C Y, JIANG Y M. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis. Acta Prataculturae Sinica, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026
[36] 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究. 哈尔滨: 东北林业大学硕士学位论文, 2021. TANG P J. Isolation and screening of J2 from pigeon pea [Bacillus safensis (L.) millsp] and its plant growth promoting function. Master Thesis. Harbin: Northeast Forestry University, 2021.
[37] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016. YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.
[38] 石玉莹, 宋海慧, 苗爽, 宫超, 王慧, 黄海锋, 陈秀玲, 张淑梅, 王傲雪. 番茄灰霉病和叶霉病拮抗细菌WXCDD51的筛选鉴定及其生防促生作用. 园艺学报, 2017, 44(10): 1925-1936. SHI Y Y, SONG H H, MIAO S, GONG C, WANG H, HUANG H F, CHEN X L, ZHANG S M, WANG A X. Screening, identification, biocontrol and growth promoting effects of antagonistic bacteria WXCDD51 of tomato gray mold disease and tomato leaf mold disease. Acta Horticulture, 2017, 44(10): 1925-1936.
[39] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用. 浙江农业科学, 2021, 62(2): 241-246. DAI M S, WANG Y Z, CAI D Y, SHI Z B, SUN J. Status of registration of microbial fertilizers in my country and its application in weight loss enhancement of fruit trees. Zhejiang Agricultural Sciences, 2021, 62(2): 241-246.
[40] 撖冬荣, 侯栋, 姚拓, 兰晓君, 朱瑞婷. 莴笋根部促生菌筛选与促生特性测定. 干旱地区农业研究, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17 HAN D R, HOU D, YAO T, LAN X J, ZHU R T. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17
[41] 李智燕, 冯今, 张洁, 温洪, 荣良燕, 陆飒, 谭立伟. 豆科牧草微生物肥料研究初探. 甘肃畜牧兽医, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036 LI Z Y, FENG J, ZHANG J, WEN H, RONG L Y, LU S, TAN L W. Preliminary study on microbial fertilizers for legume pastures. Gansu Animal Husbandry and Veterinary, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036
[42] 孙少志. 根际细菌对番茄生长与抗虫性的影响. 福州: 福建农林大学硕士学位论文, 2019. SUN S Z. Effects of rhizoshphere bacteria on growth and anti-herbivore resistance of tomato. Master Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2019.
-
表 1 PGPR菌株溶解有机磷能力
Table 1 Ability of PGPR to dissolve organic phosphorus
菌株编号
Strain code溶有机磷量
Dissolved organic
phosphorus/(µg·mL−1)pH ZMBJ1 15.83 ± 1.04i 3.13 ± 0.06efg ZMBJ2 141.49 ± 0.48a 2.97 ± 0.22g ZMBJ3 93.68 ± 8.17c 3.69 ± 0.09abc ZMBB1 63.45 ± 0.29e 3.01 ± 0.05fg ZMBB2 11.36 ± 0.57j 3.31 ± 0.04def ZMBN2 69.87 ± 0.29d 3.79 ± 0.27a ZMBN4 120.96 ± 1.00b 3.72 ± 0.39ab SMCB3 73.33 ± 2.13d 3.38 ± 0.05cde GMDJ1 26.35 ± 0.29h 3.46 ± 0.06bcd GMDJ3 44.49 ± 2.19f 3.53 ± 0.12abcd GMDJ4 33.97 ± 1.50g 3.41 ± 0.20bcde GMDJ5 17.78 ± 0.82i 3.51 ± 0.06abcd GMDB1 6.51 ± 0.29k 3.32 ± 0.02def GMDB3 9.91 ± 0.29jk 3.21 ± 0.25defg 不同小写字母表示不同菌株之间差异显著(P < 0.05);下表同。
Different lowercase letters within the same column indicate significant difference between the different strains at the 0.05 level; this is applicable for the following tables as well.表 2 PGPR菌株溶解无机磷能力
Table 2 Ability of PGPR to dissolve inorganic phosphorus
菌株编号
Strain code溶无机磷量
Dissolved inorganic
phosphorus/(µg·mL−1)pH ZPBJ2 417.52 ± 12.36de 4.34 ± 0.16cde ZPBJ3 417.15 ± 15.79de 3.98 ± 0.06f ZPBB1 381.24 ± 11.78f 4.52 ± 0.20bc ZPBB3 485.05 ± 20.03b 4.09 ± 0.11ef ZPBN1 533.93 ± 24.56a 4.04 ± 0.07f SPCJ2 498.65 ± 14.15b 4.03 ± 0.06cd SPCJ4 443.85 ± 5.54cd 4.19 ± 0.10def SPCB1 401.40 ± 27.90ef 4.79 ± 0.04a SPCB2 445.36 ± 24.00cd 4.56 ± 0.40abc SPCB4 470.31 ± 24.46bc 4.69 ± 0.06ab SPCN2 468.29 ± 21.88bc 4.16 ± 0.10def GPDJ1 371.29 ± 2.15f 4.36 ± 0.03cd GPDJ2 465.39 ± 3.17bc 4.04 ± 0.02f GPDB2 374.31 ± 21.21f 4.40 ± 0.19f GPDB3 538.59 ± 28.75a 3.98 ± 0.04f GPDB4 385.20 ± 16.42ef 3.99 ± 0.05f 表 3 PGPR菌株固氮能力
Table 3 Nitrogen fixing capacity of PGPR strains
菌株编号
Strain code固氮酶活性(C2H4)
Nitrogen capacity/[nmol·(h·mL)−1]ZNBJ1 152.53 ± 12.58ab ZNBJ2 135.74 ± 17.84abcd ZNBJ3 143.63 ± 13.86abc ZNBJ4 138.96 ± 21.72abcd ZNBJ5 134.74 ± 21.39abcd ZNBJ6 143.77 ± 19.73abc ZNBB1 121.34 ± 8.43abcd ZNBB2 110.60 ± 29.44bcd ZNBB3 106.88 ± 10.80bcd ZNBN1 131.27 ± 26.22abcd SNCJ1 138.46 ± 13.78abcd SNCJ2 125.55 ± 25.42abcd SNCJ3 135.63 ± 4.70abcd SNCB2 129.15 ± 31.61abcd GNDJ1 160.20 ± 37.14a GNDJ3 101.35 ± 5.66cd GNDJ4 139.38 ± 16.02abcd GNDJ5 106.62 ± 16.08bcd GNDJ6 132.27 ± 4.95abcd GNDB2 107.42 ± 46.28bcd GNDN1 136.84 ± 17.94abcd GNDN2 91.71 ± 60.49d 表 4 PGPR菌株分泌植物激素能力
Table 4 Ability of PGPR strains to secrete plant hormones
菌株编号
Strain code显色反应
Chromogenic reaction赤霉素(GA3)
Gibberellic acid/(µg·mL−1)生长素(IAA)
Indole-3-acetic acid/(µg·mL−1)玉米素(t-Z)
Trans-zeatin/(µg·mL−1)ZNBJ1 ++ − 0.27 ± 0.03d 0.12 ± 0.00e ZNBJ6 + − 0.10 ± 0.01d 0.14 ± 0.01de ZMBJ3 + 2.37 ± 0.03bc 0.15 ± 0.01d 0.24 ± 0.00cd ZNBB1 + − 0.12 ± 0.02d 0.49 ± 0.12b ZMBN2 + 5.16 ± 0.63bc 0.17 ± 0.04d 0.13 ± 0.01e ZMBN4 ++ 139.22 ± 17.62a 0.34 ± 0.05bc 0.18 ± 0.01cde ZPBN1 ++ 0.52 ± 0.02d 0.14 ± 0.02d 0.25 ± 0.05c SNCJ3 ++ 12.30 ± 1.49b 0.41 ± 0.06b 0.13 ± 0.01e SPCJ2 ++ 1.80 ± 0.09bc 0.13 ± 0.02d 0.12 ± 0.02e SPCB4 ++ 2.99 ± 1.30bc 0.92 ± 0.13a 0.99 ± 0.04a GMDJ3 + − 0.12 ± 0.02d 0.16 ± 0.06cde GNDJ4 + 1.00 ± 0.18bc 0.10 ± 0.002d 0.15 ± 0.02cde GMDB3 + 3.70 ± 0.19bc 0.11 ± 0.01d 0.16 ± 0.08cde GPDB3 + − 0.14 ± 0.01d 0.14 ± 0.01de IAA显色反应中;“++”表示深粉色;“+”表示浅粉色。
In the color reaction of IAA; “++” indicates dark pink; “+” indicates light pink.表 5 优良PGPR菌株综合特性
Table 5 Comprehensive characteristics of excellent PGPR strains
菌株编号
Strain code溶有机磷量
Dissolved organic
phosphorus/(µg·mL−1)溶无机磷量
Dissolved inorganic
phosphorus/(µg·mL−1)固氮酶活性
Nitrogen capacity/
[nmol·(h·mL)−1](C2H4)赤霉素(GA3)
Gibberellic acid/
(µg·mL−1)生长素(IAA)含量
Indole-3-acetic
acid/(µg·mL−1)玉米素(t-Z)
Trans-zeatin/
(µg·mL−1)ZMBJ2 141.40 ± 0.48a 307.60 ± 0.19ef 51.11 ± 7.52b − − − ZMBJ3 93.68 ± 8.17c 373.03 ± 0.50d 28.06 ± 15.47bc 2.37 ± 0.03bc 0.15 ± 0.01d 0.24 ± 0.00cd ZMBN4 120.90 ± 1.00b 288.50 ± 0.29f 37.68 ± 16.97bc 139.20 ± 17.62a 0.34 ± 0.05bc 0.10 ± 0.01cde ZPBN1 30.44 ± 0.50g 533.90 ± 24.57a − 0.52 ± 0.02d 0.14 ± 0.02d 0.25 ± 0.05c ZNBJ1 28.68 ± 0.58g 260.10 ± 0.66g 152.53 ± 12.58a − 0.27 ± 0.03d 0.12 ± 0.00e ZNBJ3 46.00 ± 0.48f 326.17 ± 0.57e 143.63 ± 13.86a − − − SPCJ2 47.45 ± 0.50f 498.60 ± 14.15b 18.50 ± 6.79bc 1.80 ± 0.09bc 0.13 ± 0.02d 0.12 ± 0.02e SPCB4 71.70 ± 0.29d 470.30 ± 24.46c 14.96 ± 0.47c 2.99 ± 1.30bc 0.92 ± 0.13a 0.99 ± 0.04a GPDB3 32.46 ± 0.22g 538.50 ± 28.75a 15.34 ± 1.49c − 0.14 ± 0.01d 0.14 ± 0.01de GNDJ1 70.94 ± 0.39d 292.09 ± 4.58f 160.20 ± 37.14a − − − GNDJ4 − 363.90 ± 0.85d 139.38 ± 16.02a 1.00 ± 0.18bc 0.10 ± 0.00 0.15 ± 0.02cde GNDN1 64.90 ± 0.48e 319.49 ± 8.95e 136.84 ± 17.94a − − − 表 6 优良PGPR菌株鉴定
Table 6 Identification of superior PGPR strains
菌株编号
Strain code宿主植物
Host plant分离部位
Separation site同源性菌株
Homologous strain相似度
Similarity/%SPCB4 草地早熟禾 Poa pratensis RP Enterobacter huaxiensis 98.54 ZNBJ3 中华羊茅 Festuca sinensis RS Pseudomonas piscium 99.59 ZNBJ1 中华羊茅 Festuca sinensis RS Pseudomonas piscium 99.35 SPCJ2 草地早熟禾 Poa pratensis RS Pseudomonas piscium 99.19 GPDB3 紫穗鹅观草 Roegneria purpurascens RP Pseudomonas piscium 99.59 GNDN1 紫穗鹅观草 Roegneria purpurascens HP Pseudomonas piscium 99.59 GNDJ1 紫穗鹅观草 Roegneria purpurascens RS Pseudomonas piscium 99.51 ZPBN1 中华羊茅 Festuca sinensis HP Pseudomonas neuropathica 98.78 ZMBJ3 中华羊茅 Festuca sinensis RS Pseudomonas neuropathica 99.19 ZMBJ2 中华羊茅 Festuca sinensis RS Pseudomonas pisciculturae 99.30 ZMBN4 中华羊茅 Festuca sinensis HP Pseudomonas bubulae 98.88 GNDJ4 紫穗鹅观草 Roegneria purpurascens RS Pseudomonas mucoides 99.19 RP:根表面; RS:根表土;HP:根内。
RP: rhizoplane or surface of roots; RS: soil adhering to roots; HP: histoplane or interior of roots. -
[1] ZOU J R, LUO C Y, XU X L, ZHAO N, ZHAO L, ZHAO X Q. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecological Research, 2016, 31(6): 841-851. doi: 10.1007/s11284-016-1394-3
[2] 雷声剑. 祁连县高寒草地生态系统服务价值评估与生态补偿研究. 西安: 陕西师范大学硕士学位论文, 2016. LEI S J. Research on ecosystem service value evaluation and ecological compensation of alpine grassland in Qilian County. Master Thesis. Xi'an: Shaanxi Normal University, 2016.
[3] 齐洋. 放牧制度对玛曲高寒草地植被和土壤的影响. 北京: 北京林业大学硕士学位论文, 2019. QI Y. Effects of grazing system on vegetation and soil of on an alpine meadow in Maqu Country, Gansu. Master Thesis. Beijing: Beijing Forestry University, 2019.
[4] 郑雨馨. 肃南裕固族自治县高寒草地水资源潜力及水草畜平衡配置研究. 北京: 北京林业大学硕士学位论文, 2019. ZHENG Y X. Study on water resources potential and balanced configuration of water-grass-livestock in alpine grassland of Sunan Yugu Autonomous County. Master Thesis. Beijing: Beijing Forestry University, 2019.
[5] BAI X J, YANG X, ZHANG S M, AN S S. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021, 57(4): 563-574. doi: 10.1007/s00374-021-01549-1
[6] QIANG L I. Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China. Journal of Arid Land, 2014, 6(4): 478-487. doi: 10.1007/s40333-013-0207-6
[7] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12. ZHAO Y Z, WANG H M, WANG Z Q. The role of leguminous plants and rhizobium in ecological environment. Journal of Agricultural Resources and Environment, 2013, 30(4): 7-12.
[8] LIU C J, GONG X W, DANG K, LI J, YANG P, GAO X L, DENG X P, FENG B L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environmental Research, 2020, 184: 109261. doi: 10.1016/j.envres.2020.109261
[9] 蒋永梅. 四种植物根际促生菌筛选及生物菌肥效果研究. 兰州: 甘肃农业大学硕士学位论文, 2017. JIANG Y M. Screening plant growth promoting rhizobacteria from four plants and study on the application of biofertilizer. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.
[10] LI H Y, QIU Y Z, YAO T. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago Sativa, and Cucumis Sativus seedlings. Soil and Tillage Research, 2020, 199(1): 792-801.
[11] 王伟, 岳政府, 刘孝文, 张瑞福. 低温适应型植物根际促生细菌的筛选及促生效应研究. 南京农业大学学报, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022 WANG W, YUE Z F, LIU X W, ZHANG R F. Screening of low temperature adapted plant growth-promoting rhizosphere and investigating of their promoting effects. Journal of Nanjing Agricultural University, 2017, 40(1): 93-100. doi: 10.7685/jnau.201604022
[12] 崔晓双, 王伟, 张如, 张瑞福. 基于根际营养竞争的植物根际促生菌的筛选及促生效应研究. 南京农业大学学报, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013 CUI X S, WANG W, ZHANG R, ZHANG R F. Screening of plant growth-promoting rhizobacteria based on rhizosphere nutrition competiveness and investigation of their promoting effects. Journal of Nanjing Agricultural University, 2015, 38(6): 958-966. doi: 10.7685/j.issn.1000-2030.2015.06.013
[13] 任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思. 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 2021, 29(10): 2265-2273. REN Z R, SHAO X Q, LI J S, LI H, HE Y X, GU W N, WANG R Y, YANG L J, LIU K S. Effects of microbial fertilizer on aboveground biomass and soil physical and properties of degraded alpine meadows. Acta Agrestia Sinica, 2021, 29(10): 2265-2273.
[14] PIROMYOU P, BURANABANYAT B, TANTASAWAT P, TITTABUTR P, BOONKERD N, TEAUMROONG N. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. doi: 10.1016/j.ejsobi.2010.11.004
[15] 杨林, 石莎, 冯金朝, 赵敏杰, 陶季, 蓝智钢. 青海海北高寒草甸植被多样性研究. 中央民族大学学报, 2008, 17(S1): 126-132. YANG L, SHI S, FENG J C, ZHAO M J, TAO J, LAN Z G. Plant diversity in alpine meadow in Haibei Regionof Qinghai Province. Journal of Central University for Nationalities, 2008, 17(S1): 126-132.
[16] 井向前, 王瑞红, 任德智, 白玛玉珍, 潘刚, 周尧治. 青海海北3种典型高寒草甸植物群落特征研究. 草地学报, 2017, 25(1): 190-194. JING X Q, WANG R H, REN D Z, Baimayuzhen, PAN G, ZHOU Y Z. Characteristics of three kinds of typical plant communities of the alpine meadow in Haibei region, Qinghai. Acta Agrestia Sinica, 2017, 25(1): 190-194.
[17] 陈丹阳, 李汉全, 张炳火. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418. CHEN D Y, LI H Q, ZHANG B H. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418.
[18] 刘婷. 高寒草甸优势植物根际促生菌资源评价及菌种鉴定. 兰州: 甘肃农业大学硕士学位论文, 2016. LIU T. Evaluating and identifying of plant growth promoting rhizobacteria of dominant alpine meadows. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.
[19] 李明源, 王继莲, 姚拓, 王振龙, 张惠荣, 柴加丽, 刘晓婷, 李青璞. 祁连山高寒草地扁蓿豆和黄花棘豆耐冷PGPB的筛选及促生特性研究. 农业生物技术学报, 2021, 29(11): 2074-2086. LI M Y, WANG J L, YAO T, WANG Z L, ZHANG H R, CHAI J L, LIU X T, LI Q P. Screening and promoting effects of cold-adapted PGPB from Melissitus ruthenica and Oxytropis ochrocephala grown in the alpine grassland of Qilian Mountains. Journal of Agricultural Biotechnology, 2021, 29(11): 2074-2086.
[20] 杨婉秋, 敬洁, 朱灵, 高永恒. 川西北高寒草甸植物根际促生菌筛选及其特性研究. 草地学报, 2021, 29(6): 1174-1182. YANG W Q, JING J, ZHU L, GAO Y H. Screening and characteristics of plant growth-promoting rhizosphere from alpine meadow plants in Northwest Sichuan. Acta Agrestia Sinica, 2021, 29(6): 1174-1182.
[21] 刘婷, 姚拓, 陈建纲, 刘欢. 固相萃取–高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206. LIU T, YAO T, CHEN J G, LIU H. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction–high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206.
[22] 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754 GAO Y M, YAO T, LI H Y, LUO H Q, ZHANG J G, YANG Y S, LIU T. Isolation, screening and growth-promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparumin alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. doi: 10.11686/cyxb2018754
[23] 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定. 草业学报, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005 LI J H, LI X P, LI C N, HAN B, XU W L, YAO T. Characterization of a plant-growth-promoting rhizosphere bacterium, Gnyt1 and determination of its taxonomic status. Acta Prataculturae Sinica, 2019, 28(5): 55-67. doi: 10.11686/cyxb2018005
[24] 李显刚, 姚拓, 舒键虹, 高巍. 三株优良促生菌的16S rDNA序列初探. 湖北畜牧兽医, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002 LI X G, YAO T, SHU J H, GAO W. Preliminary study on the 16S rDNA sequences of three excellent growth-promoting bacteria. Hubei Animal Husbandry and Veterinary Medicine, 2020, 41(6): 5-7, 9. doi: 10.3969/j.issn.1007-273X.2020.06.002
[25] 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017 ZHAO X R, LIN Q M, LI B G. The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiology, 2002, 42(2): 236-241. doi: 10.3321/j.issn:0001-6209.2002.02.017
[26] NARSIAN V, PATEL H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 2000, 32(4): 559-565. doi: 10.1016/S0038-0717(99)00184-4
[27] 张亮, 杨宇虹, 李倩, 吴叶宽, 黄建国. 自生固氮菌活化土壤无机磷研究. 生态学报, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930 ZHANG L, YANG Y H, LI Q, WU Y K, HUANG J G. Mobilization of inorganic phosphorus from soils by five azotobacters. Acta Ecologica Sinica, 2013, 33(7): 2157-2164. doi: 10.5846/stxb201112191930
[28] 康贻军, 胡健, 单君, 何芳, 朴哲, 殷士学. 两株解磷真菌的解磷能力及其解磷机理的初步研究. 微生物学通报, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005 KANG Y J, HU J, SHAN J, HE F, PU Z, YIN S X. Solubilization on capacity of insoluble phosphatesand it is mechanism by two phosphate solubilizing fungi. Microbiology China, 2006, 33(5): 22-27. doi: 10.3969/j.issn.0253-2654.2006.05.005
[29] SCERVINO J M, MESA M P, MONICA D L, RECCHI M, MORENO N S, GODEAS A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils, 2010, 46(7): 755-763. doi: 10.1007/s00374-010-0482-8
[30] KIM M S, PARK S J, LEE C H, YUN S G, KO B Y G, YANG J E. Effects of organic acids on availability of phosphate and growth of corn in phosphate and salts accumulated soil. Korean Journal of Soilence & Fertilizer, 2016, 49(3): 265-270.
[31] 胡梦媛, 李雅颖, 葛超荣, 张迎迎, 姚槐应. 禾本科植物联合固氮的研究现状及应用前景. 中国生态农业学报, 2021, 29(11): 1815-1826. HU M Y, LI Y Y, GE C R, ZHANG Y Y, YAO H Y. Research status and application prospects of combined nitrogen fixation in gramineous plants. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1815-1826.
[32] 卓丽霞. 陕西不同生态区土壤细菌及固氮微生物多样性分析. 西安: 西北大学硕士学位论文, 2017. ZHUO L X. The analysis of soil bacteria and nitrogen fixation microbial diversity in different ecological region soils of Shaanxi Province. Master Thesis. Xi'an: Northwest University, 2017.
[33] 罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展. 遗传, 2016, 38(1): 52-61. LUO X F, QI Y, MENG Y J, SHUAI H W, CHEN F, YANG W Y, SHU K. Current understanding of signaling transduction pathway and biological functions of Karrikins. Hereditas, 2016, 38(1): 52-61.
[34] XIANG Y, SONG X N, QIAO J, ZANG Y M, LI Y P, LIU Y, LIU C S. An ultrahigh-performance liquid chromatography method with electrospray ionizationt tandem mass spectrometry for simultaneous quantification of five phytohormones in medicinal plant Glycyrrhiza uralensis under abscisic acid stress. Journal of Natural Medicines, 2015, 69(3): 278-286. doi: 10.1007/s11418-015-0889-5
[35] 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究. 草业学报, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026 LIU T, YAO T, CHEN J G, MA W B, LIU H, MA C Y, JIANG Y M. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis. Acta Prataculturae Sinica, 2016, 25(12): 130-139. doi: 10.11686/cyxb2016026
[36] 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究. 哈尔滨: 东北林业大学硕士学位论文, 2021. TANG P J. Isolation and screening of J2 from pigeon pea [Bacillus safensis (L.) millsp] and its plant growth promoting function. Master Thesis. Harbin: Northeast Forestry University, 2021.
[37] 俞华富. 丁香假单胞菌MB03杀线虫毒性基因的克隆表达与杀虫活性研究. 武汉: 华中农业大学硕士学位论文, 2016. YU H F. Expression of pathogenic gene from Pseudomonas syringae MB03 and nematicidal activity against Caenorhabditis elegans. Master Thesis. Wuhan: Huazhong Agricultural University, 2016.
[38] 石玉莹, 宋海慧, 苗爽, 宫超, 王慧, 黄海锋, 陈秀玲, 张淑梅, 王傲雪. 番茄灰霉病和叶霉病拮抗细菌WXCDD51的筛选鉴定及其生防促生作用. 园艺学报, 2017, 44(10): 1925-1936. SHI Y Y, SONG H H, MIAO S, GONG C, WANG H, HUANG H F, CHEN X L, ZHANG S M, WANG A X. Screening, identification, biocontrol and growth promoting effects of antagonistic bacteria WXCDD51 of tomato gray mold disease and tomato leaf mold disease. Acta Horticulture, 2017, 44(10): 1925-1936.
[39] 戴美松, 王月志, 蔡丹英, 施泽彬, 孙钧. 我国微生物菌肥登记现状及其在果树减肥增效中的应用. 浙江农业科学, 2021, 62(2): 241-246. DAI M S, WANG Y Z, CAI D Y, SHI Z B, SUN J. Status of registration of microbial fertilizers in my country and its application in weight loss enhancement of fruit trees. Zhejiang Agricultural Sciences, 2021, 62(2): 241-246.
[40] 撖冬荣, 侯栋, 姚拓, 兰晓君, 朱瑞婷. 莴笋根部促生菌筛选与促生特性测定. 干旱地区农业研究, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17 HAN D R, HOU D, YAO T, LAN X J, ZHU R T. Lettuce root growth promoting bacteria screening and determination of growth promoting properties. Agricultural Research in the Arid Areas, 2020, 38(3): 127-133. doi: 10.7606/j.issn.1000-7601.2020.03.17
[41] 李智燕, 冯今, 张洁, 温洪, 荣良燕, 陆飒, 谭立伟. 豆科牧草微生物肥料研究初探. 甘肃畜牧兽医, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036 LI Z Y, FENG J, ZHANG J, WEN H, RONG L Y, LU S, TAN L W. Preliminary study on microbial fertilizers for legume pastures. Gansu Animal Husbandry and Veterinary, 2015, 45(11): 69-71. doi: 10.3969/j.issn.1006-799X.2015.11.036
[42] 孙少志. 根际细菌对番茄生长与抗虫性的影响. 福州: 福建农林大学硕士学位论文, 2019. SUN S Z. Effects of rhizoshphere bacteria on growth and anti-herbivore resistance of tomato. Master Thesis. Fuzhou: Fujian Agriculture and Forestry University, 2019.