欢迎访问 草业科学,今天是2025年4月21日 星期一!

40个苜蓿品种对炭疽病的苗期抗性评价

胡文静, 杨亚鹏, 阿斯亚姆·阿布都克依木, 葛瑞云, 马建晖, 李克梅

胡文静,杨亚鹏,阿斯亚姆·阿布都克依木,葛瑞云,马建晖,李克梅. 40个苜蓿品种对炭疽病的苗期抗性评价. 草业科学, 2021, 38(8): 1579-1586 . DOI: 10.11829/j.issn.1001-0629.2021-0125
引用本文: 胡文静,杨亚鹏,阿斯亚姆·阿布都克依木,葛瑞云,马建晖,李克梅. 40个苜蓿品种对炭疽病的苗期抗性评价. 草业科学, 2021, 38(8): 1579-1586 . DOI: 10.11829/j.issn.1001-0629.2021-0125
HU W J, YANG Y P, A A, GE R Y, MA J H, LI K M. Evaluation of resistance to in seedlings of 40 alfalfa cultivars. Pratacultural Science, 2021, 38(8): 1579-1586 . DOI: 10.11829/j.issn.1001-0629.2021-0125
Citation: HU W J, YANG Y P, A A, GE R Y, MA J H, LI K M. Evaluation of resistance to in seedlings of 40 alfalfa cultivars. Pratacultural Science, 2021, 38(8): 1579-1586 . DOI: 10.11829/j.issn.1001-0629.2021-0125

40个苜蓿品种对炭疽病的苗期抗性评价

基金项目: 国家自然科学基金(31760708);新疆维吾尔自治区人才、基地建设专项(PT1911)
摘要: 三叶草炭疽菌(Colletotrichum trifolii)是引起苜蓿炭疽病的重要致病菌,发生严重时可导致苜蓿毁灭性危害。采用孢子悬浮液喷雾接种法,以发病率和病情指数为指标,对40个苜蓿品种开展抗三叶草炭疽菌的苗期抗性评价。结果表明,供试品种中,威纳尔、阿尔冈金、巨能2表现高抗,WL363HQ、巨能7、拉迪诺、4030、4010、润布勒、亮牧表现中抗,新牧4号、甘农4号、驯鹿等15个品种表现中感,新疆大叶、甘农6号、甘农9号等15个品种表现高感。抗性品种占供试品种的25%,感病品种占75%,高抗与高感品种间抗性差异显著(P < 0.05)。

 

English

  • 苜蓿炭疽病在世界各苜蓿种植区普遍发生,美国[1]、意大利[2]、澳大利亚[3]、日本[4]、塞尔维亚[5]、巴基斯坦[6]、沙特阿拉伯[7]、伊朗[8]、阿根廷[9]、非洲南部[10]均有分布。我国主要分布在东北、西北、华北和西南(包括5个行政区和14个省)[11-12]等地。据国内外学者报道,目前引起苜蓿炭疽病的病原菌有11种,分别为三叶草炭疽菌(Colletotrichum trifolii)、毁灭炭疽菌(C. destructivum)、平头炭疽菌(C. truncatum)、束状炭疽菌(C. dematium)、球炭疽菌(C. coccodes)[10]、菜豆炭疽菌(C. incanum)[12]、北美炭疽菌(C. americae-borealis)[13]、亚麻炭疽菌(C. linicola = C. lini)[14]、禾生炭疽菌(C. graminicola)[15]、菠菜炭疽菌(C. spinaciae)[16]和盘长孢炭疽菌(C. gloeosporioides)[17]。其中,国内报道的有6种,分别为亚麻炭疽菌[11]、三叶草炭疽菌、毁灭炭疽菌、平头炭疽菌、北美炭疽菌和菜豆炭疽菌[12]

    三叶草炭疽菌(C. trifolii)是西瓜炭疽病菌复合种之一,病菌孢子萌发穿透角质层或皮层侵入寄主细胞,引起寄主植物发生炭疽病[12]。该菌于1906年首次被发现侵染美国田纳西州的三叶草(Trifolium)和苜蓿(Medicago)引起炭疽病[18],我国最早于1966年报道在吉林该菌侵染紫花苜蓿(M. sativa)引起炭疽病[19]。三叶草炭疽菌侵染紫花苜蓿,可使感病苜蓿品种草产量降低25%~30%,严重时造成毁灭性危害[20]。徐杉[12]测定了三叶草炭疽菌、平头炭疽菌、毁灭炭疽菌、北美炭疽菌和菜豆炭疽菌5种炭疽菌对紫花苜蓿种子、幼苗、植株的致病性,表明三叶草炭疽菌表现致病性最强,是引起紫花苜蓿炭疽病最为重要的病原菌。因此,抗三叶草炭疽菌的优质苜蓿品种筛选和推广,是防治苜蓿炭疽病的有力措施。

    炭疽菌的寄主范围广,侵染寄主发病后会造成产量损失、品质下降等问题,国内关于各种作物对炭疽菌的抗病性评价做了大量研究。有学者开展了山药(Dioscorea opposita)[21]、梨(Pyrus spp)[22]、芒果(Mangifera indica)[23]、柑橘(Citrus reticulata)[24]、辣椒(Capsicum annuum)[25]、核桃(Juglans regia)[26]、茶树(Camellia sinensis)[27]、草莓(Fragaria ananassa)[28]、菜豆(Phaseolus vulgaris)[29]、亚麻(Linum usitatissimum)[30]等作物对炭疽病的抗性研究,得出不同作物品种之间对炭疽病的抗性存在差异,并据此筛选出相对抗病的品种资源。国内外一些学者针对苜蓿对炭疽菌的抗病性方面也开展了相应的研究工作,得到了系列抗炭疽病的苜蓿品种及种质材料。采用室内抗性测定法,郑芳芳等[31]鉴定了20个紫花苜蓿品种对平头炭疽菌(C. truncatum)的抗性,得到2个高抗苜蓿品种ProINTA Patricia和Victoria SPI,5个中抗苜蓿品种Monarca SPI、SIMA593、13RSuperme、Victoria和CW701。马甲强等[32]和辛宝宝等[33]分别测定了50个苜蓿种质材料对亚麻炭疽菌的抗性,筛选出兰热来恩德、吐鲁番、霍纳伊、阿尔贡奎因、龙牧801、西奎尔、敖汉、沙湾、淮阴、咸阳、运城、博维和日本共13个高抗苜蓿种质材料。采用田间抗性测定法,张梨梨等[34]开展了44个紫花苜蓿品种对沙尔沁地区北美炭疽菌的抗性研究,筛选出14个抗病品种,其中WL343表现高抗,中苜2号、准格尔、中草3号等13个品种表现中抗。Barnes等[20]比较了MSHp6、Cherokee、Vernal、Saranac、Iroquois共5种苜蓿材料对三叶草炭疽菌的抗性,得出MSHp6、Cherokee和Vernal对该菌抗性最好。国内尚未见紫花苜蓿品种及种质材料对三叶草炭疽菌的抗病性评价的相关报道。本研究对来自国内外40个紫花苜蓿品种开展抗三叶草炭疽菌的苗期抗性评价,旨在为苜蓿炭疽病科学防治及抗炭疽病育种工作提供参考依据。

    供试菌株为HTB-2019-3,系新疆农业大学牧草病害研究室从采自新疆呼图壁县紫花苜蓿田间病株分离获得,描述其形态并分别扩增了该菌株的核糖体核苷酸内转录间隔区ITS、肌动蛋白ACT、β-微管蛋白TUB2、组蛋白HIS3基因片段序列,经形态特征比较结合联合系统发育分析鉴定该菌株为三叶草炭疽菌(另文发表)。运用孢子悬浮液喷雾接种法确定其对紫花苜蓿具有致病性,将菌株保存备用。

    40个紫花苜蓿品种由兰州大学草地农业科技学院李彦忠教授、河北加润草业有限公司李力争总经理、新疆农业大学草业与环境工程学院陈述民老师惠赠。其中,国外品种23个,国内品种17个(表1)。

    表  1  供试苜蓿品种及来源
    Table  1.  Alfalfa cultivars and their sources
    序号 No.苜蓿品种 Alfalfa cultivars来源 Source
    1 威纳尔 Vinal 加拿大 Canada
    2 阿尔冈金 Algonguin 加拿大 Canada
    3 巨能2 Magnum 2 美国 USA
    4 WL363HQ 美国 USA
    5 巨能7 Magnum 7 美国 USA
    6 拉迪诺 Ladinuo 加拿大 Canada
    7 4030 加拿大 Canada
    8 4010 加拿大 Canada
    9 润布勒 Rembler 加拿大 Canada
    10 亮牧 Liangmu 新疆 Xinjiang
    11 新牧4号 Xinmu No.4 新疆 Xinjiang
    12 甘农4号 Gannong No.4 甘肃 Gansu
    13 驯鹿 Xunlu 加拿大 Canada
    14 肇东 Zhaodon 东北 Dongbei
    15 甘农5号 Gannong No.5 甘肃 Gansu
    16 3010 美国 USA
    17 WL354HQ 美国 USA
    18 三得利 Sanditi 荷兰 Holand
    19 龙牧803 Tumu 803 黑龙江 Heilongjiang
    20 中苜一号 Zhongmu No.1 北京 Beijing
    21 金皇后 Golden empress 美国 USA
    22 甘农1号 Gannong No.1 甘肃 Gansu
    23 4020 加拿大 Canada
    24 游侠 Ranger 加拿大 Canada
    25 冲击波 Shockwave BR 美国 USA
    26 熬汉苜蓿 Aohan 内蒙古 Neimenggu
    27 超音速 Supersonic 澳大利亚 Australian
    28 新牧1号 Xinmu No.1 新疆 Xinjiang
    29 巨能6 Magnum 6 美国 USA
    30 北方 SLT Northern SLT 中国 China
    31 德宝 Derby 法国 France
    32 擎天柱 Optimus 美国 USA
    33 北极熊 Gibraltar 美国 USA
    34 新牧2号 Xinmu No.2 新疆 Xinjiang
    35 甘农3号 Gannong No.3 甘肃 Gansu
    36 WL343HQ 美国 USA
    37 甘农9号 Gannong No.9 甘肃 Gansu
    38 陇东苜蓿 Longdong 甘肃 Gansu
    39 甘农6号 Gannong No.6 甘肃 Gansu
    40 新疆大叶 Xinjiang Daye 新疆 Xinjiang
    下载: 导出CSV 
    | 显示表格

    将园土、营养土和蛭石按照1 ꞉ 3 ꞉ 1比例混合,装入23 cm × 16 cm (花盆高度 × 花盆口径)的花盆,浇水使之浸透,备用。挑选颗粒圆润饱满、色泽鲜亮的苜蓿种子于培养皿中晾晒12 h,各材料做好标记,用2%的次氯酸钠将其浸泡2 min,再用无菌水清洗3次,均匀置于铺有一层无菌湿滤纸的培养皿中,置于温度20 ℃、相对湿度60%的恒温培养箱中催芽。48 h后移植于湿润的土壤中,土层厚度约1 cm[35-36]。培育至第2周时定苗,每盆留20株生长健康的苜蓿幼苗。每个品种4次重复。

    取新疆农业大学牧草病害研究室保存的三叶草炭疽菌菌株HTB-2019-3,接种至PDA培养平板,于25 ℃恒温箱中培育14 d。待其产孢后,用玻片刮下培养基表层孢子,置无菌水中配制成浓度1 × 106 spore·mL−1的孢子悬浮液,喷雾接种40 d苗龄的紫花苜蓿植株[37],每盆喷洒5 mL,使叶片完全湿润,25 ℃黑暗保湿培养24 h,后转为12 h/12 h光暗交替正常培育,每天观察是否发病。每个苜蓿品种重复3次,以接种等量无菌水处理为对照。

    待供试苜蓿品种中感病品种最高发病率达100%时,统计发病率和病情指数。病情分级标准参照李彦忠和南志标[38]的方法并稍加修改:0级,无病斑;1级,仅有小型水渍状斑点;2级,病斑狭长形,无或有少数分生孢子盘,但无成熟孢子;3级,病斑长、宽,无环剥,通常具有分生孢子盘;4级,病斑大型,相互交汇,含大量分生孢子盘,茎秆最终环剥;5级,死亡。

    $ {\text{发病率}} =\frac{{\text{病株数}}}{{\text{调查总株数}}} \times \rm{100{\text{%}}};$

    (1)

    ${\text{病情指数}} = \dfrac{{\displaystyle\sum {\left( {{\text{各级病株数}} \times {\text{各级代表值}}} \right)} }}{{{\text{调查总株数}} \times {\text{最高一级代表值}}}} \times 100{\text{。}}$

    (2)

    抗性级别的划分参照辛宝宝等[33]对苜蓿炭疽病抗性分级标准判定。病情指数小于11为高抗,在11~25为中抗,在25~35为中感,大于35为高感。

    采用Excel 2017统计测得的数据,以发病率和病情指数表示测定结果,利用SPSS 20.0统计分析软件对同一接种条件下的不同品种苜蓿发病率和病情指数进行单因素方差分析。

    经室内喷雾接种后第8天,40份供试苜蓿品种幼苗均感染炭疽病(表2)。植株发病率在6.67%~100.00%,病情指数在4.17~80.00。根据病情指数可分为高抗、中抗、中感、高感4个抗病级别,高抗品种与高感品种间差异显著(P < 0.05)。病情指数小于11的高抗品种有3个,占比7.50%,发病率在6.67%~10.00%,抗性高低依次为威纳尔、阿尔冈金和巨能2。病情指数在11~25的中抗品种有7份,占比17.50%,发病率在23.23%~36.67%的品种分别为,WL363HQ、巨能7、拉迪诺、4030、4010、润布勒、亮牧。病情指数在25~35的中感品种有新牧4号、甘农4号、驯鹿等15份,占比37.50%,发病率在36.67%~63.33%的品种有21个,例如甘农4号,3010等。病情指数大于35的高感品种有新疆大叶、甘农6号、甘农9号等15份,占比37.50%;其中,新疆大叶发病率高达100.00%,病情指数达80。

    表  2  苜蓿品种对三叶草炭疽菌抗性的室内鉴定结果
    Table  2.  Results of alfalfa varieties Colletotrichum trifolii resistance assays performed in a greenhouse
    苜蓿品种 Alfalfa cultivars发病率 Disease incidence/%病情指数 Disease index抗性分级 Resistant level
    新疆大叶 Xinjiang Daye 100.00 ± 0.00a 80.00 ± 2.83a HS
    甘农6号 Gannong No.6 86.67 ± 4.71abc 72.22 ± 4.16ab HS
    陇东苜蓿 Longdong 80.00 ± 16.33bc 59.17 ± 16.38bc HS
    甘农9号 Gannong No.9 90.00 ± 8.16ab 54.17 ± 14.77bcd HS
    WL343HQ 66.67 ± 26.25bcde 46.67 ± 14.34cde HS
    甘农3号 Gannong No.3 63.33 ± 4.71bcdef 44.44 ± 4.16cdef HS
    新牧2号 Xinmu No.2 50.00 ± 32.6defghi 42.78 ± 18.41cdefg HS
    北极熊 Gibraltar 63.33 ± 9.43bcdef 42.50 ± 2.04cdefg HS
    擎天柱 Optimus 73.33 ± 20.55bcd 38.89 ± 3.14defgh HS
    德宝 Derby 56.67 ± 4.71cdefgh 37.50 ± 2.04defghi HS
    北方 SLT Northern SLT 53.33 ± 17.00defgh 37.22 ± 9.06defghi HS
    巨能6 Magnum 6 60.00 ± 14.14bcdefg 37.00 ± 5.72defghi HS
    新牧1号 Xinmu No.1 50.00 ± 8.16defghi 36.50 ± 4.42defghij HS
    超音速 Supersonic 66.67 ± 4.71bcde 36.00 ± 6.98defghij HS
    敖汉苜蓿 Aohan 40.00 ± 16.33fghijk 35.28 ± 18.03efghij HS
    冲击波 Shockwave 50.00 ± 0.00defghi 35.00 ± 4.08efghijk S
    游侠 Ranger 60.00 ± 24.49bcdefg 34.44 ± 4.16efghijk S
    4020 40.00 ± 29.44fghijk 34.44 ± 25.72efghijk S
    甘农1号 Gannong No.1 63.33 ± 18.86bcdef 33.33 ± 4.71efghijkl S
    金皇后 Golden empress 50.00 ± 0.00defghi 32.22 ± 3.14efghijkl S
    中苜一号 Zhongmu No.1 43.33 ± 9.43fghijk 31.67 ± 4.25efghijkl S
    龙牧803 Tumu 803 56.67 ± 9.43cdefgh 31.11 ± 1.57efghijkl S
    三得利 Sanditi 40.00 ± 8.16fghijk 31.11 ± 4.16efghijkl S
    WL354HQ 26.67 ± 9.43hijkl 26.67 ± 5.44efghijkl S
    3010 36.67 ± 17.00ghijkl 30.00 ± 8.16efghijkl S
    甘农5号 Gannong No.5 53.33 ± 12.47defgh 28.61 ± 6.32efghijkl S
    肇东 Zhaodon 30.00 ± 16.33hijkl 26.67 ± 12.47fghijklm S
    驯鹿 Xunlu 56.67 ± 12.47cdefgh 25.56 ± 4.16ghijklm S
    甘农4号 Gannong No.4 36.67 ± 12.47ghijkl 25.56 ± 4.16ghijklm S
    新牧4号 Xinmu No.4 30.00 ± 14.14hijkl 25.50 ± 10.98ghijklm S
    亮牧 Liangmu 23.33 ± 4.71ijkl 23.33 ± 4.71hijklm R
    润布勒 Rembler 23.33 ± 12.47ijkl 22.22 ± 12.87hijklmn R
    4010 36.67 ± 9.43ghijkl 20.28 ± 2.39ijklmn R
    4030 26.67 ± 4.71hijkl 20.00 ± 0.00ijklmn R
    拉迪诺 Ladinuo 23.33 ± 12.47jkl 18.33 ± 6.24jklmn R
    巨能7 Magnum 7 23.33 ± 20.55jkl 16.67 ± 12.47jklmn R
    WL363HQ 23.33 ± 12.47jkl 15.00 ± 4.08lmn R
    巨能2 Magnum 2 10.00 ± 0.00kl 10.00 ± 0.00mn HR
    阿尔冈金 Algonguin 10.00 ± 14.14kl 8.89 ± 12.58mn HR
    威纳尔 Vinal 6.67 ± 9.43l 4.17 ± 5.89n HR
     同列不同小写字母表示不同材料间差异显著(P < 0.05);HR:高抗;R:中抗;S:中感;HS:高感。
     Different lowercase letters within the same column indicate significant differences between different alfalfa cultivars at the 0.05 level. HR: high resistance; R: moderate resistance; S: moderate susceptibility; HS: high susceptibility.
    下载: 导出CSV 
    | 显示表格

    苗龄40 d的紫花苜蓿接种三叶草炭疽菌后第6天,30.1%的供试苜蓿植株茎秆出现1~40 mm大小不等的淡褐色水渍状病斑。接种后第8天,所有供试品种均被侵染,表现不同程度发病症状,重者茎秆折断,甚至枯死,整体发病率为47.5%。其中,高感品种症状多表现为茎秆上出现褐色棱形至长条形病斑,上生褐色(分生孢子盘)至黑色(微菌核)小点,病斑绕茎一周,导致茎秆折断呈“牧羊杖”状,茎秆上部枯死(图1A、B),如品种新疆大叶(图2A)。中感品种症状多表现为茎秆和叶柄有褐色卵圆形病斑,叶柄干枯,叶片脱落,少数病斑有分生孢子盘(图1C),如品种冲击波(图2B)。中抗品种症状多表现为在茎秆或叶柄处有淡褐色、无分生孢子盘的圆形至卵圆形病斑,完全健康和死亡的植株很少(图1D),如品种WL363HQ (图2C)。高抗品种症状大多表现为无病斑或仅有水渍状斑点,未见分生孢子盘,生长状况良好(图1E),如品种威纳尔(图2D)。健康植株无病斑(图1F)。

    图  1  不同发病程度植株症状图
    A,B:高感植株;C:中感植株;D:中抗植株;E:高抗植株;F:健康植株。
    Figure  1.  Symptoms of plants with different disease severity
    A, B: highly susceptible plants; C: moderately susceptible plants; D: moderately resistant plants; E: highly resistant plants; F: healthy plants.
    图  2  四类不同抗病性的代表性苜蓿品种发病症状
    A:高感品种(新疆大叶);B:中感品种(冲击波);C:中抗品种(WL363HQ);D:高抗品种(威纳尔)。
    Figure  2.  Symptoms in four representative alfalfa cultivars with different disease resistance levels
    A: a highly susceptible cultivar (Xinjiang Daye); B: a moderately susceptible cultivar (Shockwave); C: a moderately resistant cultivar (WL343HQ); D: a highly resistant cultivar (Vinal).

    选用和推广抗病品种是防治苜蓿炭疽病最经济有效的措施,开展苜蓿品种对炭疽病的抗性评价研究对苜蓿炭疽病的防治有重要的应用价值。不同炭疽病菌侵染苜蓿的主要部位有差异,平头炭疽菌[31]和亚麻炭疽菌[32-33]主要侵染苜蓿叶片,北美炭疽菌和三叶草炭疽菌主要侵染苜蓿茎秆[12]。本研究采用三叶草炭疽菌菌株HTB-2019-3接种40个苜蓿品种,发现该菌可侵染苜蓿茎秆和叶柄,与徐杉[12]测定的三叶草炭疽菌新疆菌株XJLYZ15和XJLYZ16仅染茎秆的研究结果略有差异,这可能是由于不同菌株间存在致病性差异导致。张梨梨等[34]开展44个苜蓿品种对北美炭疽菌的抗性评价结果表明,在接种后14 d,全部苜蓿品种感染炭疽病,高感品种新疆大叶的发病率为47.31%。本研究开展40个苜蓿品种对三叶草炭疽菌的抗性评价,在接种第6天,大约30%的苜蓿品种出现病斑,接种第8天,供试苜蓿品种全部感染炭疽病,高感品种新疆大叶发病率高达100%。据此推测,三叶草炭疽菌或许比北美炭疽菌侵染力更强,病情发展更快,扩散更迅速,严重时导致苜蓿死亡。

    在美国东部、中部、西部苜蓿种植区中,种植抗三叶草炭疽菌苜蓿品种Beltsville 1-An4、Beltsville 2-An4,Beltsville 3-An4和Arc能够显著提高苜蓿草年产量[39],其中,有24个地区苜蓿草年平均产量提高7%,有15个地区苜蓿草年平均产量提高10%。因此,在炭疽病发生严重的地区种植抗病品种可经济安全地减少产量损失,从而提高经济效益。

    苗期抗性鉴定法省工省时,可在较短时间内进行大量植物材料的比较和筛选,且在室内进行,不受生长季节和自然条件的限制,但不利于测定不同发育阶段的抗性变化[40]。本研究采用苗期鉴定法开展了40份苜蓿品种对炭疽病的苗期抗病性评价,研究结果尚不能完全准确反映苜蓿整个生育期对三叶草炭疽菌的抗性,后续将进一步开展田间抗性评价以便更好地服务生产。

    本研究筛选出威纳尔、巨能2、阿尔冈金、WL363HQ、巨能7、拉迪诺、4030、4010、润布勒、亮牧10个抗病品种;且发现,三叶草炭疽菌新疆菌株HTB-2019-3仅侵染苜蓿茎秆和叶柄引起炭疽病,且该菌致病力极强,扩散迅速,说明新疆具备苜蓿炭疽病发生和流行的有力条件。应尽快开展针对三叶草炭疽菌新疆菌株的抗炭疽病苜蓿育种及苜蓿炭疽病绿色防控技术研发,助力新疆畜牧业健康有序发展。本研究结果在以三叶草炭疽菌为主的地区推广抗炭疽病苜蓿品种以防治苜蓿炭疽病提供了参考依据。

    [1]

    DAMM U, O'CONNELL R J, GROENEWALD J Z, CROUS P W. The Colletotrichum destructivum species complex-hemibiotrophic pathogens of forage and field crops. Studies in Mycology, 2014, 79: 49-84. doi: 10.1016/j.simyco.2014.09.003

    [2]

    LAVIOLA C. Osservazioni sull'antracnosi dell'erba alfalfa (Medicago sativa L. ) in Puglia. Annali Della Facoltà Agricultural University Bari (Italy), 1963, 17: 337-346.

    [3]

    IRWIN J A G. Crown rot of lucerne in Queensland caused by Colletotrichum trifolii. Australian Journal of Experimental Agriculture and Animal Husbandry, 1974, 14(67): 197-200. doi: 10.1071/EA9740197

    [4]

    WATANABE K, NAKAJIMA K, HORIUCHI S. Adaptability test of alfalfa varieties for the warmer region of Japan. Journal of Japanese Society of Grassland Science, 1969, 15(2): 112-200.

    [5]

    VASIĆ T, RADOCIĆ J, LUGIĆ Z. Occurrence of Colletotrichum trifolii (Bain et Essary), the inducer of alfalfa anthracnose in Serbia. Sustainable Use of Genetic Diversity in Forage and Turf Breeding, 2010, 9: 368-374.

    [6]

    CHAFOOR A S, JAMIKHAM A. Record of Colletotrichum truncatum on Medicago sativa in Pakistan. Pakistan Agriculture, 1996, 17: 299-300.

    [7]

    AL-ASKAR A A, GHONEEM K M, RASHAD Y M. Management of some seed-borne pathogens attacking alfalfa plants in Saudi Arabia. African Journal of Microbiol Research, 2013, 7(14): 1197-1206. doi: 10.5897/AJMR12.739

    [8]

    ZAFARI D, HAMADANI S T. Charactrization of Colletotrichum species from legumes crop plants in Iran. Applied Entomology and Phytopathology, 2009, 77(1): 37-57.

    [9]

    FRAYSSINET S. Colletotrichum destructivum: A new lucerne pathogen in Argentina. Australasian Plant Disease Notes, 2008, 3(1): 68. doi: 10.1071/DN08027

    [10]

    KOCH S H, BAXTER A P, KNOX-DAVIES P S. Identity and pathogenicity of Colletotrichum species from Medicago sativa in South Africa. Phytophylactica, 1989, 21(1): 69-78.

    [11] 马甲强. 苜蓿炭疽病病原学及防治研究. 兰州: 甘肃农业大学硕士学位论文, 2016.

    MA J Q, Studies on etiology and control of alfalfa anthracnose. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.

    [12] 徐杉. 紫花苜蓿炭疽病的病原及其致病性研究. 兰州: 兰州大学博士学位论文, 2019.

    XU S. Study of the pathogen and pathogenicity of alfalfa anthracnose. PhD Thesis. Lanzhou: Lanzhou University, 2019.

    [13]

    ALIZADEH A, NIKKHAH M J, ATGHIA O, ZARE R, FOTOUHIFAR K B, DAMM U, STUKENBROCK E H. Contribution to the systematic study on the genus Colletotrichum in Northern Iran. University of Tehran, Karaj, Iran: 2nd Iranian Mycological Congress, 2015.

    [14]

    VASIĆ T, BULAJIĆ A, KRNJAJA V, JEVREMOVIĆ D, ŽIVKOVIĆ S, ANDJELKOVIĆ B. First report of anthracnose on alfalfa caused by Colletotrichum linicola in Serbia. Plant Disease, 2014, 98(9): 1276. doi: 10.1094/PDIS-03-14-0258-PDN

    [15]

    TIFFANY L H, GILMAN J C. Species of Colletotrichum from legumes. Mycologia, 1954, 46: 52-75. doi: 10.1080/00275514.1954.12024341

    [16]

    DAMM U, WOUDENBERG J H C, CANNON P F, CROUS P W. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 2009, 39: 45-87.

    [17]

    O’NEILL N R. Pathogenic variability and host resistance in the Colletotrichum trifolii/Medicago sativa pathosystem. Plant Disease, 1996, 80: 450-457. doi: 10.1094/PD-80-0450

    [18]

    BAIN S M, ESSARY S H. A new anthracnose of alfalfa and red clover. The Journal of Mycology, 1906, 12(5): 192-193. doi: 10.2307/3753010

    [19] 戚佩坤, 白金铠, 朱桂香. 吉林省栽培植物真菌病害志. 北京: 科学出版社, 1966.

    QI P K, BAI J K, ZHU G X. History of Fungal Diseases of Cultivated Plants in Jilin Province. Beijing: Science Press, 1966.

    [20]

    BARNES D K, OSTAZESKI S A, SCHILLINGER J A, HANSON C H. Effect of anthracnose (Colletotrichum trifolii) infection on yield, stand, and vigor of alfalfal. Crop Science, 1969, 9(3): 344-346. doi: 10.2135/cropsci1969.0011183X000900030029x

    [21] 钟步飞. 南方山药炭疽病菌致病力研究及抗炭疽病山药种质抗性评价. 海口: 海南大学博士论文, 2014.

    ZHONG B F. Study of the pathogenicity of anthracnose pathogen and evaluation of disease resistance of anthracnose in southern yam in China. PhD Thesis. Haikou: Hainan University, 2014.

    [22] 孙洁莹, 陈出新, 谷超, 殷豪, 齐开杰, 张绍铃, 吴俊. 梨品种资源抗炭疽病鉴定与筛选. 果树学报, 2016, 33(S1): 184-195.

    SUN J Y, CHEN C X, GU C, YIN H, QI K J, ZHANG S L, WU J. Identification and screening of resistance to anthracnose of pear varieties. Journal of Fruit Science, 2016, 33(S1): 184-195.

    [23] 刘羽, 刘增亮, 高爱平, 朱敏, 蒲金基, 张欣, 谢艺贤. 芒果种质对炭疽病的抗病性评价. 热带作物学报, 2009, 30(7): 1000-1004. doi: 10.3969/j.issn.1000-2561.2009.07.021

    LIU Y, LIU Z L, GAO A P, ZHU M, PU J J, ZHANG X, XIE Y X. Evaluation of resistance of mango germplasm to anthracnose. Acta Tropical Crops, 2009, 30(7): 1000-1004. doi: 10.3969/j.issn.1000-2561.2009.07.021

    [24] 王雪莲. 柑橘对胶孢炭疽菌的抗性研究. 重庆: 西南大学博士学位论文, 2015.

    WANG X L. Study on the resistance of citrus to Colletotrichum gloeosporioides. PhD Thesis. Chongqing: Southwest University, 2015.

    [25] 易兰. 辣椒炭疽病病原菌的分离鉴定和辣椒抗炭疽病材料的筛选. 雅安: 四川农业大学博士学位论文, 2019.

    YI L. Isolation and identification of the pathogen of pepper anthracnose and screening of pepper anthracnose resistance materials. PhD Thesis. Yaan: Sichaun Agricultural University, 2019.

    [26] 赵梓岑, 徐士忠, 季梅, 赵宁, 杨斌. 云南主栽核桃品种对炭疽病的抗性评价. 贵州农业科学, 2018, 46(5): 41-45. doi: 10.3969/j.issn.1001-3601.2018.05.010

    ZHAO Z C, XU S Z, JI M, ZHAO N, YANG B. Evaluation on resistance of main walnut varieties in Yunnan to anthracnose. Guizhou Agricultural Sciences, 2018, 46(5): 41-45. doi: 10.3969/j.issn.1001-3601.2018.05.010

    [27] 施云龙. 茶树抗炭疽病和抗冻机制及评价研究. 杭州: 浙江大学博士学位论文, 2020.

    SHI Y L. Study of the freezing mechanism and evaluation of resistance to anthracnose of tea plant. PhD Thesis. Hangzhou: Zhejiang University, 2020.

    [28] 黄金凤. 野生草莓种质资源对胶孢炭疽菌的抗性研究. 南京: 南京农业大学博士学位论文, 2012.

    HUANG J F. Study on the resistance of wild strawberry germplasm resources to Colletotrichum gloeosporioides. PhD Thesis. Nanjing: Nanjing Agricultural University, 2012.

    [29] 张婷, 胡国富, 肖子恒, 李鹤春, 詹云. 菜豆(油豆角)炭疽病菌的分离鉴定及抗病资源筛选. 中国蔬菜, 2012(22): 75-80.

    ZHANG T, HU F G, XIAO Z H, LI H C, ZHAN Y. Isolation and identification of anthracnose pathogen of kidney bean (carob) and screening of disease-resistant resources. Chinese Vegetables, 2012(22): 75-80.

    [30] 王晓宇. 亚麻炭疽病发生条件研究及抗病种质资源筛选. 哈尔滨: 东北农业大学硕士学位论文, 2013.

    WANG X Y. Study on occurrence condition of flax Colletotrichum disease and the screening of resistant sources of flax. Master Thesis. Harbin: Dongbei Agricultural University, 2013.

    [31] 郑芳芳, 贺伟, 尹淑霞. 20个苜蓿品种对炭疽病(Colletotrichum truncatum)的抗性测定. 植物保护, 2008(6): 99-101. doi: 10.3969/j.issn.0529-1542.2008.06.024

    ZHENG F F, HE W, YI S X. Determination of 20 alfalfa cultivars for their resistance to Colletotrichum truncatum. Plant Protection, 2008(6): 99-101. doi: 10.3969/j.issn.0529-1542.2008.06.024

    [32] 马甲强, 袁庆华, 王瑜, 苗丽宏. 苜蓿种质材料对亚麻刺盘孢的室内抗性评价. 草地学报, 2017, 25(3): 604-611. doi: 10.11733/j.issn.1007-0435.2017.03.022

    MA J Q, YUAN Q H, WANG Y, MIAO L H. Evaluation of the resistance of alfalfa germplasm to Colletotrichum linicola. Acta Agrestia Sinica, 2017, 25(3): 604-611. doi: 10.11733/j.issn.1007-0435.2017.03.022

    [33] 辛宝宝, 王瑜, 袁庆华. 苜蓿种质材料对炭疽病的抗性评价研究. 草地学报, 2017, 39(4): 111-115.

    XIN B B, WANG Y, YUAN Q H. Evaluation on resistance of different germplasms of alfalfa to Colletotrichum linicola. Acta Agrestia Sinica, 2017, 39(4): 111-115.

    [34] 张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响. 草业学报, 2020, 29(6): 117-126. doi: 10.11686/cyxb2019546

    ZHANG L L, SHI M, LI Y Z. Effect of an thracnose infection on alfalfa yeild and quality in the Shaerqin area. Acta Prataculturae Sinica, 2020, 29(6): 117-126. doi: 10.11686/cyxb2019546

    [35] 周玉雷, 成启明, 都帅, 朱月, 赵雪梅, 郭鹏飞, 蔡文静, 贾玉山. 不同处理方法对紫花苜蓿种子萌发的影响. 中国饲料, 2020(14): 16-23.

    ZHOU Y L, CHENG Q M, DU S, ZHU Y, ZHAO X M, GUO P F, CAI W J, JIA Y S. Effects of different treatment methods on the germination of alfalfa seeds. China Feed, 2020(14): 16-23.

    [36] 王丽, 刘雅宁, 程爽, 胥志文. 西北地区紫花苜蓿高效栽培技术. 农业科技通讯, 2019(12): 296-298.

    WANG L, LIU Y N, CHENG S, XU Z W. High-efficient cultivation techniques of alfalfa in northwest China. Agricultural Technology Newsletter, 2019(12): 296-298.

    [37] 方中达. 植病研究方法. 北京: 中国农业出版社, 2001.

    FANG Z D, Plant Disease Research Methods. Beijing: China Agriculture Press, 2001.

    [38] 李彦忠, 南志标. 牧草病害诊断调查与损失评定方法. 南京: 江苏凤凰科学技术出版社, 2015.

    LI Y Z, NAN Z B. Forage Disease Diagnosis Investigation and Loss Assessment Methods. Nanjing: Jiangsu Phoenix Science and Technology Press, 2015.

    [39]

    ELGIN J H, BARNES D K, BUSBICE T H, BUSS G R, CLSRK N A, CLEVELAND R W, DTTERLINE R L, EVANS D W, FRANSEN S C, HORROCKS R D, HUNT O J, KEHR W R, LOWE C C, MILLKER D A, OFFUTT M S, PIKETT R C, SORENSEN E L, TALIAFERRO C M, TESAR M B, VAN KEUREN R W. Anthracnose resistance increases alfalfa yields. Crop Science, 1981, 21(3): 457-460. doi: 10.2135/cropsci1981.0011183X002100030026x

    [40] 许志刚. 普通植物病理学. 北京: 高等教育出版社, 2009.

    XU Z G. General Plant Pathology. Beijing: Higher Education Press, 2009.

  • 图  1   不同发病程度植株症状图

    A,B:高感植株;C:中感植株;D:中抗植株;E:高抗植株;F:健康植株。

    Figure  1.   Symptoms of plants with different disease severity

    A, B: highly susceptible plants; C: moderately susceptible plants; D: moderately resistant plants; E: highly resistant plants; F: healthy plants.

    图  2   四类不同抗病性的代表性苜蓿品种发病症状

    A:高感品种(新疆大叶);B:中感品种(冲击波);C:中抗品种(WL363HQ);D:高抗品种(威纳尔)。

    Figure  2.   Symptoms in four representative alfalfa cultivars with different disease resistance levels

    A: a highly susceptible cultivar (Xinjiang Daye); B: a moderately susceptible cultivar (Shockwave); C: a moderately resistant cultivar (WL343HQ); D: a highly resistant cultivar (Vinal).

    表  1   供试苜蓿品种及来源

    Table  1   Alfalfa cultivars and their sources

    序号 No.苜蓿品种 Alfalfa cultivars来源 Source
    1 威纳尔 Vinal 加拿大 Canada
    2 阿尔冈金 Algonguin 加拿大 Canada
    3 巨能2 Magnum 2 美国 USA
    4 WL363HQ 美国 USA
    5 巨能7 Magnum 7 美国 USA
    6 拉迪诺 Ladinuo 加拿大 Canada
    7 4030 加拿大 Canada
    8 4010 加拿大 Canada
    9 润布勒 Rembler 加拿大 Canada
    10 亮牧 Liangmu 新疆 Xinjiang
    11 新牧4号 Xinmu No.4 新疆 Xinjiang
    12 甘农4号 Gannong No.4 甘肃 Gansu
    13 驯鹿 Xunlu 加拿大 Canada
    14 肇东 Zhaodon 东北 Dongbei
    15 甘农5号 Gannong No.5 甘肃 Gansu
    16 3010 美国 USA
    17 WL354HQ 美国 USA
    18 三得利 Sanditi 荷兰 Holand
    19 龙牧803 Tumu 803 黑龙江 Heilongjiang
    20 中苜一号 Zhongmu No.1 北京 Beijing
    21 金皇后 Golden empress 美国 USA
    22 甘农1号 Gannong No.1 甘肃 Gansu
    23 4020 加拿大 Canada
    24 游侠 Ranger 加拿大 Canada
    25 冲击波 Shockwave BR 美国 USA
    26 熬汉苜蓿 Aohan 内蒙古 Neimenggu
    27 超音速 Supersonic 澳大利亚 Australian
    28 新牧1号 Xinmu No.1 新疆 Xinjiang
    29 巨能6 Magnum 6 美国 USA
    30 北方 SLT Northern SLT 中国 China
    31 德宝 Derby 法国 France
    32 擎天柱 Optimus 美国 USA
    33 北极熊 Gibraltar 美国 USA
    34 新牧2号 Xinmu No.2 新疆 Xinjiang
    35 甘农3号 Gannong No.3 甘肃 Gansu
    36 WL343HQ 美国 USA
    37 甘农9号 Gannong No.9 甘肃 Gansu
    38 陇东苜蓿 Longdong 甘肃 Gansu
    39 甘农6号 Gannong No.6 甘肃 Gansu
    40 新疆大叶 Xinjiang Daye 新疆 Xinjiang
    下载: 导出CSV

    表  2   苜蓿品种对三叶草炭疽菌抗性的室内鉴定结果

    Table  2   Results of alfalfa varieties Colletotrichum trifolii resistance assays performed in a greenhouse

    苜蓿品种 Alfalfa cultivars发病率 Disease incidence/%病情指数 Disease index抗性分级 Resistant level
    新疆大叶 Xinjiang Daye 100.00 ± 0.00a 80.00 ± 2.83a HS
    甘农6号 Gannong No.6 86.67 ± 4.71abc 72.22 ± 4.16ab HS
    陇东苜蓿 Longdong 80.00 ± 16.33bc 59.17 ± 16.38bc HS
    甘农9号 Gannong No.9 90.00 ± 8.16ab 54.17 ± 14.77bcd HS
    WL343HQ 66.67 ± 26.25bcde 46.67 ± 14.34cde HS
    甘农3号 Gannong No.3 63.33 ± 4.71bcdef 44.44 ± 4.16cdef HS
    新牧2号 Xinmu No.2 50.00 ± 32.6defghi 42.78 ± 18.41cdefg HS
    北极熊 Gibraltar 63.33 ± 9.43bcdef 42.50 ± 2.04cdefg HS
    擎天柱 Optimus 73.33 ± 20.55bcd 38.89 ± 3.14defgh HS
    德宝 Derby 56.67 ± 4.71cdefgh 37.50 ± 2.04defghi HS
    北方 SLT Northern SLT 53.33 ± 17.00defgh 37.22 ± 9.06defghi HS
    巨能6 Magnum 6 60.00 ± 14.14bcdefg 37.00 ± 5.72defghi HS
    新牧1号 Xinmu No.1 50.00 ± 8.16defghi 36.50 ± 4.42defghij HS
    超音速 Supersonic 66.67 ± 4.71bcde 36.00 ± 6.98defghij HS
    敖汉苜蓿 Aohan 40.00 ± 16.33fghijk 35.28 ± 18.03efghij HS
    冲击波 Shockwave 50.00 ± 0.00defghi 35.00 ± 4.08efghijk S
    游侠 Ranger 60.00 ± 24.49bcdefg 34.44 ± 4.16efghijk S
    4020 40.00 ± 29.44fghijk 34.44 ± 25.72efghijk S
    甘农1号 Gannong No.1 63.33 ± 18.86bcdef 33.33 ± 4.71efghijkl S
    金皇后 Golden empress 50.00 ± 0.00defghi 32.22 ± 3.14efghijkl S
    中苜一号 Zhongmu No.1 43.33 ± 9.43fghijk 31.67 ± 4.25efghijkl S
    龙牧803 Tumu 803 56.67 ± 9.43cdefgh 31.11 ± 1.57efghijkl S
    三得利 Sanditi 40.00 ± 8.16fghijk 31.11 ± 4.16efghijkl S
    WL354HQ 26.67 ± 9.43hijkl 26.67 ± 5.44efghijkl S
    3010 36.67 ± 17.00ghijkl 30.00 ± 8.16efghijkl S
    甘农5号 Gannong No.5 53.33 ± 12.47defgh 28.61 ± 6.32efghijkl S
    肇东 Zhaodon 30.00 ± 16.33hijkl 26.67 ± 12.47fghijklm S
    驯鹿 Xunlu 56.67 ± 12.47cdefgh 25.56 ± 4.16ghijklm S
    甘农4号 Gannong No.4 36.67 ± 12.47ghijkl 25.56 ± 4.16ghijklm S
    新牧4号 Xinmu No.4 30.00 ± 14.14hijkl 25.50 ± 10.98ghijklm S
    亮牧 Liangmu 23.33 ± 4.71ijkl 23.33 ± 4.71hijklm R
    润布勒 Rembler 23.33 ± 12.47ijkl 22.22 ± 12.87hijklmn R
    4010 36.67 ± 9.43ghijkl 20.28 ± 2.39ijklmn R
    4030 26.67 ± 4.71hijkl 20.00 ± 0.00ijklmn R
    拉迪诺 Ladinuo 23.33 ± 12.47jkl 18.33 ± 6.24jklmn R
    巨能7 Magnum 7 23.33 ± 20.55jkl 16.67 ± 12.47jklmn R
    WL363HQ 23.33 ± 12.47jkl 15.00 ± 4.08lmn R
    巨能2 Magnum 2 10.00 ± 0.00kl 10.00 ± 0.00mn HR
    阿尔冈金 Algonguin 10.00 ± 14.14kl 8.89 ± 12.58mn HR
    威纳尔 Vinal 6.67 ± 9.43l 4.17 ± 5.89n HR
     同列不同小写字母表示不同材料间差异显著(P < 0.05);HR:高抗;R:中抗;S:中感;HS:高感。
     Different lowercase letters within the same column indicate significant differences between different alfalfa cultivars at the 0.05 level. HR: high resistance; R: moderate resistance; S: moderate susceptibility; HS: high susceptibility.
    下载: 导出CSV
  • [1]

    DAMM U, O'CONNELL R J, GROENEWALD J Z, CROUS P W. The Colletotrichum destructivum species complex-hemibiotrophic pathogens of forage and field crops. Studies in Mycology, 2014, 79: 49-84. doi: 10.1016/j.simyco.2014.09.003

    [2]

    LAVIOLA C. Osservazioni sull'antracnosi dell'erba alfalfa (Medicago sativa L. ) in Puglia. Annali Della Facoltà Agricultural University Bari (Italy), 1963, 17: 337-346.

    [3]

    IRWIN J A G. Crown rot of lucerne in Queensland caused by Colletotrichum trifolii. Australian Journal of Experimental Agriculture and Animal Husbandry, 1974, 14(67): 197-200. doi: 10.1071/EA9740197

    [4]

    WATANABE K, NAKAJIMA K, HORIUCHI S. Adaptability test of alfalfa varieties for the warmer region of Japan. Journal of Japanese Society of Grassland Science, 1969, 15(2): 112-200.

    [5]

    VASIĆ T, RADOCIĆ J, LUGIĆ Z. Occurrence of Colletotrichum trifolii (Bain et Essary), the inducer of alfalfa anthracnose in Serbia. Sustainable Use of Genetic Diversity in Forage and Turf Breeding, 2010, 9: 368-374.

    [6]

    CHAFOOR A S, JAMIKHAM A. Record of Colletotrichum truncatum on Medicago sativa in Pakistan. Pakistan Agriculture, 1996, 17: 299-300.

    [7]

    AL-ASKAR A A, GHONEEM K M, RASHAD Y M. Management of some seed-borne pathogens attacking alfalfa plants in Saudi Arabia. African Journal of Microbiol Research, 2013, 7(14): 1197-1206. doi: 10.5897/AJMR12.739

    [8]

    ZAFARI D, HAMADANI S T. Charactrization of Colletotrichum species from legumes crop plants in Iran. Applied Entomology and Phytopathology, 2009, 77(1): 37-57.

    [9]

    FRAYSSINET S. Colletotrichum destructivum: A new lucerne pathogen in Argentina. Australasian Plant Disease Notes, 2008, 3(1): 68. doi: 10.1071/DN08027

    [10]

    KOCH S H, BAXTER A P, KNOX-DAVIES P S. Identity and pathogenicity of Colletotrichum species from Medicago sativa in South Africa. Phytophylactica, 1989, 21(1): 69-78.

    [11] 马甲强. 苜蓿炭疽病病原学及防治研究. 兰州: 甘肃农业大学硕士学位论文, 2016.

    MA J Q, Studies on etiology and control of alfalfa anthracnose. Master Thesis. Lanzhou: Gansu Agricultural University, 2016.

    [12] 徐杉. 紫花苜蓿炭疽病的病原及其致病性研究. 兰州: 兰州大学博士学位论文, 2019.

    XU S. Study of the pathogen and pathogenicity of alfalfa anthracnose. PhD Thesis. Lanzhou: Lanzhou University, 2019.

    [13]

    ALIZADEH A, NIKKHAH M J, ATGHIA O, ZARE R, FOTOUHIFAR K B, DAMM U, STUKENBROCK E H. Contribution to the systematic study on the genus Colletotrichum in Northern Iran. University of Tehran, Karaj, Iran: 2nd Iranian Mycological Congress, 2015.

    [14]

    VASIĆ T, BULAJIĆ A, KRNJAJA V, JEVREMOVIĆ D, ŽIVKOVIĆ S, ANDJELKOVIĆ B. First report of anthracnose on alfalfa caused by Colletotrichum linicola in Serbia. Plant Disease, 2014, 98(9): 1276. doi: 10.1094/PDIS-03-14-0258-PDN

    [15]

    TIFFANY L H, GILMAN J C. Species of Colletotrichum from legumes. Mycologia, 1954, 46: 52-75. doi: 10.1080/00275514.1954.12024341

    [16]

    DAMM U, WOUDENBERG J H C, CANNON P F, CROUS P W. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 2009, 39: 45-87.

    [17]

    O’NEILL N R. Pathogenic variability and host resistance in the Colletotrichum trifolii/Medicago sativa pathosystem. Plant Disease, 1996, 80: 450-457. doi: 10.1094/PD-80-0450

    [18]

    BAIN S M, ESSARY S H. A new anthracnose of alfalfa and red clover. The Journal of Mycology, 1906, 12(5): 192-193. doi: 10.2307/3753010

    [19] 戚佩坤, 白金铠, 朱桂香. 吉林省栽培植物真菌病害志. 北京: 科学出版社, 1966.

    QI P K, BAI J K, ZHU G X. History of Fungal Diseases of Cultivated Plants in Jilin Province. Beijing: Science Press, 1966.

    [20]

    BARNES D K, OSTAZESKI S A, SCHILLINGER J A, HANSON C H. Effect of anthracnose (Colletotrichum trifolii) infection on yield, stand, and vigor of alfalfal. Crop Science, 1969, 9(3): 344-346. doi: 10.2135/cropsci1969.0011183X000900030029x

    [21] 钟步飞. 南方山药炭疽病菌致病力研究及抗炭疽病山药种质抗性评价. 海口: 海南大学博士论文, 2014.

    ZHONG B F. Study of the pathogenicity of anthracnose pathogen and evaluation of disease resistance of anthracnose in southern yam in China. PhD Thesis. Haikou: Hainan University, 2014.

    [22] 孙洁莹, 陈出新, 谷超, 殷豪, 齐开杰, 张绍铃, 吴俊. 梨品种资源抗炭疽病鉴定与筛选. 果树学报, 2016, 33(S1): 184-195.

    SUN J Y, CHEN C X, GU C, YIN H, QI K J, ZHANG S L, WU J. Identification and screening of resistance to anthracnose of pear varieties. Journal of Fruit Science, 2016, 33(S1): 184-195.

    [23] 刘羽, 刘增亮, 高爱平, 朱敏, 蒲金基, 张欣, 谢艺贤. 芒果种质对炭疽病的抗病性评价. 热带作物学报, 2009, 30(7): 1000-1004. doi: 10.3969/j.issn.1000-2561.2009.07.021

    LIU Y, LIU Z L, GAO A P, ZHU M, PU J J, ZHANG X, XIE Y X. Evaluation of resistance of mango germplasm to anthracnose. Acta Tropical Crops, 2009, 30(7): 1000-1004. doi: 10.3969/j.issn.1000-2561.2009.07.021

    [24] 王雪莲. 柑橘对胶孢炭疽菌的抗性研究. 重庆: 西南大学博士学位论文, 2015.

    WANG X L. Study on the resistance of citrus to Colletotrichum gloeosporioides. PhD Thesis. Chongqing: Southwest University, 2015.

    [25] 易兰. 辣椒炭疽病病原菌的分离鉴定和辣椒抗炭疽病材料的筛选. 雅安: 四川农业大学博士学位论文, 2019.

    YI L. Isolation and identification of the pathogen of pepper anthracnose and screening of pepper anthracnose resistance materials. PhD Thesis. Yaan: Sichaun Agricultural University, 2019.

    [26] 赵梓岑, 徐士忠, 季梅, 赵宁, 杨斌. 云南主栽核桃品种对炭疽病的抗性评价. 贵州农业科学, 2018, 46(5): 41-45. doi: 10.3969/j.issn.1001-3601.2018.05.010

    ZHAO Z C, XU S Z, JI M, ZHAO N, YANG B. Evaluation on resistance of main walnut varieties in Yunnan to anthracnose. Guizhou Agricultural Sciences, 2018, 46(5): 41-45. doi: 10.3969/j.issn.1001-3601.2018.05.010

    [27] 施云龙. 茶树抗炭疽病和抗冻机制及评价研究. 杭州: 浙江大学博士学位论文, 2020.

    SHI Y L. Study of the freezing mechanism and evaluation of resistance to anthracnose of tea plant. PhD Thesis. Hangzhou: Zhejiang University, 2020.

    [28] 黄金凤. 野生草莓种质资源对胶孢炭疽菌的抗性研究. 南京: 南京农业大学博士学位论文, 2012.

    HUANG J F. Study on the resistance of wild strawberry germplasm resources to Colletotrichum gloeosporioides. PhD Thesis. Nanjing: Nanjing Agricultural University, 2012.

    [29] 张婷, 胡国富, 肖子恒, 李鹤春, 詹云. 菜豆(油豆角)炭疽病菌的分离鉴定及抗病资源筛选. 中国蔬菜, 2012(22): 75-80.

    ZHANG T, HU F G, XIAO Z H, LI H C, ZHAN Y. Isolation and identification of anthracnose pathogen of kidney bean (carob) and screening of disease-resistant resources. Chinese Vegetables, 2012(22): 75-80.

    [30] 王晓宇. 亚麻炭疽病发生条件研究及抗病种质资源筛选. 哈尔滨: 东北农业大学硕士学位论文, 2013.

    WANG X Y. Study on occurrence condition of flax Colletotrichum disease and the screening of resistant sources of flax. Master Thesis. Harbin: Dongbei Agricultural University, 2013.

    [31] 郑芳芳, 贺伟, 尹淑霞. 20个苜蓿品种对炭疽病(Colletotrichum truncatum)的抗性测定. 植物保护, 2008(6): 99-101. doi: 10.3969/j.issn.0529-1542.2008.06.024

    ZHENG F F, HE W, YI S X. Determination of 20 alfalfa cultivars for their resistance to Colletotrichum truncatum. Plant Protection, 2008(6): 99-101. doi: 10.3969/j.issn.0529-1542.2008.06.024

    [32] 马甲强, 袁庆华, 王瑜, 苗丽宏. 苜蓿种质材料对亚麻刺盘孢的室内抗性评价. 草地学报, 2017, 25(3): 604-611. doi: 10.11733/j.issn.1007-0435.2017.03.022

    MA J Q, YUAN Q H, WANG Y, MIAO L H. Evaluation of the resistance of alfalfa germplasm to Colletotrichum linicola. Acta Agrestia Sinica, 2017, 25(3): 604-611. doi: 10.11733/j.issn.1007-0435.2017.03.022

    [33] 辛宝宝, 王瑜, 袁庆华. 苜蓿种质材料对炭疽病的抗性评价研究. 草地学报, 2017, 39(4): 111-115.

    XIN B B, WANG Y, YUAN Q H. Evaluation on resistance of different germplasms of alfalfa to Colletotrichum linicola. Acta Agrestia Sinica, 2017, 39(4): 111-115.

    [34] 张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响. 草业学报, 2020, 29(6): 117-126. doi: 10.11686/cyxb2019546

    ZHANG L L, SHI M, LI Y Z. Effect of an thracnose infection on alfalfa yeild and quality in the Shaerqin area. Acta Prataculturae Sinica, 2020, 29(6): 117-126. doi: 10.11686/cyxb2019546

    [35] 周玉雷, 成启明, 都帅, 朱月, 赵雪梅, 郭鹏飞, 蔡文静, 贾玉山. 不同处理方法对紫花苜蓿种子萌发的影响. 中国饲料, 2020(14): 16-23.

    ZHOU Y L, CHENG Q M, DU S, ZHU Y, ZHAO X M, GUO P F, CAI W J, JIA Y S. Effects of different treatment methods on the germination of alfalfa seeds. China Feed, 2020(14): 16-23.

    [36] 王丽, 刘雅宁, 程爽, 胥志文. 西北地区紫花苜蓿高效栽培技术. 农业科技通讯, 2019(12): 296-298.

    WANG L, LIU Y N, CHENG S, XU Z W. High-efficient cultivation techniques of alfalfa in northwest China. Agricultural Technology Newsletter, 2019(12): 296-298.

    [37] 方中达. 植病研究方法. 北京: 中国农业出版社, 2001.

    FANG Z D, Plant Disease Research Methods. Beijing: China Agriculture Press, 2001.

    [38] 李彦忠, 南志标. 牧草病害诊断调查与损失评定方法. 南京: 江苏凤凰科学技术出版社, 2015.

    LI Y Z, NAN Z B. Forage Disease Diagnosis Investigation and Loss Assessment Methods. Nanjing: Jiangsu Phoenix Science and Technology Press, 2015.

    [39]

    ELGIN J H, BARNES D K, BUSBICE T H, BUSS G R, CLSRK N A, CLEVELAND R W, DTTERLINE R L, EVANS D W, FRANSEN S C, HORROCKS R D, HUNT O J, KEHR W R, LOWE C C, MILLKER D A, OFFUTT M S, PIKETT R C, SORENSEN E L, TALIAFERRO C M, TESAR M B, VAN KEUREN R W. Anthracnose resistance increases alfalfa yields. Crop Science, 1981, 21(3): 457-460. doi: 10.2135/cropsci1981.0011183X002100030026x

    [40] 许志刚. 普通植物病理学. 北京: 高等教育出版社, 2009.

    XU Z G. General Plant Pathology. Beijing: Higher Education Press, 2009.

  • 期刊类型引用(4)

    1. 柳丰,祖丽皮耶·安外尔,李克梅,托伦巴特·毕亚洪. 紫花苜蓿炭疽病病原新记录种(Colletotrichum liriopes)的鉴定及生物学特性分析. 新疆农业科学. 2024(03): 690-698 . 百度学术
    2. 许世亮,王洪苏,杨玉霞,康敏,梅国富,余波,夏燕莉,周先建. 附子“成附2号”品种选育及其对白绢病的田间抗性评价. 时珍国医国药. 2023(03): 686-688 . 百度学术
    3. 石永红,高鹏,方志红,赵祥,韩伟,魏江铭,刘琳,李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析. 草业学报. 2023(09): 130-142 . 百度学术
    4. 郭玉霞,陈博,张苏晗,牛艺帆,刘晓宇,刘超齐,张薇. 苜蓿根部病害及其防治研究进展. 河南农业大学学报. 2022(06): 914-923 . 百度学术

    其他类型引用(5)

图(2)  /  表(2)
计量
  • PDF下载量:  31
  • 文章访问数:  2640
  • HTML全文浏览量:  746
  • 被引次数: 9
文章相关
  • 通讯作者: 李克梅
  • 收稿日期:  2021-03-05
  • 接受日期:  2021-05-10
  • 网络出版日期:  2021-06-24
  • 发布日期:  2021-08-14

目录

/

返回文章
返回