欢迎访问 草业科学,今天是2025年4月12日 星期六!

近红外光谱技术分析高羊茅干草营养成分含量

代露茗, 郭涛, 李飞, 王芳彬, 贾倩民, 潘发明, 张爱文, 李发弟

代露茗,郭涛,李飞,王芳彬,贾倩民,潘发明,张爱文,李发弟. 近红外光谱技术分析高羊茅干草营养成分含量. 草业科学, 2022, 39(4): 731-739 . DOI: 10.11829/j.issn.1001-0629.2021-0448
引用本文: 代露茗,郭涛,李飞,王芳彬,贾倩民,潘发明,张爱文,李发弟. 近红外光谱技术分析高羊茅干草营养成分含量. 草业科学, 2022, 39(4): 731-739 . DOI: 10.11829/j.issn.1001-0629.2021-0448
DAI L M, GUO T, LI F, WANG F B, JIA Q M, PAN F M, ZHANG A W, LI F D. Analysis of nutrient content of tall fescue hay by near-infrared spectroscopy. Pratacultural Science, 2022, 39(4): 731-739 . DOI: 10.11829/j.issn.1001-0629.2021-0448
Citation: DAI L M, GUO T, LI F, WANG F B, JIA Q M, PAN F M, ZHANG A W, LI F D. Analysis of nutrient content of tall fescue hay by near-infrared spectroscopy. Pratacultural Science, 2022, 39(4): 731-739 . DOI: 10.11829/j.issn.1001-0629.2021-0448

近红外光谱技术分析高羊茅干草营养成分含量

基金项目: 甘肃省农牧厅科技项目(GCLM2017-4);农业农村部公益性行业科研专项(201503134)。
摘要: 本研究利用近红外光谱(NIRS)技术构建高羊茅(Festuca arundinacea)干草的近红外预测模型,于甘肃省庆阳市采集101份高羊茅样品,将湿化学分析结果和NIRS结合,利用改良偏最小二乘法(MPLS)进行预测模型的建立和验证。最终建立了高羊茅干草干物质(DM)、粗蛋白质(CP)、有机物(OM)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、粗脂肪(EE)、灰分(Ash)这7种营养成分的预测模型,其中建立的CP和DM的预测模型外部验证相对分析误差(RPD)值为3.53和2.55,预测模型的预测效果较好,可以用于实际生产中预测成分含量;OM、NDF、ADF、EE和Ash的预测模型RPD值为2.17、2.04、2.06、2.06和2.02,所预测的结果可以作为一些饲料生产中的参考。

 

English

  • [1] 陈昌荣, 阮晓贵, 黄琦, 刘琼波, 李文霞, 李飞艳. 野生牧草种质资源保护与开发. 畜牧兽医科学(电子版), 2020(17): 146-147.

    CHEN C R, RUAN X G, HUANG Q, LIU Q B, LI W X, LI F Y. Conservation and development of wild herbage germolasm resources. Graziery Veterinary Sciences (Electronic Version), 2020(17): 146-147.

    [2] 马宏义. 野生牧草种质资源在生态环境中的地位和保护措施. 当代畜牧, 2020(10): 44-45.

    MA H Y. Status and protection measures of wild forage germplasm resources in ecological environment. Contemporary Animal Husbandry, 2020(10): 44-45.

    [3] 吴佳海, 牟琼, 唐成斌, 尚以顺, 莫本田, 瓦庆荣. 牧草新品种黔草1号高羊茅的选育. 贵州农业科学, 2006(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    WU J H, MOU Q, TANG C B, SHANG Y S, MO B T, WA Q R. Breeding of qiancao 1, a new festuca arundinacea variety. Guizhou Agricultural Sciences, 2006(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    [4] 乔玉梅. 禾本科牧草与大豆秸秆饲用产量和营养品质的研究. 沈阳: 沈阳农业大学博士学位论文, 2008.

    QIAO Y M. Yield and quality of soybean straw and gramineal forage. PhD Thesis. Shenyang: Shenyang Agricultural University, 2008.

    [5] 伍文丹, 雷雄, 赵文达, 杨晓鹏, 熊毅, 熊艳丽, 张新全, 马啸. 饲草型高羊茅引进品种的表型变异分析. 草业科学, 2019, 36(10): 2622-2630. doi: 10.11829/j.issn.1001-0629.2018-0680

    WU W D, LEI X, ZHAO W D, YANG X P, XIONG Y, XIONG Y L, ZHANG X Q, MA X. Analysis of phenotypic variation of introduced cultivars of tall fescue. Pratacultural Science, 2019, 36(10): 2622-2630. doi: 10.11829/j.issn.1001-0629.2018-0680

    [6] 彭艳, 马素洁, 南吉, 索朗德吉, 魏学红. 西藏林芝地区阿尔冈金紫花苜蓿与高羊茅混播效果研究. 黑龙江畜牧兽医, 2019(16): 129-132.

    PENG Y, MA S J, NAN J, Suolangdeji, WEI X H. Study on the mixed sowing effect of Algonquin alfalfa and tall fescue in Linzhi, Tibet. Heilongjiang Animal Science and Veterinary Medicine, 2019(16): 129-132.

    [7] 陈志敏, 张姝, 王征南, 乌远征. 我国东北、西北地区秸秆牧草类饲料资源常规概略养分含量调查报告. 中国奶牛, 2020(4): 59-62.

    CHEN Z M, ZHANG S, WANG Z N, WU Y Z. Investigation report on nutrient content of straw and forage feed resources in northeast and northwest China. China Dairy Cattle, 2020(4): 59-62.

    [8]

    ANDERSON J V, WITTENBERG A, LI H, BERTI M T. High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Industrial Crops and Products, 2019, 137: 501-507. doi: 10.1016/j.indcrop.2019.04.075

    [9]

    IKOYI A Y, YOUNGE B A. Influence of forage particle size and residual moisture on near infrared reflectance spectroscopy (NIRS) calibration accuracy for macro-mineral determination. Animal Feed Science and Technology, 2020, 270: 114675.

    [10] 李磊, 陈丰. 红外光谱分析技术在化工生产中的应用. 化工设计通讯, 2020, 46(4): 150-156.

    LI L, CHEN F. Application of infrared spectrum analysis technology in chemical production. Chemical Engineering Design Communications, 2020, 46(4): 150-156.

    [11] 张梦璐, 张国权. 红外光谱技术在食品检测中的应用. 中国食品, 2021(7): 95. doi: 10.3969/j.issn.1000-1085.2021.07.054

    ZHANG M L, ZHANG G Q. Application of infrared spectroscopy in food detection. China Food, 2021(7): 95. doi: 10.3969/j.issn.1000-1085.2021.07.054

    [12] 王娅宁, 薛旭东. 近红外光谱在制药过程控制中的应用分析. 中国卫生产业, 2016, 13(33): 50-52.

    WANG Y N, XUE X D. Application of near infrared spectroscopy in pharmaceutical process control. China Health Industry, 2016, 13(33): 50-52.

    [13] 孙克强, 王京力, 廖佳, 赵珍玉. 近红外光谱技术在纺织产品检测中的应用. 轻纺工业与技术, 2019, 48(8): 189-191. doi: 10.3969/j.issn.2095-0101.2019.08.084

    SUN K Q, WANG J L, LIAO J, ZHAO Z Y. Application of near infrared spectroscopy in textile products detection. Light and Textile Industry and Technology, 2019, 48(8): 189-191. doi: 10.3969/j.issn.2095-0101.2019.08.084

    [14] 欧宇. 浅谈红外光谱技术在环境科学中的应用与展望. 江西化工, 2021, 37(1): 94-96. doi: 10.3969/j.issn.1008-3103.2021.01.027

    OU Y. Application and prospect of infrared spectroscopy in environmental science. Jiangxi Chemical Industry, 2021, 37(1): 94-96. doi: 10.3969/j.issn.1008-3103.2021.01.027

    [15] 毛建雄, 肖东, 罗燕, 张翅, 王秀良. 近红外光谱技术在测定新生儿坏死性小肠结肠炎脑血氧饱和度和判定肠坏死程度的探讨. 岭南现代临床外科, 2020, 20(5): 562-566, 572.

    MAO J X, XIAO D, LUO Y, ZHANG C, WANG X L. Determination of cerebral oxygen saturation and determination of intestinal necrosis in neonatal necrotizing enterocolitis by near infrared spectroscopy. Lingnan Modern Clinics in Surgery, 2020, 20(5): 562-566, 572.

    [16] 何云, 张亮, 武小姣, 郑爱荣, 刘薇, 贺永惠, 牛岩, 王跃先, 张晓霞. 苜蓿干草常规营养成分含量近红外预测模型的建立. 动物营养学报, 2019, 31(10): 4684-4690 .

    HE Y, ZHANG L, WU X J, ZHENG A R, LIU W, HE Y H, NIU Y, WANG Y X, ZHANG X X. Near infrared prediction model establishment for routine nutritional component contents of alfalfa hay. Chinese Journal of Animal Nutrition, 2019, 31(10): 4684-4690 .

    [17] 郭涛, 黄右琴, 郭龙, 李发弟, 潘发明, 张兆杰, 李飞. 利用近红外光谱技术快速预测苜蓿干草营养成分含量. 草业科学, 2020, 37(11): 2374-2381.

    GUO T, HUANG Y Q, GUO L, LI F D, PAN F M, ZHANG Z J, LI F. Rapid prediction of nutrient content of alfalfa hay by using near infrared spectroscopy. Pratacultural Science, 2020, 37(11): 2374-2381.

    [18] 刘娜, 王俊, 屠焰, 刁其玉, 陈国顺, 郭江鹏, 齐志国. 玉米青贮饲料质量评定及其营养成分快速检测方法的建立. 家畜生态学报, 2019, 40(10): 1-7. doi: 10.3969/j.issn.1673-1182.2019.10.001

    LIU N, WANG J, TU Y, DIAO Q Y, CHEN G S, GUO J P, QI Z G. The quality evaluation and the development of rapid detection method for nutrient components of corn silage. Journal of Domestic Animal Ecology, 2019, 40(10): 1-7. doi: 10.3969/j.issn.1673-1182.2019.10.001

    [19] 郭涛, 黄右琴, 兰贵生, 闫佰鹏, 李发弟, 李飞. 利用近红外光谱技术分析玉米秸秆和小麦秸秆的营养成分. 草业科学, 2020, 37(6): 1204-1213. doi: 10.11829/j.issn.1001-0629.2019-0446

    GUO T, HUANG Y Q, LAN G S, YAN B P, LI F D, LI F. Quantitative analysis of nutrients in corn straw and wheat straw using near-infrared spectroscopy. Pratacultural Science, 2020, 37(6): 1204-1213. doi: 10.11829/j.issn.1001-0629.2019-0446

    [20] 闫佰鹏, 王芳彬, 李成海, 周文静, 李发弟, 李飞. 利用近红外光谱技术快速评定油菜秸秆的营养价值. 草业科学, 2019, 36(2): 522-530.

    YAN B P, WANG F B, LI C H, ZHOU W J, LI F D, LI F. Rapid evaluation of nutritional value of rape straw by near infrared spectroscopy. Pratacultural Science, 2019, 36(2): 522-530.

    [21]

    REDDERSEN B, FRICKE T, WACHENDORF M. Effects of sample preparation and measurement standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive experimental grassland biomass. Animal Feed Science and Technology, 2013, 183(3-4): 77-85.

    [22] 郭涛, 黄右琴, 代露茗, 郭龙, 李发弟, 潘发明, 张兆杰, 李飞. 苜蓿干草不同处理方式对近红外预测模型预测准确性的影响. 动物营养学报: 1-10[2021-05-22]. http://kns.cnki.net/kcms/detail/11.5461.S.20210317.1717.029.html.

    GUO T, HUANG Y Q, DAI L M, GUO L, LI F D, PAN F M, ZHANG Z J, LI F. Effects of different processing methods of alfalfa hay on accuracy of near-infrared prediction models. Chinese Journal of Animal Nutrition: 1-10[2021-05-22]. http://kns.cnki.net/kcms/detail/11.5461.S.20210317.1717.029.html.

    [23] 向娜娜, 赵江涛, 陈丽, 夏超笃, 王晓琼, 陈林, 纪昌正. 基于近红外光谱技术评估大豆皮纤维含量的研究. 动物营养学报, 2021, 33(3): 1792-1800. doi: 10.3969/j.issn.1006-267x.2021.03.060

    XIANG N N, ZHAO J T, CHEN L, XIA C D, WANG X Q, CHEN L, JI C Z. Research on evaluation of fiber content in soybean hulls based on near-infrared spectroscopy technique. Chinese Journal of Animal Nutrition, 2021, 33(3): 1792-1800. doi: 10.3969/j.issn.1006-267x.2021.03.060

    [24] 王新基, 郭涛, 潘发明, 李飞. 利用近红外光谱技术快速分析全株玉米青贮营养成分. 家畜生态学报, 2021, 42(1): 52-55. doi: 10.3969/j.issn.1673-1182.2021.01.009

    WANG X J, GUO T, PAN F M, LI F. Rapid analysis of nutritional components of whole plants silage using near-infrared spectroscopy. Journal of Domestic Animal Ecology, 2021, 42(1): 52-55. doi: 10.3969/j.issn.1673-1182.2021.01.009

    [25] 王勇生, 李洁, 王博, 张宇婷, 耿俊林. 基于近红外光谱技术评估高粱中粗蛋白质、水分含量的研究. 动物营养学报, 2020, 32(3): 1353-1361. doi: 10.3969/j.issn.1006-267x.2020.03.043

    WANG Y S, LI J, WANG B, ZHANG Y T, GENG J L. Evaluation of crude protein and water content in sorghum by near-infrared spectroscopy. Chinese Journal of Animal Nutrition, 2020, 32(3): 1353-1361. doi: 10.3969/j.issn.1006-267x.2020.03.043

    [26] 常春, 侯向阳, 武自念, 吴洪新, 任卫波, 尹强, 张继泽, 孔令琪, 贾玉山. 近红外光谱法测定羊草干草的9项品质指标. 中国草地学报, 2019, 41(5): 47-52.

    CHANG C, HOU X Y, WU Z N, WU H X, REN W B, YIN Q, ZHANG J Z, KONG L Q, JIA Y S. Nine quality indexes determination of Leymus chinensis Hay by near infrared reflectance spectroscopy. Chinese Journal of Grassland, 2019, 41(5): 47-52.

    [27]

    LORD N, SHANG C, ROSSO L, ZHANG B. Development of near-infrared reflectance spectroscopy calibration for sugar content in ground soybean seed using Perten DA7250 analyzer. Crop Science, 2021, 61(2): 966-975.

  • 图  1   高羊茅干草近红外原始光谱图

    Figure  1.   Near-infrared spectrogram of tall fescue hay

    图  2   高羊茅干草一阶导数处理光谱图

    Figure  2.   First derivative spectrogram of tall fescue hay

    图  3   高羊茅干草二阶导数处理光谱图

    Figure  3.   Second derivative spectrogram of tall fescue hay

    图  4   营养成分含量的预测值与化学测定值的相关性

    Figure  4.   Correlation between predicted value and chemical measured value of nutrition component

    表  1   高羊茅干草7种营养成分湿化学分析结果(干物质基础)

    Table  1   Results of wet chemical analysis of seven nutrients in tall fescue hay (DM basis)

    营养成分
    Nutrient
    样本数量
    Sample number
    最小值
    Minimum/%
    最大值
    Maximum/%
    平均值
    Mean/%
    标准差
    SD
    变异系数
    CV/%
    干物质 DM 101 93.71 96.72 95.29 0.55 0.57
    粗蛋白 CP 101 11.28 29.71 17.53 3.83 21.86
    有机物 OM 101 77.43 98.93 88.95 3.68 4.14
    中性洗涤纤维 NDF 101 30.27 58.32 46.26 5.00 10.81
    酸性洗涤纤维 ADF 101 14.12 34.01 24.86 3.15 12.69
    粗脂肪 EE 101 1.76 5.79 3.56 0.71 19.84
    粗灰分 Ash 101 1.07 22.57 11.05 3.68 33.33
     DM: dry matter; CP: crude protein; OM: organic matter; NDF: neutral detergent fiber; ADF: acid detergent fiber; EE: ether extract; Ash: crude ash; this is applicable for the following tables as well.
    下载: 导出CSV

    表  2   高羊茅干草定标集和验证集各营养成分含量(干物质基础)

    Table  2   Nutrient content in the calibration set and validation set of tall fescue hay (DM basis)

    样品类别
    Sample sort
    营养成分
    Nutrient
    样本数量
    Sample number
    最小值
    Minimum/%
    最大值
    Maximum/%
    平均值
    Mean/%
    标准差
    SD
    变异系数
    CV/%
    定标集
    Calibration set
    干物质 DM 81 93.71 96.72 95.30 0.55 0.58
    粗蛋白 CP 81 11.28 29.71 17.61 3.89 22.09
    有机物 OM 81 77.43 98.93 89.03 3.69 4.15
    中性洗涤纤维 NDF 81 30.27 58.32 46.38 5.00 10.77
    酸性洗涤纤维 ADF 81 14.12 34.01 24.94 3.18 12.76
    粗脂肪 EE 81 1.76 5.79 3.57 0.71 20.00
    粗灰分 Ash 81 1.07 22.57 11.14 3.75 33.64
    验证集
    Validation set
    干物质 DM 20 94.29 96.30 95.25 0.51 0.54
    粗蛋白 CP 20 11.40 25.06 17.21 3.58 20.77
    有机物 OM 20 79.37 94.78 88.38 3.90 4.41
    中性洗涤纤维 NDF 20 31.07 52.74 45.78 4.99 10.89
    酸性洗涤纤维 ADF 20 15.90 29.03 24.58 3.02 12.30
    粗脂肪 EE 20 1.82 4.89 3.49 0.66 19.03
    粗灰分 Ash 20 3.06 18.49 10.70 3.39 31.72
    下载: 导出CSV

    表  3   高羊茅干草各营养成分最佳定标模型

    Table  3   Optimal calibration models of nutrients in tall fescue hay

    营养成分
    Nutrition component
    样本数量
    Sample number
    光谱处理
    Spectrum treatment
    参数
    Parameter
    定标标准分析
    误差 SEC
    交叉验证标准
    误差 SECV
    交叉验证相关
    系数 1-VR
    干物质 DM 81 none 1, 4, 4, 1 0.17 0.22 0.85
    粗蛋白 CP 81 Derivative, Scale and Offset 2, 4, 4, 1 0.33 0.67 0.97
    有机物 OM 81 none 2, 4, 4, 1 1.22 1.42 0.81
    中性洗涤纤维 NDF 81 Derivative, Scale and Offset 1, 4, 4, 1 1.40 1.63 0.86
    酸性洗涤纤维 ADF 81 Scale and Quadratic 0, 0, 1, 1 0.99 1.09 0.80
    粗脂肪 EE 81 Detrend only 1, 4, 4, 1 0.21 0.28 0.84
    粗灰分 Ash 81 SNV and Detrend 2, 4, 4, 1 0.99 1.52 0.80
    下载: 导出CSV

    表  4   高羊茅干草最佳定标模型验证结果

    Table  4   Validation results of the optimal calibration model of tall fescue hay

    营养指标
    Nutrition index
    化学测定值
    Chemical measured value
    预测值
    Predictive value
    预测决定
    系数 RSQ
    预测标准
    误差 SEP
    外部验证相对
    分析误差 RPD
    干物质 DM 95.29 95.33 0.85 0.21 2.55
    粗蛋白 CP 16.80 16.94 0.94 0.83 3.53
    有机物 OM 88.80 89.00 0.78 1.58 2.17
    中性洗涤纤维 NDF 45.78 46.06 0.78 2.38 2.04
    酸性洗涤纤维 ADF 24.86 25.29 0.84 1.21 2.06
    粗脂肪 EE 3.42 3.43 0.79 0.28 2.06
    粗灰分 Ash 11.10 11.15 0.77 1.47 2.02
     RSQ: coefficient of determination for validation; SEP: standard error of prediction; RPD: ratio of performance to deviation for validation.
    下载: 导出CSV
  • [1] 陈昌荣, 阮晓贵, 黄琦, 刘琼波, 李文霞, 李飞艳. 野生牧草种质资源保护与开发. 畜牧兽医科学(电子版), 2020(17): 146-147.

    CHEN C R, RUAN X G, HUANG Q, LIU Q B, LI W X, LI F Y. Conservation and development of wild herbage germolasm resources. Graziery Veterinary Sciences (Electronic Version), 2020(17): 146-147.

    [2] 马宏义. 野生牧草种质资源在生态环境中的地位和保护措施. 当代畜牧, 2020(10): 44-45.

    MA H Y. Status and protection measures of wild forage germplasm resources in ecological environment. Contemporary Animal Husbandry, 2020(10): 44-45.

    [3] 吴佳海, 牟琼, 唐成斌, 尚以顺, 莫本田, 瓦庆荣. 牧草新品种黔草1号高羊茅的选育. 贵州农业科学, 2006(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    WU J H, MOU Q, TANG C B, SHANG Y S, MO B T, WA Q R. Breeding of qiancao 1, a new festuca arundinacea variety. Guizhou Agricultural Sciences, 2006(4): 75-79. doi: 10.3969/j.issn.1001-3601.2006.04.027

    [4] 乔玉梅. 禾本科牧草与大豆秸秆饲用产量和营养品质的研究. 沈阳: 沈阳农业大学博士学位论文, 2008.

    QIAO Y M. Yield and quality of soybean straw and gramineal forage. PhD Thesis. Shenyang: Shenyang Agricultural University, 2008.

    [5] 伍文丹, 雷雄, 赵文达, 杨晓鹏, 熊毅, 熊艳丽, 张新全, 马啸. 饲草型高羊茅引进品种的表型变异分析. 草业科学, 2019, 36(10): 2622-2630. doi: 10.11829/j.issn.1001-0629.2018-0680

    WU W D, LEI X, ZHAO W D, YANG X P, XIONG Y, XIONG Y L, ZHANG X Q, MA X. Analysis of phenotypic variation of introduced cultivars of tall fescue. Pratacultural Science, 2019, 36(10): 2622-2630. doi: 10.11829/j.issn.1001-0629.2018-0680

    [6] 彭艳, 马素洁, 南吉, 索朗德吉, 魏学红. 西藏林芝地区阿尔冈金紫花苜蓿与高羊茅混播效果研究. 黑龙江畜牧兽医, 2019(16): 129-132.

    PENG Y, MA S J, NAN J, Suolangdeji, WEI X H. Study on the mixed sowing effect of Algonquin alfalfa and tall fescue in Linzhi, Tibet. Heilongjiang Animal Science and Veterinary Medicine, 2019(16): 129-132.

    [7] 陈志敏, 张姝, 王征南, 乌远征. 我国东北、西北地区秸秆牧草类饲料资源常规概略养分含量调查报告. 中国奶牛, 2020(4): 59-62.

    CHEN Z M, ZHANG S, WANG Z N, WU Y Z. Investigation report on nutrient content of straw and forage feed resources in northeast and northwest China. China Dairy Cattle, 2020(4): 59-62.

    [8]

    ANDERSON J V, WITTENBERG A, LI H, BERTI M T. High throughput phenotyping of Camelina sativa seeds for crude protein, total oil, and fatty acids profile by near infrared spectroscopy. Industrial Crops and Products, 2019, 137: 501-507. doi: 10.1016/j.indcrop.2019.04.075

    [9]

    IKOYI A Y, YOUNGE B A. Influence of forage particle size and residual moisture on near infrared reflectance spectroscopy (NIRS) calibration accuracy for macro-mineral determination. Animal Feed Science and Technology, 2020, 270: 114675.

    [10] 李磊, 陈丰. 红外光谱分析技术在化工生产中的应用. 化工设计通讯, 2020, 46(4): 150-156.

    LI L, CHEN F. Application of infrared spectrum analysis technology in chemical production. Chemical Engineering Design Communications, 2020, 46(4): 150-156.

    [11] 张梦璐, 张国权. 红外光谱技术在食品检测中的应用. 中国食品, 2021(7): 95. doi: 10.3969/j.issn.1000-1085.2021.07.054

    ZHANG M L, ZHANG G Q. Application of infrared spectroscopy in food detection. China Food, 2021(7): 95. doi: 10.3969/j.issn.1000-1085.2021.07.054

    [12] 王娅宁, 薛旭东. 近红外光谱在制药过程控制中的应用分析. 中国卫生产业, 2016, 13(33): 50-52.

    WANG Y N, XUE X D. Application of near infrared spectroscopy in pharmaceutical process control. China Health Industry, 2016, 13(33): 50-52.

    [13] 孙克强, 王京力, 廖佳, 赵珍玉. 近红外光谱技术在纺织产品检测中的应用. 轻纺工业与技术, 2019, 48(8): 189-191. doi: 10.3969/j.issn.2095-0101.2019.08.084

    SUN K Q, WANG J L, LIAO J, ZHAO Z Y. Application of near infrared spectroscopy in textile products detection. Light and Textile Industry and Technology, 2019, 48(8): 189-191. doi: 10.3969/j.issn.2095-0101.2019.08.084

    [14] 欧宇. 浅谈红外光谱技术在环境科学中的应用与展望. 江西化工, 2021, 37(1): 94-96. doi: 10.3969/j.issn.1008-3103.2021.01.027

    OU Y. Application and prospect of infrared spectroscopy in environmental science. Jiangxi Chemical Industry, 2021, 37(1): 94-96. doi: 10.3969/j.issn.1008-3103.2021.01.027

    [15] 毛建雄, 肖东, 罗燕, 张翅, 王秀良. 近红外光谱技术在测定新生儿坏死性小肠结肠炎脑血氧饱和度和判定肠坏死程度的探讨. 岭南现代临床外科, 2020, 20(5): 562-566, 572.

    MAO J X, XIAO D, LUO Y, ZHANG C, WANG X L. Determination of cerebral oxygen saturation and determination of intestinal necrosis in neonatal necrotizing enterocolitis by near infrared spectroscopy. Lingnan Modern Clinics in Surgery, 2020, 20(5): 562-566, 572.

    [16] 何云, 张亮, 武小姣, 郑爱荣, 刘薇, 贺永惠, 牛岩, 王跃先, 张晓霞. 苜蓿干草常规营养成分含量近红外预测模型的建立. 动物营养学报, 2019, 31(10): 4684-4690 .

    HE Y, ZHANG L, WU X J, ZHENG A R, LIU W, HE Y H, NIU Y, WANG Y X, ZHANG X X. Near infrared prediction model establishment for routine nutritional component contents of alfalfa hay. Chinese Journal of Animal Nutrition, 2019, 31(10): 4684-4690 .

    [17] 郭涛, 黄右琴, 郭龙, 李发弟, 潘发明, 张兆杰, 李飞. 利用近红外光谱技术快速预测苜蓿干草营养成分含量. 草业科学, 2020, 37(11): 2374-2381.

    GUO T, HUANG Y Q, GUO L, LI F D, PAN F M, ZHANG Z J, LI F. Rapid prediction of nutrient content of alfalfa hay by using near infrared spectroscopy. Pratacultural Science, 2020, 37(11): 2374-2381.

    [18] 刘娜, 王俊, 屠焰, 刁其玉, 陈国顺, 郭江鹏, 齐志国. 玉米青贮饲料质量评定及其营养成分快速检测方法的建立. 家畜生态学报, 2019, 40(10): 1-7. doi: 10.3969/j.issn.1673-1182.2019.10.001

    LIU N, WANG J, TU Y, DIAO Q Y, CHEN G S, GUO J P, QI Z G. The quality evaluation and the development of rapid detection method for nutrient components of corn silage. Journal of Domestic Animal Ecology, 2019, 40(10): 1-7. doi: 10.3969/j.issn.1673-1182.2019.10.001

    [19] 郭涛, 黄右琴, 兰贵生, 闫佰鹏, 李发弟, 李飞. 利用近红外光谱技术分析玉米秸秆和小麦秸秆的营养成分. 草业科学, 2020, 37(6): 1204-1213. doi: 10.11829/j.issn.1001-0629.2019-0446

    GUO T, HUANG Y Q, LAN G S, YAN B P, LI F D, LI F. Quantitative analysis of nutrients in corn straw and wheat straw using near-infrared spectroscopy. Pratacultural Science, 2020, 37(6): 1204-1213. doi: 10.11829/j.issn.1001-0629.2019-0446

    [20] 闫佰鹏, 王芳彬, 李成海, 周文静, 李发弟, 李飞. 利用近红外光谱技术快速评定油菜秸秆的营养价值. 草业科学, 2019, 36(2): 522-530.

    YAN B P, WANG F B, LI C H, ZHOU W J, LI F D, LI F. Rapid evaluation of nutritional value of rape straw by near infrared spectroscopy. Pratacultural Science, 2019, 36(2): 522-530.

    [21]

    REDDERSEN B, FRICKE T, WACHENDORF M. Effects of sample preparation and measurement standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive experimental grassland biomass. Animal Feed Science and Technology, 2013, 183(3-4): 77-85.

    [22] 郭涛, 黄右琴, 代露茗, 郭龙, 李发弟, 潘发明, 张兆杰, 李飞. 苜蓿干草不同处理方式对近红外预测模型预测准确性的影响. 动物营养学报: 1-10[2021-05-22]. http://kns.cnki.net/kcms/detail/11.5461.S.20210317.1717.029.html.

    GUO T, HUANG Y Q, DAI L M, GUO L, LI F D, PAN F M, ZHANG Z J, LI F. Effects of different processing methods of alfalfa hay on accuracy of near-infrared prediction models. Chinese Journal of Animal Nutrition: 1-10[2021-05-22]. http://kns.cnki.net/kcms/detail/11.5461.S.20210317.1717.029.html.

    [23] 向娜娜, 赵江涛, 陈丽, 夏超笃, 王晓琼, 陈林, 纪昌正. 基于近红外光谱技术评估大豆皮纤维含量的研究. 动物营养学报, 2021, 33(3): 1792-1800. doi: 10.3969/j.issn.1006-267x.2021.03.060

    XIANG N N, ZHAO J T, CHEN L, XIA C D, WANG X Q, CHEN L, JI C Z. Research on evaluation of fiber content in soybean hulls based on near-infrared spectroscopy technique. Chinese Journal of Animal Nutrition, 2021, 33(3): 1792-1800. doi: 10.3969/j.issn.1006-267x.2021.03.060

    [24] 王新基, 郭涛, 潘发明, 李飞. 利用近红外光谱技术快速分析全株玉米青贮营养成分. 家畜生态学报, 2021, 42(1): 52-55. doi: 10.3969/j.issn.1673-1182.2021.01.009

    WANG X J, GUO T, PAN F M, LI F. Rapid analysis of nutritional components of whole plants silage using near-infrared spectroscopy. Journal of Domestic Animal Ecology, 2021, 42(1): 52-55. doi: 10.3969/j.issn.1673-1182.2021.01.009

    [25] 王勇生, 李洁, 王博, 张宇婷, 耿俊林. 基于近红外光谱技术评估高粱中粗蛋白质、水分含量的研究. 动物营养学报, 2020, 32(3): 1353-1361. doi: 10.3969/j.issn.1006-267x.2020.03.043

    WANG Y S, LI J, WANG B, ZHANG Y T, GENG J L. Evaluation of crude protein and water content in sorghum by near-infrared spectroscopy. Chinese Journal of Animal Nutrition, 2020, 32(3): 1353-1361. doi: 10.3969/j.issn.1006-267x.2020.03.043

    [26] 常春, 侯向阳, 武自念, 吴洪新, 任卫波, 尹强, 张继泽, 孔令琪, 贾玉山. 近红外光谱法测定羊草干草的9项品质指标. 中国草地学报, 2019, 41(5): 47-52.

    CHANG C, HOU X Y, WU Z N, WU H X, REN W B, YIN Q, ZHANG J Z, KONG L Q, JIA Y S. Nine quality indexes determination of Leymus chinensis Hay by near infrared reflectance spectroscopy. Chinese Journal of Grassland, 2019, 41(5): 47-52.

    [27]

    LORD N, SHANG C, ROSSO L, ZHANG B. Development of near-infrared reflectance spectroscopy calibration for sugar content in ground soybean seed using Perten DA7250 analyzer. Crop Science, 2021, 61(2): 966-975.

图(4)  /  表(4)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 张爱文
  • 收稿日期:  2021-07-14
  • 接受日期:  2021-08-24
  • 网络出版日期:  2022-03-24
  • 发布日期:  2022-04-14

目录

/

返回文章
返回