欢迎访问 草业科学,今天是2025年4月13日 星期日!

盐胁迫下3种外源物对高羊茅生理指标的影响

林之林, 郝田, 于景金, 杨志民

林之林,郝田,于景金,杨志民. 盐胁迫下3种外源物对高羊茅生理指标的影响. 草业科学, 2022, 39(4): 720-730 . DOI: 10.11829/j.issn.1001-0629.2021-0537
引用本文: 林之林,郝田,于景金,杨志民. 盐胁迫下3种外源物对高羊茅生理指标的影响. 草业科学, 2022, 39(4): 720-730 . DOI: 10.11829/j.issn.1001-0629.2021-0537
LIN Z L, HAO T, YU J J, YANG Z M. Effects of three exogenous substances on the physiological indexes of tall fescue under salt stress. Pratacultural Science, 2022, 39(4): 720-730 . DOI: 10.11829/j.issn.1001-0629.2021-0537
Citation: LIN Z L, HAO T, YU J J, YANG Z M. Effects of three exogenous substances on the physiological indexes of tall fescue under salt stress. Pratacultural Science, 2022, 39(4): 720-730 . DOI: 10.11829/j.issn.1001-0629.2021-0537

盐胁迫下3种外源物对高羊茅生理指标的影响

基金项目: 江苏省林业科技创新与推广项目(LYKJ[2021]29);科技部科技基础资源调查专项-南方草地牧草资源调查(项目编号:2017FY100603)。
摘要: 为探讨如何提高高羊茅(Festuca arundinace)对盐胁迫的适应能力,本研究以高羊茅为研究对象,通过盆栽试验探究盐胁迫(NaCl)下叶面喷施硫酸钾(K2SO4)、甜菜碱(glycine betaine, GB)和抗坏血酸(ascorbic acid, AsA)对草坪质量(turf quality, TQ)、叶片相对含水量(relative water content, RWC)、渗透调节能力(osmotic adjustment)、电解质渗漏率(electrolyte leakage, EL)、丙二醛含量(malonaldehyde content, MDA)、离子含量和抗氧化物酶的影响。结果表明,叶面喷施K2SO4、GB、AsA均能在一定程度上提高高羊茅的耐盐能力,其中以喷施GB效果最佳,AsA次之。与其他处理相比,喷施GB可以更有效地改善盐胁迫下高羊茅草坪质量,并抑制叶片相对含水量的下降,同时叶片具有较高的渗透势和较低的电解质渗漏率。此外,GB处理可以明显抑制叶片中丙二醛和H2O2的积累,同时在延缓过氧化氢酶(catalase, CAT)和抗坏血酸过氧化物酶(ascorbate peroxidase, APX)活力下降方面效果显著。以上结果表明,外源GB处理可以提高高羊茅的渗透调节能力和抗氧化酶活性,进而提升其耐盐能力。

 

English

  • [1]

    SAIRAM R K, RAO K V, SRIVASTAVA G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 2002, 163(5): 1037-1046. doi: 10.1016/S0168-9452(02)00278-9

    [2] 陈兰, 黄广远. 多效唑对盐胁迫下高羊茅耐盐性的应用. 草业科学, 2009, 26(8): 177-180. doi: 10.3969/j.issn.1001-0629.2009.08.032

    CHEN L, HUANG G Y. Effect of paclobutrazal on the salt tolerance of Festuca arundinacea. Pratacultural Science, 2009, 26(8): 177-180. doi: 10.3969/j.issn.1001-0629.2009.08.032

    [3]

    ARZANI A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cellular& Developmental Biology-Plant, 2008, 44(5): 373-383.

    [4]

    PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. doi: 10.1016/j.ecoenv.2004.06.010

    [5]

    WANG X W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1-14. doi: 10.1007/s00425-003-1105-5

    [6]

    XIE Y, HAN S, LI X, AMOMBO E, FU J. Amelioration of salt stress on bermudagrass by the fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions, 2017, 30(3): 245-254. doi: 10.1094/MPMI-12-16-0263-R

    [7]

    ACOSTA M J R, ORTUNO M F, BERNAL V A, DIAZ V P, SANCHEZ B M J, HERNANDEZ J A. Plant responses to salt stress: Adaptive mechanisms. Agronomy, 2017, 7(1): 18-55. doi: 10.3390/agronomy7010018

    [8]

    KINNERSLEY A M, TURANO F J. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 2000, 19(6): 479-509. doi: 10.1080/07352680091139277

    [9] 董丽华, 姚爱兴, 王宁. 盐分对草坪草影响研究概述. 西北林学院学报, 2006(1): 64-67. doi: 10.3969/j.issn.1001-7461.2006.01.015

    DONG L H, YAO A N, WANG N. A review on salinity tolerance of turfgrass. Journal of Northwest Forestry University, 2006(1): 64-67. doi: 10.3969/j.issn.1001-7461.2006.01.015

    [10]

    ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59(2): 206-216. doi: 10.1016/j.envexpbot.2005.12.006

    [11]

    ARAANI A, ASHRAF M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 2016, 35(3): 1-44.

    [12] 郑延海, 宁堂原, 贾爱君, 李增嘉, 韩宾, 江晓东, 李卫东. 钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用. 植物营养与肥料学报, 2007(3): 381-386. doi: 10.3321/j.issn:1008-505X.2007.03.005

    ZHENG Y H, NING T Y, JIA A J, LI Z J, HAN B, JIANG X D, LI W D. Amortizing functions of potassium nutrition on different genotypes wheat seedling under NaCl stress. Journal of Plant Nutrition and Fertilizers, 2007(3): 381-386. doi: 10.3321/j.issn:1008-505X.2007.03.005

    [13] 马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响. 草业科学, 2019, 36(12): 3100-3110. doi: 10.11829/j.issn.1001-0629.2019-0361

    MA T Y, LI Y Z. Effects of exogenous betaine on alfalfa seed germination and seedling resistance under NaCl stress. Pratacultural Science, 2019, 36(12): 3100-3110. doi: 10.11829/j.issn.1001-0629.2019-0361

    [14] 江绪文, 李贺勤, 王建华. 盐胁迫下黄芩种子萌发及幼苗对外源抗坏血酸的生理响应. 植物生理学报, 2015, 51(2): 166-170.

    JIANG X W, LI H Q, WANG J H. Physiological response of Scutellaria baicalensis seed germination and seedling to exogenous ascorbic acid under salt stress. Plant Physiology Journal, 2015, 51(2): 166-170.

    [15]

    XIE Y, SUN X Y, FENG Q J, LUO H J, WASSIE M, AMEE M, AMOMBO E, CHEN L. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Plant Physiology and Biochemistry, 2019, 142: 342-350. doi: 10.1016/j.plaphy.2019.07.022

    [16]

    YANG M, YU J, MEREWITZ E, HUANG B R. Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. Journal of the American Society for Horticultural Science, 2012, 137(2): 96-106. doi: 10.21273/JASHS.137.2.96

    [17] 樊瑞苹. 外源抗坏血酸对盐胁迫下高羊茅生长的影响及调控机理. 南京: 南京农业大学硕士学位论文, 2010.

    FAN R P. Study on the effect of ascorbic acid on growth and regulation mechanism of tall fescue under salt stress. Master Thesis. Nanjing: Nanjing Agricultural University, 2010.

    [18]

    TURGEON A J. Turfgrass Management. New Jersty: Prentice Hall, 1999.

    [19]

    BARRS H, WEATHERLEY P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 1962, 15(3): 13-28.

    [20]

    ZHU G L, ZHONG H W, ZHANG A Q. Plant Physiology Experiment. Beijing: Peking University Press, 1990.

    [21]

    AEBI H. Catalase in Vitro. Methods Enzymology. America: Academic Press, 1984, 105: 121-126.

    [22]

    NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880.

    [23]

    VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 2006, 9(2): 189-195. doi: 10.1016/j.pbi.2006.01.019

    [24]

    CATHEY E, KRUSE J K, SINCLAIR T R, DUKES M D. Tolerance of three warm-season turfgrasses to increasing and prolonged soil water deficit. HortScience, 2011, 46(11): 1550-1555. doi: 10.21273/HORTSCI.46.11.1550

    [25] 陈兰, 胡南, 费永俊. 不同盐度对弯叶画眉草生长的影响. 安徽农学通报, 2006(8): 44-45. doi: 10.3969/j.issn.1007-7731.2006.08.021

    CHEN L, HU N, FEI Y J. Effect of different salinity on the growth of eyebrow grass in bent leaves. Anhui Agricultural Science Bulletin, 2006(8): 44-45. doi: 10.3969/j.issn.1007-7731.2006.08.021

    [26] 梁超. 过量积累甜菜碱改善小麦耐盐性的生理机制研究. 泰安: 山东农业大学硕士学位论文, 2007.

    LIANG C. Physiological mechanism of excessive accumulation of betaine to improve salt tolerance in wheat. Master Thesis. Tai’an: Shandong Agricultural University, 2007.

    [27]

    MUNNS R, GILLIHAM M. Salinity tolerance of crops-what is the cost. New Phytologist, 2005, 208: 668-673.

    [28] 王玉凤. 玉米苗期对NaCl胁迫的响应与耐盐性调控机理的研究. 沈阳: 沈阳农业大学博士学位论文, 2008.

    WANG Y F. Responses of maize seedling under NaCl stress and the regulatory mechanism of salt tolerance. PhD Thesis. Shenyang: Shenyang Agricultural University, 2008.

    [29] 江生泉, 薛正帅, 李晨, 汤士勇, 杨志民. 外源乙硫氨酸对盐胁迫下高羊茅的缓解效应. 云南大学学报(自然科学版), 2020, 42(1): 179-186.

    JIANG S Q, XUE Z S, LI C, TANG S Y, YANG Z M. Alleviation effect of exogenous ethionine on tall fescue under salt stress. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(1): 179-186.

    [30] 李玉静, 宋宪亮, 杨兴洪, 刘娟, 李学刚, 朱玉庆, 孙学振, 王振林. 甜菜碱浸种对棉苗耐盐性的影响. 作物学报, 2008(2): 305-310. doi: 10.3321/j.issn:0496-3490.2008.02.020

    LI Y J, SONG X L, YANG X H, LIU J, LI X G, ZHU Y Q, SUN X Z, WANG Z L. Effects of seed soaking with Glycinebetaine on the salt tolerance of cotton seedlings. Acta Agronomica Sinica, 2008(2): 305-310. doi: 10.3321/j.issn:0496-3490.2008.02.020

    [31]

    MUNNS R,TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

    [32]

    TESTER M, DAVENPORT R. Na + tolerance and Na + transport in higher plants. Annals of Botany, 2003, 91(5): 503-527. doi: 10.1093/aob/mcg058

    [33] 康爱平, 刘艳, 王殿, 王宝山, 陈敏. 钾对能源植物杂交狼尾草耐盐性的影响. 生态学报, 2014, 34(20): 5793-5801.

    KANG A P, LIU Y, WANG D, WANG B S, CHEN M. The effect of K on the salt tolerance of the bioenergy plant hybrid Pennisetum. Acta Ecologica Sinica, 2014, 34(20): 5793-5801.

    [34] 蒋乔峰, 陈静波, 宗俊勤, 李珊, 褚晓晴, 郭海林, 刘建秀. 盐胁迫下磷素对沟叶结缕草生长及Na+和K+含量的影响. 草业学报, 2013, 22(3): 162-168. doi: 10.11686/cyxb20130321

    JIANG Q F, CHEN J B, ZONG J F, LI S, CHU X J, GUO H L, LIU J X. Effect of phosphorus on Na+ and K+ concentrations and the growth of Zoysia matrella under salt stress. Acta Prataculturae Sinica, 2013, 22(3): 162-168. doi: 10.11686/cyxb20130321

    [35]

    YAMASAKI H, SAKIHAMA Y, IKEHARA N. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiology, 1997, 115(4): 5-12.

    [36]

    THORDAL H, ZHANG Z G, WEI Y D, COLLINGE D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 1997, 11(6): 87-94.

    [37]

    BIAN S, JIANG Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009, 120(2): 264-270. doi: 10.1016/j.scienta.2008.10.014

    [38] 邓茳明, 熊格生, 袁小玲, 刘志. 棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应. 棉花学报, 2010(3): 242-247. doi: 10.3969/j.issn.1002-7807.2010.03.009

    DEN J M, XIONG G S, YUAN X L, LIU Z. Differences in SOD, POD, CAT activities and MDA content and their responses to high temperature stress at peak flowering stage in cotton lines with different tolerance to high temperature. Cotton Science, 2010(3): 242-247. doi: 10.3969/j.issn.1002-7807.2010.03.009

    [39] 孙卫红, 王伟青, 孟庆伟. 植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性. 植物生理学通讯, 2005(2): 143-147.

    SUN W H, WANG W Q, MENG Q W. Functional mechanism and enzymatic and molecular characteristic of ascorbate peroxidase in plants. Plant Physiology Journal, 2005(2): 143-147.

    [40]

    SHAN J, HAN L, LIANG S. Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the loess plateau of China. Chinese Journal of Plant Ecology, 2011, 35(6): 53-62.

    [41]

    PAYTON P, WEBB R, KORNYEYEV D, ALLEN R, HOLADAY A S. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. Journal of Experimental Botany, 2001, 52(365): 2345-2354. doi: 10.1093/jexbot/52.365.2345

    [42] 范美华, 张义鑫, 石戈, 崔大练, 李鹏. 外源抗坏血酸对油菜种子在海水胁迫下萌发生长的影响. 中国油料作物学报, 2009, 31(1): 34-38. doi: 10.3321/j.issn:1007-9084.2009.01.007

    FAN M H, ZHANG Y X, SHI G, CUI D L, LI P. Effects of exogenous ascorbic acid on seed germination and growth of Brassica napus under seawater stress. Chinese Journal of Oil Crop Sciences, 2009, 31(1): 34-38. doi: 10.3321/j.issn:1007-9084.2009.01.007

  • 图  1   盐胁迫下3种外源物对高羊茅表型的影响

    Figure  1.   Effect of three substances on phenotype of tall fescue under salt stress

    图  2   非盐胁迫和盐胁迫下3种外源物对高羊茅草坪质量的影响

    竖线代表LSD值(P < 0.05),表示同一时间点不同处理间差异显著;下图同。

    Figure  2.   Effect of three substances on the turf quality of tall fescue under non-salt stress and salt stress

    Bar represents difference among different treatments by least significant difference (LSD) test at the 0.05 level; this is applicable for the following figures.

    图  3   非盐胁迫和盐胁迫下3种外源物对高羊茅相对含水量的影响

    Figure  3.   Effect of three substances on the relative water content of tall fescue under non-salt stress and salt stress

    图  4   盐胁迫下3种外源物对高羊茅渗透压的影响

    Figure  4.   Effect of three substances on the osmotic adjustment of tall fescue under salt stress

    图  5   非盐胁迫和盐胁迫下3种外源物对高羊茅电解质渗漏率的影响

    Figure  5.   Effect of three substances on the electrolyte leakage of tall fescue under non-salt stress and salt stress

    图  6   非盐胁迫和盐胁迫下3种外源物对高羊茅离子含量的影响

    Figure  6.   Effect of three substances on the ion content of tall fescue under non-salt stress and salt stress

    图  7   非盐胁迫和盐胁迫下3种外源物对高羊茅丙二醛含量的影响

    Figure  7.   Effect of three substances on the MDA content of tall fescue under non-salt stress and salt stress

    图  8   非盐胁迫和盐胁迫下3种外源物对高羊茅叶片DAB染色观察

    Figure  8.   Effect of three substances on the DAB staining observed in tall fescue under non-salt stress and salt stress

    图  9   非盐胁迫和盐胁迫下3种外源物对高羊茅CAT活性的影响

    Figure  9.   Effect of three substances on the CAT activity of tall fescue under non-salt stress and salt stress

    图  10   非盐胁迫和盐胁迫下3种外源物对高羊茅APX活性的影响

    Figure  10.   Effect of three substances on the APX activity of tall fescue under non-salt stress and salt stress

  • [1]

    SAIRAM R K, RAO K V, SRIVASTAVA G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 2002, 163(5): 1037-1046. doi: 10.1016/S0168-9452(02)00278-9

    [2] 陈兰, 黄广远. 多效唑对盐胁迫下高羊茅耐盐性的应用. 草业科学, 2009, 26(8): 177-180. doi: 10.3969/j.issn.1001-0629.2009.08.032

    CHEN L, HUANG G Y. Effect of paclobutrazal on the salt tolerance of Festuca arundinacea. Pratacultural Science, 2009, 26(8): 177-180. doi: 10.3969/j.issn.1001-0629.2009.08.032

    [3]

    ARZANI A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cellular& Developmental Biology-Plant, 2008, 44(5): 373-383.

    [4]

    PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. doi: 10.1016/j.ecoenv.2004.06.010

    [5]

    WANG X W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 1-14. doi: 10.1007/s00425-003-1105-5

    [6]

    XIE Y, HAN S, LI X, AMOMBO E, FU J. Amelioration of salt stress on bermudagrass by the fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions, 2017, 30(3): 245-254. doi: 10.1094/MPMI-12-16-0263-R

    [7]

    ACOSTA M J R, ORTUNO M F, BERNAL V A, DIAZ V P, SANCHEZ B M J, HERNANDEZ J A. Plant responses to salt stress: Adaptive mechanisms. Agronomy, 2017, 7(1): 18-55. doi: 10.3390/agronomy7010018

    [8]

    KINNERSLEY A M, TURANO F J. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 2000, 19(6): 479-509. doi: 10.1080/07352680091139277

    [9] 董丽华, 姚爱兴, 王宁. 盐分对草坪草影响研究概述. 西北林学院学报, 2006(1): 64-67. doi: 10.3969/j.issn.1001-7461.2006.01.015

    DONG L H, YAO A N, WANG N. A review on salinity tolerance of turfgrass. Journal of Northwest Forestry University, 2006(1): 64-67. doi: 10.3969/j.issn.1001-7461.2006.01.015

    [10]

    ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59(2): 206-216. doi: 10.1016/j.envexpbot.2005.12.006

    [11]

    ARAANI A, ASHRAF M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 2016, 35(3): 1-44.

    [12] 郑延海, 宁堂原, 贾爱君, 李增嘉, 韩宾, 江晓东, 李卫东. 钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用. 植物营养与肥料学报, 2007(3): 381-386. doi: 10.3321/j.issn:1008-505X.2007.03.005

    ZHENG Y H, NING T Y, JIA A J, LI Z J, HAN B, JIANG X D, LI W D. Amortizing functions of potassium nutrition on different genotypes wheat seedling under NaCl stress. Journal of Plant Nutrition and Fertilizers, 2007(3): 381-386. doi: 10.3321/j.issn:1008-505X.2007.03.005

    [13] 马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响. 草业科学, 2019, 36(12): 3100-3110. doi: 10.11829/j.issn.1001-0629.2019-0361

    MA T Y, LI Y Z. Effects of exogenous betaine on alfalfa seed germination and seedling resistance under NaCl stress. Pratacultural Science, 2019, 36(12): 3100-3110. doi: 10.11829/j.issn.1001-0629.2019-0361

    [14] 江绪文, 李贺勤, 王建华. 盐胁迫下黄芩种子萌发及幼苗对外源抗坏血酸的生理响应. 植物生理学报, 2015, 51(2): 166-170.

    JIANG X W, LI H Q, WANG J H. Physiological response of Scutellaria baicalensis seed germination and seedling to exogenous ascorbic acid under salt stress. Plant Physiology Journal, 2015, 51(2): 166-170.

    [15]

    XIE Y, SUN X Y, FENG Q J, LUO H J, WASSIE M, AMEE M, AMOMBO E, CHEN L. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Plant Physiology and Biochemistry, 2019, 142: 342-350. doi: 10.1016/j.plaphy.2019.07.022

    [16]

    YANG M, YU J, MEREWITZ E, HUANG B R. Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. Journal of the American Society for Horticultural Science, 2012, 137(2): 96-106. doi: 10.21273/JASHS.137.2.96

    [17] 樊瑞苹. 外源抗坏血酸对盐胁迫下高羊茅生长的影响及调控机理. 南京: 南京农业大学硕士学位论文, 2010.

    FAN R P. Study on the effect of ascorbic acid on growth and regulation mechanism of tall fescue under salt stress. Master Thesis. Nanjing: Nanjing Agricultural University, 2010.

    [18]

    TURGEON A J. Turfgrass Management. New Jersty: Prentice Hall, 1999.

    [19]

    BARRS H, WEATHERLEY P. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 1962, 15(3): 13-28.

    [20]

    ZHU G L, ZHONG H W, ZHANG A Q. Plant Physiology Experiment. Beijing: Peking University Press, 1990.

    [21]

    AEBI H. Catalase in Vitro. Methods Enzymology. America: Academic Press, 1984, 105: 121-126.

    [22]

    NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880.

    [23]

    VALLIYODAN B, NGUYEN H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 2006, 9(2): 189-195. doi: 10.1016/j.pbi.2006.01.019

    [24]

    CATHEY E, KRUSE J K, SINCLAIR T R, DUKES M D. Tolerance of three warm-season turfgrasses to increasing and prolonged soil water deficit. HortScience, 2011, 46(11): 1550-1555. doi: 10.21273/HORTSCI.46.11.1550

    [25] 陈兰, 胡南, 费永俊. 不同盐度对弯叶画眉草生长的影响. 安徽农学通报, 2006(8): 44-45. doi: 10.3969/j.issn.1007-7731.2006.08.021

    CHEN L, HU N, FEI Y J. Effect of different salinity on the growth of eyebrow grass in bent leaves. Anhui Agricultural Science Bulletin, 2006(8): 44-45. doi: 10.3969/j.issn.1007-7731.2006.08.021

    [26] 梁超. 过量积累甜菜碱改善小麦耐盐性的生理机制研究. 泰安: 山东农业大学硕士学位论文, 2007.

    LIANG C. Physiological mechanism of excessive accumulation of betaine to improve salt tolerance in wheat. Master Thesis. Tai’an: Shandong Agricultural University, 2007.

    [27]

    MUNNS R, GILLIHAM M. Salinity tolerance of crops-what is the cost. New Phytologist, 2005, 208: 668-673.

    [28] 王玉凤. 玉米苗期对NaCl胁迫的响应与耐盐性调控机理的研究. 沈阳: 沈阳农业大学博士学位论文, 2008.

    WANG Y F. Responses of maize seedling under NaCl stress and the regulatory mechanism of salt tolerance. PhD Thesis. Shenyang: Shenyang Agricultural University, 2008.

    [29] 江生泉, 薛正帅, 李晨, 汤士勇, 杨志民. 外源乙硫氨酸对盐胁迫下高羊茅的缓解效应. 云南大学学报(自然科学版), 2020, 42(1): 179-186.

    JIANG S Q, XUE Z S, LI C, TANG S Y, YANG Z M. Alleviation effect of exogenous ethionine on tall fescue under salt stress. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(1): 179-186.

    [30] 李玉静, 宋宪亮, 杨兴洪, 刘娟, 李学刚, 朱玉庆, 孙学振, 王振林. 甜菜碱浸种对棉苗耐盐性的影响. 作物学报, 2008(2): 305-310. doi: 10.3321/j.issn:0496-3490.2008.02.020

    LI Y J, SONG X L, YANG X H, LIU J, LI X G, ZHU Y Q, SUN X Z, WANG Z L. Effects of seed soaking with Glycinebetaine on the salt tolerance of cotton seedlings. Acta Agronomica Sinica, 2008(2): 305-310. doi: 10.3321/j.issn:0496-3490.2008.02.020

    [31]

    MUNNS R,TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

    [32]

    TESTER M, DAVENPORT R. Na + tolerance and Na + transport in higher plants. Annals of Botany, 2003, 91(5): 503-527. doi: 10.1093/aob/mcg058

    [33] 康爱平, 刘艳, 王殿, 王宝山, 陈敏. 钾对能源植物杂交狼尾草耐盐性的影响. 生态学报, 2014, 34(20): 5793-5801.

    KANG A P, LIU Y, WANG D, WANG B S, CHEN M. The effect of K on the salt tolerance of the bioenergy plant hybrid Pennisetum. Acta Ecologica Sinica, 2014, 34(20): 5793-5801.

    [34] 蒋乔峰, 陈静波, 宗俊勤, 李珊, 褚晓晴, 郭海林, 刘建秀. 盐胁迫下磷素对沟叶结缕草生长及Na+和K+含量的影响. 草业学报, 2013, 22(3): 162-168. doi: 10.11686/cyxb20130321

    JIANG Q F, CHEN J B, ZONG J F, LI S, CHU X J, GUO H L, LIU J X. Effect of phosphorus on Na+ and K+ concentrations and the growth of Zoysia matrella under salt stress. Acta Prataculturae Sinica, 2013, 22(3): 162-168. doi: 10.11686/cyxb20130321

    [35]

    YAMASAKI H, SAKIHAMA Y, IKEHARA N. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiology, 1997, 115(4): 5-12.

    [36]

    THORDAL H, ZHANG Z G, WEI Y D, COLLINGE D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 1997, 11(6): 87-94.

    [37]

    BIAN S, JIANG Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009, 120(2): 264-270. doi: 10.1016/j.scienta.2008.10.014

    [38] 邓茳明, 熊格生, 袁小玲, 刘志. 棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应. 棉花学报, 2010(3): 242-247. doi: 10.3969/j.issn.1002-7807.2010.03.009

    DEN J M, XIONG G S, YUAN X L, LIU Z. Differences in SOD, POD, CAT activities and MDA content and their responses to high temperature stress at peak flowering stage in cotton lines with different tolerance to high temperature. Cotton Science, 2010(3): 242-247. doi: 10.3969/j.issn.1002-7807.2010.03.009

    [39] 孙卫红, 王伟青, 孟庆伟. 植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性. 植物生理学通讯, 2005(2): 143-147.

    SUN W H, WANG W Q, MENG Q W. Functional mechanism and enzymatic and molecular characteristic of ascorbate peroxidase in plants. Plant Physiology Journal, 2005(2): 143-147.

    [40]

    SHAN J, HAN L, LIANG S. Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the loess plateau of China. Chinese Journal of Plant Ecology, 2011, 35(6): 53-62.

    [41]

    PAYTON P, WEBB R, KORNYEYEV D, ALLEN R, HOLADAY A S. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. Journal of Experimental Botany, 2001, 52(365): 2345-2354. doi: 10.1093/jexbot/52.365.2345

    [42] 范美华, 张义鑫, 石戈, 崔大练, 李鹏. 外源抗坏血酸对油菜种子在海水胁迫下萌发生长的影响. 中国油料作物学报, 2009, 31(1): 34-38. doi: 10.3321/j.issn:1007-9084.2009.01.007

    FAN M H, ZHANG Y X, SHI G, CUI D L, LI P. Effects of exogenous ascorbic acid on seed germination and growth of Brassica napus under seawater stress. Chinese Journal of Oil Crop Sciences, 2009, 31(1): 34-38. doi: 10.3321/j.issn:1007-9084.2009.01.007

图(10)
计量
  • PDF下载量:  26
  • 文章访问数:  558
  • HTML全文浏览量:  266
  • 被引次数: 0
文章相关
  • 通讯作者: 杨志民
  • 收稿日期:  2021-08-31
  • 接受日期:  2021-12-09
  • 网络出版日期:  2022-03-22
  • 发布日期:  2022-04-14

目录

/

返回文章
返回