欢迎访问 草业科学,今天是2025年4月12日 星期六!

16份无芒雀麦种质资源生产性能与营养品质的综合评价

黄薇, 常巍, 余淑艳, 李小云, 高雪芹, 伏兵哲

黄薇,常巍,余淑艳,李小云,高雪芹,伏兵哲. 16份无芒雀麦种质资源生产性能与营养品质的综合评价. 草业科学, 2021, 38(11): 2237-2246 . DOI: 10.11829/j.issn.1001-0629.2021-0246
引用本文: 黄薇,常巍,余淑艳,李小云,高雪芹,伏兵哲. 16份无芒雀麦种质资源生产性能与营养品质的综合评价. 草业科学, 2021, 38(11): 2237-2246 . DOI: 10.11829/j.issn.1001-0629.2021-0246
HUANG W, CHANG W, YU S Y, LI X Y, GAO X Q, FU B Z. Comprehensive evaluation of production performance and nutritional quality of 16 germplasm resources. Pratacultural Science, 2021, 38(11): 2237-2246 . DOI: 10.11829/j.issn.1001-0629.2021-0246
Citation: HUANG W, CHANG W, YU S Y, LI X Y, GAO X Q, FU B Z. Comprehensive evaluation of production performance and nutritional quality of 16 germplasm resources. Pratacultural Science, 2021, 38(11): 2237-2246 . DOI: 10.11829/j.issn.1001-0629.2021-0246

16份无芒雀麦种质资源生产性能与营养品质的综合评价

基金项目: 西北土地退化与生态恢复国家重点实验室培育基地开放课题(2018KF08);宁夏青年科技人才托举工程(TJGC2018083);宁夏牧草育种专项(2019NYYZ04)
摘要: 为了筛选出生产性能与营养品质表现优良的无芒雀麦(Bromus inermis)种质材料,测量和分析了国内外16份无芒雀麦种质资源生产性能和营养品质的相关指标,并运用聚类分析、灰色关联度分析进行综合评价。结果表明:不同无芒雀麦种质材料之间生产性能与营养品质差异显著(P < 0.05),其中Q6、Q8、Q2的鲜草产量与Q16、Q4的干草产量显著高于其他种质材料(P < 0.05),可作为追求产草量的基础材料利用;Q16粗蛋白含量高,中性洗涤纤维含量低,牧草消化率高,营养品质好;Q2、Q4、Q10、Q14叶茎比显著高于其他种质材料(P < 0.05)。聚类分析将16份种质材料聚为4类,聚类结果与原产地关系较小。根据灰色关联度分析,叶茎比、干草产量、粗灰分、粗蛋白在无芒雀麦生产性能与营养品质综合评价系统中权重最大,可作为无芒雀麦品种评价和筛选时的关键性状;Q6、Q4、Q10、Q16、Q2、Q8与理想品系关联系数最大,综合表现最好,可为无芒雀麦品种改良和新品种培育提供基础材料。

 

English

  • [1]

    ANTONOVA E V, FUCHS J, RÖDER M S. Influence of chronic man-made pollution on Bromus inermis genome size. Russian Journal of Ecology, 2020, 51(4): 337-344. doi: 10.1134/S1067413620040025

    [2]

    MOZHGAN A, MOHAMMAD M M, SAEIDNIA F, SAJED B, AGHAFAKHR M. Genetic and physiological aspects of drought tolerance in smooth bromegrass. Crop Science, 2019, 59(6): 2601-2607. doi: 10.2135/cropsci2019.05.0288

    [3] 张希山, 代连义, 王志杰, 祖丽菲亚, 莎丽. 禾草饲料之王: 无芒雀麦. 新疆畜牧业, 2002, 12(4): 28-29. doi: 10.3969/j.issn.1003-4889.2002.04.014

    ZHANG X S, DAI L Y, WANG Z J, Zulifeiya, SHA L. The king of grass and fodder: Bromus inermis Leyss. Xin Jiang Xu Mu Ye, 2002, 12(4): 28-29. doi: 10.3969/j.issn.1003-4889.2002.04.014

    [4] 黄帆, 李俊, 刘磊, 师文贵, 李鸿雁, 李志勇. 无芒雀麦组织培养再生体系的建立. 植物生理学报, 2018, 54(5): 783-789.

    HUANG F, LI J, LIU L, SHI W G, LI H Y, LI Z Y. Tissue culture and regeneration of Bromus inermis. Plant Physiology Journal, 2018, 54(5): 783-789.

    [5] 刘永新, 刘英杰, 周勤, 高磊, 方辉, 韩刚, 王玉芬, 姜秀凤, 刘海金. 牙鲆主要生长性状与体质量的灰色关联度分析. 中国水产科学, 2014, 21(2): 205-213.

    LIU Y X, LIU Y J, ZHOU Q, GAO L, FANG H, HAN G, WANG Y F, JIANG X F, LIU H J. Grey relational analysis between main growth traits and body weight in Japanese flounder (Paralichthys olivaceus). Journal of Fishery Sciences of China, 2014, 21(2): 205-213.

    [6] 丁明亮, 赵红, 浦秋红, 崔永祯, 李宏生, 顾坚, 田玉仙, 杨木军, 李绍祥. 应用灰色关联度分析法对远缘杂交选育的小麦新品系评价. 西南农业学报, 2018, 31(2): 217-222.

    DING M L, ZHAO H, PU Q H, CUI Y Z, LI H S, GU J, TIAN Y X, YANG M J, LI S X. Multi-factorial evaluation of new wheat lines from distant hybridization by grey relational analysis method. Southwest China Journal of Agricultural Sciences, 2018, 31(2): 217-222.

    [7] 于树涛, 于国庆, 孙泓希, 王虹, 尤淑丽, 于洪波. 东北主栽花生品种农艺性状及品质性状分析. 分子植物育种, 2019, 17(10): 3364-3370.

    YU S T, YU G Q, SUN H X, WANG H, YOU S L, YU H B. Analysis of agronomic characters and quality characters of the main peanut varieties in northeast china. Molecular Plant Breeding, 2019, 17(10): 3364-3370.

    [8] 那亚, 渠晖, 花梅, 李峰, 乌仁曹, 李雪, 陶雅. 土默川平原不同玉米品种青贮饲料的品质比较. 中国草地学报, 2021, 43(1): 90-95.

    NA Y, QU H, HUA M, LI F, WU R C, LI X, TAO Y. Quality comparison of different corn varieties used as silage in Tumed Plain. Chinese Journal of Grassland, 2021, 43(1): 90-95.

    [9] 贾小平, 袁玺垒, 陆平, 范丙友, 黄华, 戴凌峰. 中国71个谷子种质资源的灰色关联度分析及综合评价. 种子, 2017, 36(9): 63-66.

    JIA X P, YUAN X L, LU P, FAN B Y, HUANG H, DAI L F. Grey incidence analysis and comprehensive evaluation of 71 millet germplasm resources in China. Seed, 2017, 36(9): 63-66.

    [10] 郑巨云, 王俊铎, 龚照龙, 梁亚军, 张泽良, 艾先涛, 郭江平, 莫明, 李雪源. 棉花品种资源花铃期抗旱性鉴定与评价. 干旱地区农业研究, 2021, 39(2): 150-163. doi: 10.7606/j.issn.1000-7601.2021.02.20

    ZHENG J Y, WANG J D, GONG Z L, LIANG Y J, ZHANG Z L, AI X T, GUO J P, MO M, LI X Y. Identification and comprehensive assessment of drought resistance of upland cotton variety resources during flower and boll stage. Agricultural Research in the Arid Areas, 2021, 39(2): 150-163. doi: 10.7606/j.issn.1000-7601.2021.02.20

    [11] 伏兵哲, 高雪芹, 高永发, 李东宁, 张龙, 张蓉. 21个苜蓿品种主要农艺性状关联分析与综合评价. 草业学报, 2015, 24(11): 174-182. doi: 10.11686/cyxb2014541

    FU B Z, GAO X Q, GAO Y F, LI D N, ZHANG L, ZHANG R. Correlation analysis of the main agronomic traits and performance of 21 alfalfa varieties. Acta Prataculturae Sinica, 2015, 24(11): 174-182. doi: 10.11686/cyxb2014541

    [12] 肖逸, 杨忠富, 聂刚, 韩佳婷, 帅杨, 张新全. 12个多花黑麦草品种(系)在成都平原的生产性能和营养价值综合评价. 草业学报, 2021, 30(5): 174-185. doi: 10.11686/cyxb2020447

    XIAO Y, YANG Z F, NIE G, HAN J T, SHUAI Y, ZHANG X Q. Multi-trait evaluation of yield and nutritive value of 12 Lolium multiflorum varieties or lines in Chengdu Plain. Acta Prataculturae Sinica, 2021, 30(5): 174-185. doi: 10.11686/cyxb2020447

    [13] 郑敏娜, 李荫藩, 梁秀芝, 薛龙飞. 晋北地区引种苜蓿品种的灰色关联度分析与综合评价. 草地学报, 2014, 22(3): 631-637.

    ZHENG M N, LI Y F, LIANG X Z, XUE L F. Relation grade analysis of grey theory and comprehensive evaluation of introduced alfalfa in the north of Shanxi province. Acta Agrestia Sinica, 2014, 22(3): 631-637.

    [14]

    MENG L, WANG C, ZHANG J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. Journal of Meteorological Research, 2016, 30(3): 426-443. doi: 10.1007/s13351-016-5186-z

    [15]

    ZHOU B, YANG H. Economic analysis of limited water irrigation on wheat yield. Journal of Coastal Research, 2020, 104(sp1): 637-640.

    [16]

    WANG N, XING Y Y, WANG X K. Exploring options for improving potato productivity through reducing crop yield gap in Loess Plateau of China based on grey correlation analysis. Sustainability, 2019, 11(20): 5621. doi: 10.3390/su11205621

    [17] 张丽英. 饲料分析及饲料质量检测技术(第四版). 北京: 中国农业大学出版社, 2016.

    ZHANG L Y. Feed Analysis and Quality Test Technology (Fourth Edition). Beijing: China Agricultural University Press, 2016.

    [18]

    ROHWEDER D A, BARNES R F, JORGENSEN N. Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 1978, 47(3): 747-759. doi: 10.2527/jas1978.473747x

    [19] 郭瑞林. 作物灰色育种学. 北京: 中国农业出版社, 1988: 26-40.

    GUO R L. Crop Grey Breeding. Beijing: China Agriculture Press, 1988: 26-40.

    [20] 郑伟, 朱进忠, 加娜尔古丽. 不同混播方式豆禾混播草地生产性能的综合评价. 草业学报, 2012, 21(6): 242-251. doi: 10.11686/cyxb20120632

    ZHENG W, ZHU J Z, Jianaerguli. A comprehensive evaluation of the productive performance of legume-grass mixtures under different mixed sowing patterns. Acta Prataculturae Sinica, 2012, 21(6): 242-251. doi: 10.11686/cyxb20120632

    [21] 贺文骅, 崔国文, 崔新, 刘省勇, 李冰. 紫花苜蓿与无芒雀麦不同混播比例对青贮品质的影响. 草地学报, 2017, 25(2): 407-414.

    HE W H, CUI G W, CUI X, LIU S Y, LI B. Effect of mix-sowing ratios of Medicago sativa L. and Bromus inermis Leyss. on silage quality. Acta Agrestia Sinica, 2017, 25(2): 407-414.

    [22] 宫珂, 靳瑰丽, 李陈建, 岳永寰, 王惠宁, 韩万强. 天山北坡野生无芒雀麦的表型性状. 生态学杂志, 2019, 38(9): 2615-2621.

    GONG K, JIN G L, LI C J, YUE Y H, WANG H N, HAN W Q. Phenotypic traits of Bromus inermis on the northern slope of Tianshan Mountains. Chinese Journal of Ecology, 2019, 38(9): 2615-2621.

    [23] 张凡凡, 于磊, 马春晖, 张前兵, 鲁为华. 绿洲区滴灌条件下施磷对紫花苜蓿生产性能及品质的影响. 草业学报, 2015, 24(10): 175-182. doi: 10.11686/cyxb2014467

    ZHANG F F, YU L, MA C H, ZHANG Q B, LU W H. Effect of phosphorus application under drip irrigation on the productivity and quality of alfalfa in Northern Xinjiang. Acta Prataculturae Sinica, 2015, 24(10): 175-182. doi: 10.11686/cyxb2014467

    [24] 徐丽君, 杨桂霞, 陈宝瑞, 辛晓平, 乌恩奇, 青格勒, 朱树声. 不同苜蓿(品)种营养价值的比较. 草业科学, 2013, 30(4): 556-570.

    XU L J, YANG G X, CHEN B R, XIN X P, Wuenqi, Qinggele, ZHU S S. Comprehensive evaluation of nutritional values of different alfalfa species and varieties. Pratacultural Science, 2013, 30(4): 556-570.

    [25] 白玉婷, 卫智军, 闫瑞瑞, 乌仁其其格, 代景忠, 王天乐, 姚静, 孙世贤. 施肥对羊草割草地牧草产量及品质的影响. 中国草地学报, 2017, 39(4): 60-66.

    BAI Y T, WEI Z J, YAN R R, Wurenqiqige, DAI J Z, WANG T L, YAO J, SUN S X. Effects of fertilizer application on the yield of forage and nutrient content in Leymus chinensis mowing meadow. Chinese Journal of Grassland, 2017, 39(4): 60-66.

    [26] 马啸, 周朝杰, 张成林, 孙铭, 郭志慧, 王小利, 张建波. 扁穗雀麦种质资源形态和农艺性状变异的初步分析. 草地学报, 2015, 23(5): 1048-1056.

    MA X, ZHOU C J, ZHANG C L, SUN M, GUO Z H, WANG X L, ZHANG J B. Patterns of morphological variation and agronomic traits in a worldwide sample of prairie grass germplasm. Acta Agrestia Sinica, 2015, 23(5): 1048-1056.

    [27] 孙铭, 雷雄, 张新全, 张成林, 伍文丹, 赵文达, 杨晓鹏, 马啸. 扁穗雀麦优良品系数量性状的变异分析及遗传参数评估. 草业学报, 2018, 27(1): 131-141. doi: 10.11686/cyxb2017260

    SUN M, LEI X, ZHANG X Q, ZHANG C L, WU W D, ZHAO W D, YANG X P, MA X. Assessment of genetic variability in prairie grass. Acta Prataculturae Sinica, 2018, 27(1): 131-141. doi: 10.11686/cyxb2017260

    [28] 杨成前, 雷美艳, 杨天建, 余中莲, 全健, 杨娟, 蒲盛才. 白术栽培群体的主要农艺性状相关性及聚类分析. 分子植物育种, 2019, 17(17): 5852-5859.

    YANG C Q, LEI M Y, YANG T J, YU Z L, QUAN J, YANG J, PU S C. Agronomic character and cluster analysis in cultivated populations of Atractylodes macrocephala. Molecular Plant Breeding, 2019, 17(17): 5852-5859.

  • 图  1   不同无芒雀麦株高和茎粗比较

    不同小写字母表示同一指标品种间差异显著(P < 0.05);种质编号同表1;下同。

    Figure  1.   Comparison of plant height and stem diameter of different Bromus inermis materials

    Different lowercase letters indicate a significant difference between varieties at the 0.05 level (P < 0.05); the germplasm code are as shown in Table 1; this is applicable for the following tables and figures as well.

    图  2   不同无芒雀麦鲜草产量和干草产量比较

    Figure  2.   Comparison of fresh yield and hay yield of different Bromus inermis materials

    图  3   不同无芒雀麦叶茎比比较

    Figure  3.   Comparison of the leaf to stem ratios of different Bromus inermis materials

    图  4   无芒雀麦种质材料系统聚类分析

    Figure  4.   Hierarchical cluster analysis of Bromus inermis germplasm materials

    表  1   无芒雀麦种质材料名称及来源

    Table  1   Names and source of Bromus inermis

    编号
    Code
    材料来源
    Source
    原产地
    Origin
    Q1 国家种质牧草中期库
    National Forage Germplasm Bank
    中国锡林郭勒
    Xilingol, China
    Q2 内蒙古草原站
    Inner Mongolia Grassland Station
    中国新疆
    Xinjiang, China
    Q3 国家种质牧草中期库
    National Forage Germplasm Bank
    中国陕西
    Shaanxi, China
    Q4 野外采集
    Field collection
    中国宁夏原州区
    Ningxia Yuanzhou District, China
    Q5 国家种质牧草中期库
    National Forage Germplasm Bank
    中国甘肃
    Gansu, China
    Q6 国家种质牧草中期库
    National Forage Germplasm Bank
    中国白旗
    Baiqi, China
    Q7 内蒙古农业大学
    Inner Mongolia Agricultural University
    中国锡林郭勒
    Xilingol, China
    Q8 美国
    United States
    美国
    United States
    Q9 国家种质牧草中期库
    National Forage Germplasm Bank
    中国新疆
    Xinjiang, China
    Q10 国家种质牧草中期库
    National Forage Germplasm Bank
    美国
    United States
    Q11 国家种质牧草中期库
    National Forage Germplasm Bank
    中国宁夏
    Ningxia, China
    Q12 国家种质牧草中期库
    National Forage Germplasm Bank
    中国呼伦贝尔
    Hulunbuir, China
    Q13 国家种质牧草中期库
    National Forage Germplasm Bank
    中国贵州
    Guizhou, China
    Q14 野外采集
    Field collection
    中国宁夏隆德县
    Ningxia Longde County, China
    Q15 野外采集
    Field collection
    中国宁夏六盘山
    Ningxia Liupanshan, China
    Q16 野外采集
    Field collection
    中国宁夏彭阳县
    Ningxia Pengyang County, China
    下载: 导出CSV

    表  2   不同无芒雀麦营养成分比较

    Table  2   Comparison of nutritional components of different Bromus inermis materials

    种质编号
    Germplasm
    code
    粗蛋白
    Crude
    protein/%
    粗脂肪
    Ether
    extract/%
    中性洗涤纤维
    Neutral detergent
    fiber/%
    酸性洗涤纤维
    Acid detergent
    fiber/%
    粗灰分
    Crude
    ash/%
    相对饲喂价值
    Relative
    feed value
    Q112.50 ± 0.27g1.69 ± 0.03cd51.28 ± 0.06de34.14 ± 0.06a8.47 ± 0.03def113.02 ± 0.05def
    Q215.31 ± 0.14bc1.69 ± 0.03cd51.73 ± 0.28cde32.13 ± 0.20cde9.11 ± 0.14bcde114.87 ± 0.54abcde
    Q314.93 ± 0.10bcd1.76 ± 0.08abcd51.54 ± 0.06cde30.69 ± 0.31f8.67 ± 0.23cdef117.32 ± 0.35ab
    Q414.25 ± 0.15cdef1.71 ± 0.03cd52.17 ± 0.18bcd31.63 ± 0.43def9.44 ± 0.15bc114.58 ± 0.65abcde
    Q514.50 ± 0.24bcde1.90 ± 0.03a52.89 ± 0.15ab32.42 ± 0.30bcde9.21 ± 0.12bcd111.96 ± 0.69ef
    Q613.18 ± 0.06fg1.86 ± 0.02ab51.99 ± 0.45bcd32.28 ± 0.30bcde7.52 ± 0.14g114.09 ± 0.86cdef
    Q713.85 ± 0.47def1.72 ± 0.03bcd52.88 ± 0.35ab30.68 ± 0.27f9.22 ± 0.30bcd114.36 ± 1.06bcdef
    Q814.93 ± 0.45bcd1.45 ± 0.03e51.86 ± 0.30bcde31.58 ± 0.21def8.98 ± 0.26cde115.33 ± 0.96abcd
    Q914.94 ± 0.24bcd1.74 ± 0.04bcd51.87 ± 0.18bcde32.55 ± 0.28bcd8.52 ± 0.26def113.96 ± 0.30def
    Q1014.36 ± 0.25cdef1.83 ± 0.02abc52.51 ± 0.28bc31.13 ± 0.24ef8.29 ± 0.16ef114.52 ± 0.62abcde
    Q1114.84 ± 0.35bcd1.81 ± 0.03abc52.35 ± 0.03bcd33.39 ± 0.02abc9.09 ± 0.14bcde111.76 ± 0.08f
    Q1214.24 ± 0.03cdef1.79 ± 0.03abcd53.71 ± 0.32a33.54 ± 0.31ab8.86 ± 0.13cdef108.73 ± 0.50g
    Q1315.73 ± 0.13b1.89 ± 0.03a51.34 ± 0.16de31.27 ± 0.24def9.29 ± 0.13bcd116.94 ± 0.55abc
    Q1413.59 ± 0.17efg1.90 ± 0.03a51.37 ± 0.22cde33.23 ± 0.18abc10.48 ± 0.15a114.13 ± 0.49cdef
    Q1514.82 ± 0.10bcd1.66 ± 0.06d51.62 ± 0.06cde32.42 ± 0.10bcde8.03 ± 0.13f114.69 ± 0.26abcde
    Q1617.70 ± 0.14a1.80 ± 0.01abcd50.72 ± 0.28e31.90 ± 0.37def9.92 ± 0.10ab117.48 ± 0.77a
     同列不同小写字母表示存在显著差异(P < 0.05)。
     Different lowercase letters indicate a significant difference at the 0.05 level.
    下载: 导出CSV

    表  3   参试品种与理想参考品种的关联系数

    Table  3   Correlation coefficient of experimental varieties and reference variety

    种质编号
    Germplasm code
    X1X2X3X4X5X6X7X8X9X10X11
    Q10.72690.66700.63410.50510.50000.35070.58720.93510.61000.58650.8071
    Q20.58380.70250.99990.82480.61800.54020.59270.89070.77800.47640.8773
    Q30.62780.48820.46710.71050.46430.50340.68920.90920.99810.54480.9920
    Q40.79910.54680.98030.66270.97950.44840.60870.85050.84070.43910.8657
    Q50.47120.64640.55940.35100.33340.46680.99190.79470.74720.46440.7716
    Q60.76770.70350.41871.00000.69040.38290.88070.86660.76171.00000.8460
    Q71.00000.44440.57200.64630.46670.42170.63130.79491.00000.46260.8563
    Q80.73180.77220.69760.82560.67970.50270.40300.87770.84670.49430.8966
    Q90.63111.00000.58140.57310.50830.50370.65220.87760.73330.57520.8415
    Q100.83130.60200.89080.66270.64710.45670.80960.82240.91520.63320.8628
    Q110.75960.54550.41990.61970.69300.49470.77650.83610.66100.47880.7652
    Q120.67110.64000.50110.46080.68880.44740.73950.74040.64970.51320.6805
    Q130.61130.63050.64060.58160.46990.58740.96540.92900.89290.45510.9722
    Q140.53120.44130.86520.48990.57600.40541.00010.92620.67400.35990.8476
    Q150.72750.54390.56440.69890.64490.49370.55740.90080.74640.71680.8701
    Q160.46200.38210.64490.70591.00001.00000.69001.00000.80500.39671.0000
    权重Weight0.07510.10510.14400.10930.14290.12850.10120.00930.03950.12870.0164
     X1:株高;X2:茎粗;X3:叶茎比;X4:鲜草产量;X5:干草产量;X6:粗蛋白;X7:粗脂肪;X8:中性洗涤纤维;X9:酸性洗涤纤维;X10:粗灰分;X11:相对饲喂价值。
     X1: Plant height; X2: Stem diameter; X3: Leaf-stem ratio; X4: Fresh yield; X5: Hay yield; X6: Crudeprotein; X7: Etherextract; X8: Neutral detergentfiber; X9: Acid detergentfiber; X10: Crudeash; X11: Relativefeed value.
    下载: 导出CSV

    表  4   参试品种加权关联度与排序

    Table  4   Weight association and rank of experimental varieties

    种质编号
    Germplasm code
    加权关联度
    Weighted gray correlation
    序位
    Sequence
    Q1 0.5687 15
    Q2 0.6842 5
    Q3 0.5784 14
    Q4 0.7021 2
    Q5 0.5396 16
    Q6 0.7189 1
    Q7 0.5801 13
    Q8 0.6492 6
    Q9 0.6272 7
    Q10 0.6989 3
    Q11 0.5918 11
    Q12 0.5807 12
    Q13 0.6267 8
    Q14 0.5955 10
    Q15 0.6258 9
    Q16 0.6947 4
    下载: 导出CSV
  • [1]

    ANTONOVA E V, FUCHS J, RÖDER M S. Influence of chronic man-made pollution on Bromus inermis genome size. Russian Journal of Ecology, 2020, 51(4): 337-344. doi: 10.1134/S1067413620040025

    [2]

    MOZHGAN A, MOHAMMAD M M, SAEIDNIA F, SAJED B, AGHAFAKHR M. Genetic and physiological aspects of drought tolerance in smooth bromegrass. Crop Science, 2019, 59(6): 2601-2607. doi: 10.2135/cropsci2019.05.0288

    [3] 张希山, 代连义, 王志杰, 祖丽菲亚, 莎丽. 禾草饲料之王: 无芒雀麦. 新疆畜牧业, 2002, 12(4): 28-29. doi: 10.3969/j.issn.1003-4889.2002.04.014

    ZHANG X S, DAI L Y, WANG Z J, Zulifeiya, SHA L. The king of grass and fodder: Bromus inermis Leyss. Xin Jiang Xu Mu Ye, 2002, 12(4): 28-29. doi: 10.3969/j.issn.1003-4889.2002.04.014

    [4] 黄帆, 李俊, 刘磊, 师文贵, 李鸿雁, 李志勇. 无芒雀麦组织培养再生体系的建立. 植物生理学报, 2018, 54(5): 783-789.

    HUANG F, LI J, LIU L, SHI W G, LI H Y, LI Z Y. Tissue culture and regeneration of Bromus inermis. Plant Physiology Journal, 2018, 54(5): 783-789.

    [5] 刘永新, 刘英杰, 周勤, 高磊, 方辉, 韩刚, 王玉芬, 姜秀凤, 刘海金. 牙鲆主要生长性状与体质量的灰色关联度分析. 中国水产科学, 2014, 21(2): 205-213.

    LIU Y X, LIU Y J, ZHOU Q, GAO L, FANG H, HAN G, WANG Y F, JIANG X F, LIU H J. Grey relational analysis between main growth traits and body weight in Japanese flounder (Paralichthys olivaceus). Journal of Fishery Sciences of China, 2014, 21(2): 205-213.

    [6] 丁明亮, 赵红, 浦秋红, 崔永祯, 李宏生, 顾坚, 田玉仙, 杨木军, 李绍祥. 应用灰色关联度分析法对远缘杂交选育的小麦新品系评价. 西南农业学报, 2018, 31(2): 217-222.

    DING M L, ZHAO H, PU Q H, CUI Y Z, LI H S, GU J, TIAN Y X, YANG M J, LI S X. Multi-factorial evaluation of new wheat lines from distant hybridization by grey relational analysis method. Southwest China Journal of Agricultural Sciences, 2018, 31(2): 217-222.

    [7] 于树涛, 于国庆, 孙泓希, 王虹, 尤淑丽, 于洪波. 东北主栽花生品种农艺性状及品质性状分析. 分子植物育种, 2019, 17(10): 3364-3370.

    YU S T, YU G Q, SUN H X, WANG H, YOU S L, YU H B. Analysis of agronomic characters and quality characters of the main peanut varieties in northeast china. Molecular Plant Breeding, 2019, 17(10): 3364-3370.

    [8] 那亚, 渠晖, 花梅, 李峰, 乌仁曹, 李雪, 陶雅. 土默川平原不同玉米品种青贮饲料的品质比较. 中国草地学报, 2021, 43(1): 90-95.

    NA Y, QU H, HUA M, LI F, WU R C, LI X, TAO Y. Quality comparison of different corn varieties used as silage in Tumed Plain. Chinese Journal of Grassland, 2021, 43(1): 90-95.

    [9] 贾小平, 袁玺垒, 陆平, 范丙友, 黄华, 戴凌峰. 中国71个谷子种质资源的灰色关联度分析及综合评价. 种子, 2017, 36(9): 63-66.

    JIA X P, YUAN X L, LU P, FAN B Y, HUANG H, DAI L F. Grey incidence analysis and comprehensive evaluation of 71 millet germplasm resources in China. Seed, 2017, 36(9): 63-66.

    [10] 郑巨云, 王俊铎, 龚照龙, 梁亚军, 张泽良, 艾先涛, 郭江平, 莫明, 李雪源. 棉花品种资源花铃期抗旱性鉴定与评价. 干旱地区农业研究, 2021, 39(2): 150-163. doi: 10.7606/j.issn.1000-7601.2021.02.20

    ZHENG J Y, WANG J D, GONG Z L, LIANG Y J, ZHANG Z L, AI X T, GUO J P, MO M, LI X Y. Identification and comprehensive assessment of drought resistance of upland cotton variety resources during flower and boll stage. Agricultural Research in the Arid Areas, 2021, 39(2): 150-163. doi: 10.7606/j.issn.1000-7601.2021.02.20

    [11] 伏兵哲, 高雪芹, 高永发, 李东宁, 张龙, 张蓉. 21个苜蓿品种主要农艺性状关联分析与综合评价. 草业学报, 2015, 24(11): 174-182. doi: 10.11686/cyxb2014541

    FU B Z, GAO X Q, GAO Y F, LI D N, ZHANG L, ZHANG R. Correlation analysis of the main agronomic traits and performance of 21 alfalfa varieties. Acta Prataculturae Sinica, 2015, 24(11): 174-182. doi: 10.11686/cyxb2014541

    [12] 肖逸, 杨忠富, 聂刚, 韩佳婷, 帅杨, 张新全. 12个多花黑麦草品种(系)在成都平原的生产性能和营养价值综合评价. 草业学报, 2021, 30(5): 174-185. doi: 10.11686/cyxb2020447

    XIAO Y, YANG Z F, NIE G, HAN J T, SHUAI Y, ZHANG X Q. Multi-trait evaluation of yield and nutritive value of 12 Lolium multiflorum varieties or lines in Chengdu Plain. Acta Prataculturae Sinica, 2021, 30(5): 174-185. doi: 10.11686/cyxb2020447

    [13] 郑敏娜, 李荫藩, 梁秀芝, 薛龙飞. 晋北地区引种苜蓿品种的灰色关联度分析与综合评价. 草地学报, 2014, 22(3): 631-637.

    ZHENG M N, LI Y F, LIANG X Z, XUE L F. Relation grade analysis of grey theory and comprehensive evaluation of introduced alfalfa in the north of Shanxi province. Acta Agrestia Sinica, 2014, 22(3): 631-637.

    [14]

    MENG L, WANG C, ZHANG J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. Journal of Meteorological Research, 2016, 30(3): 426-443. doi: 10.1007/s13351-016-5186-z

    [15]

    ZHOU B, YANG H. Economic analysis of limited water irrigation on wheat yield. Journal of Coastal Research, 2020, 104(sp1): 637-640.

    [16]

    WANG N, XING Y Y, WANG X K. Exploring options for improving potato productivity through reducing crop yield gap in Loess Plateau of China based on grey correlation analysis. Sustainability, 2019, 11(20): 5621. doi: 10.3390/su11205621

    [17] 张丽英. 饲料分析及饲料质量检测技术(第四版). 北京: 中国农业大学出版社, 2016.

    ZHANG L Y. Feed Analysis and Quality Test Technology (Fourth Edition). Beijing: China Agricultural University Press, 2016.

    [18]

    ROHWEDER D A, BARNES R F, JORGENSEN N. Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 1978, 47(3): 747-759. doi: 10.2527/jas1978.473747x

    [19] 郭瑞林. 作物灰色育种学. 北京: 中国农业出版社, 1988: 26-40.

    GUO R L. Crop Grey Breeding. Beijing: China Agriculture Press, 1988: 26-40.

    [20] 郑伟, 朱进忠, 加娜尔古丽. 不同混播方式豆禾混播草地生产性能的综合评价. 草业学报, 2012, 21(6): 242-251. doi: 10.11686/cyxb20120632

    ZHENG W, ZHU J Z, Jianaerguli. A comprehensive evaluation of the productive performance of legume-grass mixtures under different mixed sowing patterns. Acta Prataculturae Sinica, 2012, 21(6): 242-251. doi: 10.11686/cyxb20120632

    [21] 贺文骅, 崔国文, 崔新, 刘省勇, 李冰. 紫花苜蓿与无芒雀麦不同混播比例对青贮品质的影响. 草地学报, 2017, 25(2): 407-414.

    HE W H, CUI G W, CUI X, LIU S Y, LI B. Effect of mix-sowing ratios of Medicago sativa L. and Bromus inermis Leyss. on silage quality. Acta Agrestia Sinica, 2017, 25(2): 407-414.

    [22] 宫珂, 靳瑰丽, 李陈建, 岳永寰, 王惠宁, 韩万强. 天山北坡野生无芒雀麦的表型性状. 生态学杂志, 2019, 38(9): 2615-2621.

    GONG K, JIN G L, LI C J, YUE Y H, WANG H N, HAN W Q. Phenotypic traits of Bromus inermis on the northern slope of Tianshan Mountains. Chinese Journal of Ecology, 2019, 38(9): 2615-2621.

    [23] 张凡凡, 于磊, 马春晖, 张前兵, 鲁为华. 绿洲区滴灌条件下施磷对紫花苜蓿生产性能及品质的影响. 草业学报, 2015, 24(10): 175-182. doi: 10.11686/cyxb2014467

    ZHANG F F, YU L, MA C H, ZHANG Q B, LU W H. Effect of phosphorus application under drip irrigation on the productivity and quality of alfalfa in Northern Xinjiang. Acta Prataculturae Sinica, 2015, 24(10): 175-182. doi: 10.11686/cyxb2014467

    [24] 徐丽君, 杨桂霞, 陈宝瑞, 辛晓平, 乌恩奇, 青格勒, 朱树声. 不同苜蓿(品)种营养价值的比较. 草业科学, 2013, 30(4): 556-570.

    XU L J, YANG G X, CHEN B R, XIN X P, Wuenqi, Qinggele, ZHU S S. Comprehensive evaluation of nutritional values of different alfalfa species and varieties. Pratacultural Science, 2013, 30(4): 556-570.

    [25] 白玉婷, 卫智军, 闫瑞瑞, 乌仁其其格, 代景忠, 王天乐, 姚静, 孙世贤. 施肥对羊草割草地牧草产量及品质的影响. 中国草地学报, 2017, 39(4): 60-66.

    BAI Y T, WEI Z J, YAN R R, Wurenqiqige, DAI J Z, WANG T L, YAO J, SUN S X. Effects of fertilizer application on the yield of forage and nutrient content in Leymus chinensis mowing meadow. Chinese Journal of Grassland, 2017, 39(4): 60-66.

    [26] 马啸, 周朝杰, 张成林, 孙铭, 郭志慧, 王小利, 张建波. 扁穗雀麦种质资源形态和农艺性状变异的初步分析. 草地学报, 2015, 23(5): 1048-1056.

    MA X, ZHOU C J, ZHANG C L, SUN M, GUO Z H, WANG X L, ZHANG J B. Patterns of morphological variation and agronomic traits in a worldwide sample of prairie grass germplasm. Acta Agrestia Sinica, 2015, 23(5): 1048-1056.

    [27] 孙铭, 雷雄, 张新全, 张成林, 伍文丹, 赵文达, 杨晓鹏, 马啸. 扁穗雀麦优良品系数量性状的变异分析及遗传参数评估. 草业学报, 2018, 27(1): 131-141. doi: 10.11686/cyxb2017260

    SUN M, LEI X, ZHANG X Q, ZHANG C L, WU W D, ZHAO W D, YANG X P, MA X. Assessment of genetic variability in prairie grass. Acta Prataculturae Sinica, 2018, 27(1): 131-141. doi: 10.11686/cyxb2017260

    [28] 杨成前, 雷美艳, 杨天建, 余中莲, 全健, 杨娟, 蒲盛才. 白术栽培群体的主要农艺性状相关性及聚类分析. 分子植物育种, 2019, 17(17): 5852-5859.

    YANG C Q, LEI M Y, YANG T J, YU Z L, QUAN J, YANG J, PU S C. Agronomic character and cluster analysis in cultivated populations of Atractylodes macrocephala. Molecular Plant Breeding, 2019, 17(17): 5852-5859.

  • 期刊类型引用(2)

    1. 王佳岚,李春杰. 不同水分条件下内生真菌对野大麦生长的影响. 草业科学. 2022(06): 1176-1184 . 本站查看
    2. 刘叶飞,刘亚玲,韩慧杰,邱锐,周昕越,赵彦. 野大麦研究进展. 草原与草业. 2021(03): 1-5 . 百度学术

    其他类型引用(4)

图(4)  /  表(4)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 6
文章相关
  • 通讯作者: 伏兵哲
  • 收稿日期:  2021-04-21
  • 接受日期:  2021-06-15
  • 网络出版日期:  2021-08-08
  • 发布日期:  2021-11-14

目录

/

返回文章
返回