欢迎访问 草业科学,今天是2025年4月13日 星期日!

高寒草甸鼢鼠鼠丘土壤理化特性对放牧管理模式的响应

张倩, 姚宝辉, 杨晶, 蔡志远, 孙小妹, 苏军虎

张倩,姚宝辉,杨晶,蔡志远,孙小妹,苏军虎. 高寒草甸鼢鼠鼠丘土壤理化特性对放牧管理模式的响应. 草业科学, 2022, 39(2): 222-234 . DOI: 10.11829/j.issn.1001-0629.2021-0042
引用本文: 张倩,姚宝辉,杨晶,蔡志远,孙小妹,苏军虎. 高寒草甸鼢鼠鼠丘土壤理化特性对放牧管理模式的响应. 草业科学, 2022, 39(2): 222-234 . DOI: 10.11829/j.issn.1001-0629.2021-0042
ZHANG Q, YAO B H, YANG J, CAI Z Y, SUN X M, SU J H. Response of soil physical and chemical properties of zokor mounds to grazing management modes in an alpine meadow. Pratacultural Science, 2022, 39(2): 222-234 . DOI: 10.11829/j.issn.1001-0629.2021-0042
Citation: ZHANG Q, YAO B H, YANG J, CAI Z Y, SUN X M, SU J H. Response of soil physical and chemical properties of zokor mounds to grazing management modes in an alpine meadow. Pratacultural Science, 2022, 39(2): 222-234 . DOI: 10.11829/j.issn.1001-0629.2021-0042

高寒草甸鼢鼠鼠丘土壤理化特性对放牧管理模式的响应

基金项目: 国家自然科学基金项目(31460566、31760706);陇原青年创新创业人才(团队)项目(LYRC2019-2);甘肃农业大学“伏羲杰出人才”培育项目(Gaufx-02J03)
摘要: 研究东祁连山高寒草甸划区轮牧(RG)、生长季休牧(GSG)、连续放牧(CG)和禁牧(PG) 4种放牧管理模式下高原鼢鼠(Eospalax baileyi)不同年限的鼠丘[1年(ZM1)、2年(ZM2)、3年(ZM3)和4年以上(ZMM)]与对照(CM)草甸土壤理化特性,旨在评价放牧对鼠丘演替过程中土壤理化特性的影响,为高寒草甸的放牧管理提供参考。结果发现:与PG比较,GSG可以显著增加ZM2和ZM3在0 − 10 cm层土壤的含水量(P < 0.05),并且可增加ZM3在0 − 10、10 − 20和20 − 30 cm层的全氮含量;与CG比较,GSG能显著增加ZM1和ZM2在0 − 10 cm层土壤全磷含量(P < 0.05),同时,RG也可以显著增加ZM2在0 − 10和10 − 20 cm土层土壤碳氮比(P < 0.05)。结构方程模型分析发现,不同管理模式对ZM3的土壤含水量、全氮和有机碳具有正影响,对ZMM的土壤有机碳和碳氮比具有正影响。综合分析发现生长季休牧能够较好地恢复鼠丘土壤养分含量。

 

English

  • [1] 何贵永, 孙浩智, 史小明, 齐威, 杜国祯. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应. 草业学报, 2015, 24(4): 12-20. doi: 10.11686/cyxb20150402

    HE G Y, SUN H Z, SHI X M, QI W, DU G Z. Soil properties of Tibetan Plateau alpine wetland affected by grazing and season. Acta Prataculture Sinica, 2015, 24(4): 12-20. doi: 10.11686/cyxb20150402

    [2] 董世魁, 江源, 黄晓霞. 草地放牧适宜度理论及牧场管理策略. 资源科学, 2002, 24(6): 35-41. doi: 10.3321/j.issn:1007-7588.2002.06.007

    DONG S K, JIANG Y, HUANG X X. Suitability-degree of grassland grazing and strategies for pasture management. Resources Science, 2002, 24(6): 35-41. doi: 10.3321/j.issn:1007-7588.2002.06.007

    [3]

    YANG Z N, ZHU Q A, ZHAN W, XU Y Y, ZHU E X, GAO Y H, LI S Q, ZHENG Q Y, ZHU D, HE Y X, PENG C H, CHEN H. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 110: 128-136.

    [4]

    KOTZE E, SANDHAGE-HOTGANN A, MEINEL J A, PREEZ C C, AMELUNG W. Rangeland management impacts on the properties of clayey soils along grazing gradients in the semi-arid grassland biome of South Africa. Journal of Arid Environments, 2013, 97(1): 220-229.

    [5]

    NIU K C, HE J S, LECHOWICZ M J. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 2016, 53(5): 1554-1564. doi: 10.1111/1365-2664.12727

    [6] 王仁忠, 李建东. 放牧对松嫩平原羊草草地影响的研究. 草业科学, 1992, 9(2): 11-14.

    WANG R Z, LI J D. The influence of grazing on the Aneurolepidium chinense grassland in Songnen Plain. Pratacultural Science, 1992, 9(2): 11-14.

    [7] 苏军虎, 南志标, 纪维红. 家畜放牧对草地啮齿动物影响的研究进展. 草业学报, 2016, 25(11): 136-148. doi: 10.11686/cyxb2015587

    SU J H, NAN Z B, JI W H. Effects of livestock grazing on rodents in grassland ecosystems. Acta Prataculturae Sinica, 2016, 25(11): 136-148. doi: 10.11686/cyxb2015587

    [8]

    ZHANG Y M, LIU J K. Effects of plateau zokors (Myospalax fontanierii) on plant community and soil in an alpine meadow. Journal of Mammalogy, 2003, 84(2): 644-651. doi: 10.1644/1545-1542(2003)084<0644:EOPZMF>2.0.CO;2

    [9]

    NYSTUEN K O, EVJU M, RUSCH G M, GRAAE B J, EIDE N E. Rodent population dynamics affect seedling recruitment in alpine habitats. Journal of Vegetation Science, 2014, 25(4): 1004-1014. doi: 10.1111/jvs.12163

    [10] 辛小娟, 杨莹博, 王刚, 任正炜, 储诚进, 张仁懿. 鼢鼠土丘植物群落演替生态位动态及草地质量指数. 生态学杂志, 2011, 30(4): 700-706.

    XIN X J, YANG Y B, WANG G, REN Z W, CHU C J, ZHANG R Y. Niche dynamics of plant community succession and grassland quality index on zokor mounds. Chinese Journal of Ecology, 2011, 30(4): 700-706.

    [11] 张倩, 杨晶, 姚宝辉, 蔡志远, 孙小妹, 王缠, 郭怀亮, 谭宇尘, 苏军虎. 放牧管理模式对高寒草甸鼢鼠鼠丘群落演替的影响. 生态学报, 2020, 40(8): 2802-2811.

    ZHANG Q, YANG J, YAO B H, CAI Z Y, SUN X M, WANG C, GUO H L, TAN Y C, SU J H. Effects of different grazing strategies on zokor mounds plant community succession in alpine meadow. Acta Ecologica Sinica, 2020, 40(8): 2802-2811.

    [12] 李晓强, 殷秀琴, 孙立娜. 松嫩草原不同演替阶段大型土壤动物功能类群特征. 生态学报, 2014, 34(2): 442-450.

    LI X Q, YIN X Q, SUN L N. Soil macro-faunal guild characteristics at different successional stages in the Songnen grassland of China. Acta Ecologica Sinica, 2014, 34(2): 442-450.

    [13]

    TILMAN D. Resource Competition and Community Structure. Princeton: Princeton University Press, 1982.

    [14]

    JONES A L, LONGLAND W S. Effects of cattle grazing on salt desert rodent communities. The American midland Naturalist, 1999, 141(1): 1-11. doi: 10.1674/0003-0031(1999)141[0001:EOCGOS]2.0.CO;2

    [15] 特喜铁, 夏远春. 不同放牧制度下大针茅草原啮齿动物种群数量分析. 呼伦贝尔学院学报, 2017, 25(1): 146-148. doi: 10.3969/j.issn.1009-4601.2017.01.035

    TE X T, XIA Y C. Quantitative analysis of rodent population of Stipa grandis under different grazing systems. Journal of Hulunbeier University, 2017, 25(1): 146-148. doi: 10.3969/j.issn.1009-4601.2017.01.035

    [16] 满都呼, 乌仁其其格, 张福顺, 袁帅, 武晓东, 付和平. 不同放牧强度下东北鼢鼠对栖息地植被地下生物量的影响. 中国草地学报, 2015, 37(4): 92-97. doi: 10.3969/j.issn.1673-5021.2015.04.015

    Manduhu, Wurenqiqige, ZHANG F S, WU X D, FU H P. Influence of transbaikal zokor (Myospalax psilurus) on the underground biomass of habitat vegetation under different grazing intensity. Chinese Journal of Grassland, 2015, 37(4): 92-97. doi: 10.3969/j.issn.1673-5021.2015.04.015

    [17] 岳闯, 纪羽, 袁帅, 付和平, 杨素文, 郭乾伟, 武晓东. 放牧方式对东北鼢鼠秋季种群数量的影响. 草业科学, 2018, 35(10): 2512-2519. doi: 10.11829/j.issn.1001-0629.2018-0071

    YUE C, JI Y, YUAN S, FU H P, YANG S W, GUO Q W, WU X D. Effect of different grazing patterns on the population density of Transbaikal zokor in autumn. Pratacultural Science, 2018, 35(10): 2512-2519. doi: 10.11829/j.issn.1001-0629.2018-0071

    [18]

    ZHANG Y M, ZHANG Z B, LIU J K. Burrowing rodents as ecosystem engineers: The ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Review, 2003, 33(3/4): 284-294.

    [19] 姬万忠, 王庆华. 补播对天祝高寒退化草地植被和土壤理化性质的影响. 草业科学, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372

    JI W Z, WANG Q H. Effects of over-seeding on plant community and soil physical and chemical properties of degraded grassland in Tianzhu County. Pratacultural Science, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372

    [20] 胡雷, 阿的鲁骥, 字洪标, 王长廷. 高原鼢鼠扰动及恢复年限对高寒草甸土壤养分和微生物功能多样性的影响. 应用生态学报, 2015, 26(9): 2794-2802.

    HU L, Adeluji, ZI H B, WANG C T. Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow. Chinese Journal of Applied Ecology, 2015, 26(9): 2794-2802.

    [21] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.

    BAO S D. Soil and Agricultural Chemistry Analysis. 3rd Edition. Beijing: China Agriculture Press, 2000.

    [22] 赖江山, 米湘成. 基于Vegan软件包的生态学数据排序分析.//第九届全国生物多样性保护与持续利用研讨会论文集. 厦门: 厦门大学, 2012: 332-343.

    LAI J S, MI X C. Analysis of ecological data sorting based on vegan software package. //Proceedings of the Ninth National Biodiversity Conservation and Sustainable Utilization Symposium. Xiamen: Xiamen University, 2012: 332-343.

    [23]

    WU G L, DU G Z, LIU Z H, SIMON T. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 2009, 319(1/2): 115-126.

    [24]

    HUI D, JACKSON R B. Geographic and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist, 2005, 169(1): 85-93.

    [25]

    HUNTLY N, INOUYE R. Pocket gophers in ecosystems: patterns and mechanisms. Bioscience, 1988, 38(11): 786-793. doi: 10.2307/1310788

    [26]

    WANG Q Y, BIAN J H, SHI Y Z. Influence of plateau zokor mounds on the vegetation nutrients in a alpine meadow. Acta Theriologia Sinica, 1993, 13(1): 31-37.

    [27] 鲍根生, 王宏生, 王玉琴, 曾辉, 马戈亮, 洛藏昂毛. 高原鼢鼠造丘活动对高寒草地土壤养分空间异质性的影响. 草业学报, 2016, 25(7): 95-103. doi: 10.11686/cyxb2015560

    BAO G S, WANG H S, WANG Y Q, ZENG H, MA G L, Luozangangmao. Effects of plateau zokor burrowing activity on soil nutrient spatial heterogeneity in alpine grasslands. Acta Prataculturae Sinica, 2016, 25(7): 95-103. doi: 10.11686/cyxb2015560

    [28]

    WANG T C, XIONG Y C, GE J P, WANG S M, LI Y, YUE D X, WANG T M, WANG G. Four-year dynamic of vegetation on mounds created by zokors (Myospalax baileyi) in a subalpine meadow of the Qinghai-Tibet Plateau. Journal of Arid Environments, 2008, 72(2): 84-96. doi: 10.1016/j.jaridenv.2007.05.002

    [29]

    ZHANG W G, HANG X L, YAN L, YING H. Patterns of change amongst plant functional groups along a successional status of zokor mounds in the Qinghai-Tibetan Plateau. New Zealand Journal of Agricultural Research, 2009, 52(3): 299-305. doi: 10.1080/00288230909510514

    [30]

    ELDRIDGE D J, WHITFORD W G. Disturbances by desert rodents are more strongly associated with spatial changes in soil texture than woody encroachment. Plant and Soil, 2014, 381(1): 395-404.

    [31]

    ZHANG Y M, ZHOU W, FAN N, ZHANG D. Population dynamics and prediction of the plateau zokors. //LIU J, WANG Z. Alpine Meadow Ecosystem Fascicle 3. Beijing: Science Press, 1991: 175-179.

    [32]

    LAYCOCK W, RICHARDSON B. Long-term effects of pocket gopher control on vegetation and soils of a subalpine grassland. Journal of Range Management, 1975, 28(6): 458-462. doi: 10.2307/3897222

  • 图  1   样地和采样点示意图

    RG, 划区轮牧;CG, 连续放牧;GSG, 生长季休牧;PG, 禁牧;下同。椭圆表示鼠丘,正方形表示原生草甸采样点,表示五点取样法。

    Figure  1.   Schematic diagram of plots and sampling point

    RG: Rotational grazing; PG: Prohibition grazing; CG: Continuous grazing; GSG: Growing season grazing; this is applicable for the following tables and figures as well. Ovals are zokor mounds, squares are control meadow sampling point, and is the 5-point sampling method.

    图  2   鼠丘对土壤因子的影响

    SWC:土壤含水量;BD:容重;Porosity:孔隙度;TN:全氮; TP:全磷; TK:全钾; SOC:土壤有机碳; C/N:碳氮比。椭圆内表示隐变量;矩形方框内表示测量变量;数值表示路径系数;**表示在P = 0.01水平上影响显著。

    Figure  2.   Effects of zokor mounds on soil factors

    SWC: soil water content; BD: bulk density; TN: total nitrogen; TP: total phosphorus; TK: total potassium; SOC: Soil organic carbon; C/N: carbon to nitrogen ratio. Ellipses represent hidden variables; rectangular boxes represent measured variables; numerical values represent path coefficients; ** indicates significant difference at the 0.01 level.

    表  1   放牧管理模式、鼠丘年限和土层深度互作下土壤理化特性的变化

    Table  1   Changes in soil physical and chemical properties and the interaction between under grazing management regimes, zokor mounds ages, and soil layers

    指标
    Index
    含水量
    Soil water
    content
    容重
    Bulk
    density
    pH孔隙度
    Porosity
    全氮
    Total
    nitrogen
    全磷
    Total
    phosphorus
    全钾
    Total
    potassium
    有机碳
    Organic
    carbon
    碳氮比
    Carbon to
    nitrogen ratio
    F P F P F P F P F P F P F P F P F P
    放牧管理模式
    Grazing management regimes
    73.159 < 0.001 24.458 < 0.001 23.586 < 0.001 12.008 < 0.001 34.162 < 0.001 3.313 < 0.001 9.533 < 0.001 7.800 0.000 11.164 0.000
    鼠丘年限
    Zokor mound ages
    5.972 < 0.001 8.600 < 0.001 1.186 0.320 4.005 0.004 2.485 0.047 1.581 0.047 0.894 0.470 6.463 0.000 0.594 0.668
    土层深度
    Soil layers
    59.655 < 0.001 17.088 < 0.001 2.809 0.064 7.202 < 0.001 3.891 0.023 0.728 0.023 1.463 0.236 3.569 0.031 0.871 0.421
    放牧管理模式 × 鼠丘年限
    Grazing management regimes ×
    zokor mound ages
    3.376 < 0.001 3.383 < 0.001 3.578 < 0.001 2.005 0.029 1.568 0.110 1.332 0.110 0.693 0.756 3.493 0.000 1.324 0.214
    放牧管理模式 × 土层深度
    Grazing management
    regimes × soil layers
    1.823 0.100 0.590 0.738 0.597 0.732 0.414 0.869 0.859 0.527 0.892 0.527 0.509 0.800 1.430 0.209 0.949 0.463
    鼠丘年限 × 土层深度
    Zokor mound ages × soil layers
    1.140 0.342 1.929 0.062 2.437 0.018 0.636 0.747 0.480 0.868 0.444 0.868 1.314 0.243 4.397 0.000 1.816 0.080
    放牧管理模式 × 鼠丘年限 ×
    土层深度 Grazing management
    regimes × zokor mound
    ages × soil layers
    0.523 0.966 0.796 0.736 1.158 0.295 0.689 0.854 0.485 0.979 0.942 0.979 1.079 0.378 0.619 0.913 0.338 0.998
    下载: 导出CSV

    表  2   放牧管理模式和鼠丘年限对不同土层土壤因子的方差分解

    Table  2   Variance decomposition of soil factors in different soil layers based on grazing management regimes and zokor mound ages

    %
    指标
    Index
    0 − 10 cm10 − 20 cm20 − 30 cm
    解释比率
    Explained Proportion
    贡献率
    Contribution rate
    解释比率
    Explained proportion
    贡献率
    Contribution rate
    解释比率
    Explained proportion
    贡献率
    Contribution rate
    放牧管理模式
    Grazing management regimes
    30.4 70.9 40.7 81.9 27.1 92.5
    鼠丘年限
    Zokor mound ages
    9.9 23.1 5.1 10.3 0.4 1.4
    放牧管理模式 × 鼠丘年限
    Grazing management
    regimes × zokor mounds
    −2.6 6.0 −3.9 7.8 −1.8 6.1
    下载: 导出CSV

    表  3   放牧管理模式下鼢鼠鼠丘土壤物理性质的变化

    Table  3   Changes in soil physical properties in zokor mounds under different grazing management regimes

    放牧管理模式
    Grazing
    management
    regimes
    鼠丘年限
    Zokor
    mounds
    ages
    土壤含水量 Soil water content/%土壤容重 Soil bulk density/ (g·cm−3)土壤孔隙度 Soil porosity
    0 − 10 cm10 − 20 cm20−30 cm0 − 10 cm10 − 20 cm20 − 30 cm0 − 10 cm10 − 20 cm20 − 30 cm
    RG ZM1 35.22 ± 5.01Ab 30.93 ± 3.92Ab 22.1 ± 2.96Ab 0.67 ± 0.09Aa 0.69 ± 0.05Ba 0.71 ± 0.03Ca 0.75 ± 0.03Aa 0.74 ± 0.02Aa 0.73 ± 0.01Aa
    ZM2 30.91 ± 3.61Abc 28.03 ± 3.34Ab 22.3 ± 2.42Ab 0.75 ± 0.04Aab 0.79 ± 0.03ABa 0.94 ± 0.03Aa 0.72 ± 0.02Aa 0.7 ± 0.01ABa 0.64 ± 0.01Ba
    ZM3 37.44 ± 2.35Ab 35.35 ± 4.31Aa 26.26 ± 8.81Aab 0.68 ± 0.04Ab 0.75 ± 0.05ABab 0.77 ± 0.03BCa 0.74 ± 0.02Aa 0.72 ± 0.02ABa 0.71 ± 0.01Aa
    ZMM 37.36 ± 2.73Aab 30.27 ± 2.52Ab 30.54 ± 1.22Aa 0.70 ± 0.06Ab 0.79 ± 0.05ABa 0.81 ± 0.03Ba 0.74 ± 0.02Aa 0.70 ± 0.02ABa 0.70 ± 0.01Aa
    CM 34.47 ± 9.03Aa 21.74 ± 7.01Ab 15.8 ± 0.66Ac 0.79 ± 0.04Aa 0.9 ± 0.05Aa 0.94 ± 0.00Aa 0.74 ± 0.04Aa 0.66 ± 0.02Ba 0.60 ± 0.03Ba
    PG ZM1 37.12 ± 3.01Aab 33.38 ± 1.66Ab 24.37 ± 1.94Ab 0.54 ± 0.01Ba 0.56 ± 0.02Bb 0.65 ± 0.02Bab 0.85 ± 0.06Aa 0.83 ± 0.04Aa 0.75 ± 0.01Aa
    ZM2 26.02 ± 0.46Bc 19.05 ± 1.68Bb 13.98 ± 1.72Bb 0.81 ± 0.01Aa 0.81 ± 0.04Aa 0.85 ± 0.03Aa 0.78 ± 0.07ABa 0.73 ± 0.02Aa 0.69 ± 0.01Ba
    ZM3 26.23 ± 0.22Bd 18.37 ± 3.5Bb 11.61 ± 0.84Bb 0.82 ± 0.05Aa 0.81 ± 0.02Aa 0.8 ± 0.04Aa 0.79 ± 0.02Ba 0.74 ± 0.01Aa 0.68 ± 0.02Ba
    ZMM 30.34 ± 4.06ABb 22.25 ± 3.43Bb 14.08 ± 3.02Bb 0.76 ± 0.07Aab 0.8 ± 0.09Aa 0.82 ± 0.06Aa 0.81 ± 0.03ABa 0.77 ± 0.03Aa 0.71 ± 0.02Ba
    CM 31.4 ± 2.26ABa 20.61 ± 2.2Bb 13.19 ± 0.46Bc 0.71 ± 0.04Aab 0.86 ± 0.02Aab 0.85 ± 0.04Aa 0.79 ± 0.02ABa 0.75 ± 0.07Aa 0.69 ± 0.02Ba
    CG ZM1 47.13 ± 3.04Aa 42.6 ± 1.27Aa 42.02 ± 4.26Aa 0.51 ± 0.02Ca 0.60 ± 0.00Bab 0.59 ± 0.05Bb 0.80 ± 0.01Aa 0.75 ± 0.00Ba 0.69 ± 0.02Aa
    ZM2 38.89 ± 0.33Ba 44.92 ± 0.9Aa 35.36 ± 4.54Aa 0.55 ± 0.01BCc 0.57 ± 0.01BCb 0.59 ± 0.03Bb 0.80 ± 0.05Aa 0.75 ± 0.00ABa 0.7 ± 0.01Aa
    ZM3 42.5 ± 1.08ABa 45.38 ± 1.04Aa 32.81 ± 7.54Aa 0.52 ± 0.02Cc 0.55 ± 0.01Cc 0.67 ± 0.05ABa 0.80 ± 0.01Aa 0.75 ± 0.00Aa 0.69 ± 0.02ABa
    ZMM 43.27 ± 0.81ABa 45.32 ± 5.25Aa 37.33 ± 3.53Aa 0.60 ± 0.03ABb 0.53 ± 0.02Cb 0.58 ± 0.03Bb 0.80 ± 0.01Aa 0.75 ± 0.01Aa 0.69 ± 0.01Aa
    CM 43.53 ± 4.19ABa 37.00 ± 2.13Aa 33.65 ± 0.03Aa 0.62 ± 0.03Ab 0.7 ± 0.02Ab 0.76 ± 0.00Ab 0.80 ± 0.03Aa 0.75 ± 0.01Ca 0.69 ± 0.00Ba
    GSG ZM1 36.03 ± 0.53Aab 34.55 ± 0.19Ab 24.8 ± 1.06Ab 0.58 ± 0.04Ba 0.68 ± 0.00Aa 0.72 ± 0.03Aa 0.8 ± 0.02Aa 0.75 ± 0.01Aa 0.69 ± 0.02Aa
    ZM2 34.25 ± 1.78Ac 23.56 ± 5.67ABb 16.96 ± 2.89Aab 0.69 ± 0.01ABb 0.69 ± 0.05Aa 0.68 ± 0.03Aa 0.8 ± 0.01Aa 0.75 ± 0.02Aa 0.69 ± 0.01Aa
    ZM3 32.88 ± 0.88ABc 22.57 ± 4.47Bb 18.86 ± 3.58Aab 0.65 ± 0.05Bbc 0.66 ± 0.05Abc 0.7 ± 0.06Aa 0.8 ± 0.02Aa 0.75 ± 0.02Aa 0.69 ± 0.04Aa
    ZMM 25.53 ± 5.02Bb 25.52 ± 1.49ABb 16.72 ± 4.34Ab 0.77 ± 0.01Aa 0.72 ± 0.03Aa 0.75 ± 0.08Aab 0.8 ± 0.04Aa 0.75 ± 0.01Aa 0.69 ± 0.01Aa
    CM 40.36 ± 1.59Aa 29.74 ± 0.49ABab 22.14 ± 1.91Ab 0.59 ± 0.03Bb 0.71 ± 0.04Ab 0.82 ± 0.04Ab 0.8 ± 0.01Aa 0.75 ± 0.01Aa 0.69 ± 0.01Aa
     ZM1:1 年鼠丘;ZM2:2年鼠丘; ZM3:3 年鼠丘;ZMM:4 年以上鼠丘;CM:对照;同列不同小写字母表示放牧模式之间差异显著,不同大写字母表示鼠丘年限间差异显著(P < 0.05);下表同。
     ZM1: One year zokor mound; ZM2: Two years zokor mound; ZM3: Three years zokor mound; ZMM: Multi-year zokor mound;CM:control meadow. Lowercase letters in the same column indicated significant difference between grazing patterns, and uppercase letters indicated significant difference between zokor mound ages (P < 0.05); this is applicable for the following tables as well.
    下载: 导出CSV

    表  4   放牧管理模式下鼢鼠鼠丘土壤化学性质的变化

    Table  4   Changes in chemical characteristics of zokor mounds under different grazing management regimes

    放牧管理模式
    grazing
    management
    regimes
    鼠丘年限
    Zokor
    mounds
    ages
    土壤全氮 Soil total nitrogen/(g·kg−1)土壤全磷 Soil total phosphorus/(g·kg−1)土壤全钾 Soil total potassium/(g·kg−1)
    0 − 10 cm10 − 20 cm20 − 30 cm0 − 10 cm10 − 20 cm20 − 30 cm0 − 10 cm10 − 20 cm20 − 30 cm
    RG ZM1 4.91 ± 0.36Aa 4.44 ± 0.00Aa 4.65 ± 0.38Ab 0.46 ± 0.15Abc 0.45 ± 0.07Ab 0.44 ± 0.05Aa 16.85 ± 0.04Aab 15.67 ± 0.11Ac 16.26 ± 0.13Ac
    ZM2 4.26 ± 0.10Abc 4.08 ± 0.23Ab 3.92 ± 0.17Aa 0.18 ± 0.09Ac 0.37 ± 0.15Aa 0.29 ± 0.04Ab 15.98 ± 0.37Aa 16.03 ± 0.34Aa 15.82 ± 0.46Aa
    ZM3 4.15 ± 0.18Ab 4.25 ± 0.31Ab 4.38 ± 0.13Ab 0.42 ± 0.12Aa 0.26 ± 0.15Ab 0.51 ± 0.19Ab 16.27 ± 0.65Aa 15.16 ± 0.60Ab 15.88 ± 0.52Aa
    ZMM 5.36 ± 0.83Aa 5.32 ± 0.74Aa 5.32 ± 0.37Aab 0.33 ± 0.2Aa 0.28 ± 0.05Aa 0.34 ± 0.13Aa 16.19 ± 0.45Ab 16.05 ± 0.35Ab 15.55 ± 0.33Ab
    CM 5.68 ± 0.33Aa 4.53 ± 0.22Ab 5.90 ± 1.02Aa 0.8 ± 0.29Aa 0.52 ± 0.03Aa 0.42 ± 0.05Ab 16.22 ± 0.29Ab 16.43 ± 0.14Aa 15.36 ± 0.39Bb
    PG ZM1 5.34 ± 1.12Aa 5.12 ± 1.10Aa 4.25 ± 0.48Ab 0.28 ± 0.14Bc 0.52 ± 0.16Ab 0.34 ± 0.12Aa 17.50 ± 0.13Aa 16.74 ± 0.29Ab 17.15 ± 0.33Ab
    ZM2 3.93 ± 0.36Bc 4.05 ± 0.41Ab 3.64 ± 0.06Ba 0.31 ± 0Bbc 0.23 ± 0.04Aa 0.28 ± 0.14Ab 17.15 ± 0.71Aa 16.58 ± 0.64Aa 16.45 ± 0.10Aa
    ZM3 4.10 ± 0.19Bb 3.94 ± 0.26Ab 3.08 ± 0.21Bc 0.44 ± 0.03ABa 0.5 ± 0.12Ab 0.36 ± 0.19Ab 17.37 ± 0.28Aa 16.98 ± 0.09Aa 16.49 ± 0.12Aa
    ZMM 4.96 ± 0.98ABa 3.32 ± 0.80Aa 3.88 ± 0.09ABb 0.8 ± 0.42Aa 0.38 ± 0.09Aa 0.61 ± 0.18Aa 17.10 ± 0.27Aab 16.86 ± 0.44Aab 17.19 ± 0.60Aa
    CM 5.03 ± 0.69Aa 3.63 ± 0.06Ac 3.50 ± 1.07Ba 0.5 ± 0.1AB7a 0.54 ± 0.03Aa 0.41 ± 0.1Ab 17.21 ± 0.22Aa 16.59 ± 0.70Aa 14.96 ± 0.29Ab
    CG ZM1 6.38 ± 0.37Aa 5.28 ± 0.19Aa 6.17 ± 0.57Aa 0.77 ± 0.07Ab 0.77 ± 0.17Aab 0.42 ± 0.1Aa 17.10 ± 0.27ABab 17.59 ± 0.12Aa 17.73 ± 0.09Ab
    ZM2 5.68 ± 0.82Aab 5.52 ± 0.40Aa 4.59 ± 1.41Aa 0.47 ± 0.09Bb 0.54 ± 0.24Aa 0.49 ± 0.13Aab 17.41 ± 0.11ABa 17.43 ± 0.29Aa 17.35 ± 0.23Aa
    ZM3 5.96 ± 0.36Aa 6.21 ± 0.45Aa 5.63 ± 0.39Aa 0.38 ± 0.08Ba 0.44 ± 0.17Ab 0.55 ± 0.03Ab 17.42 ± 0.44ABa 17.23 ± 0.37Aa 17.40 ± 0.36Aa
    ZMM 5.98 ± 0.28Aa 5.80 ± 0.40Aa 5.94 ± 0.17Aa 0.52 ± 0.08ABa 0.58 ± 0.24Aa 0.53 ± 0.19Aa 17.50 ± 0.13Aa 17.12 ± 0.31Aab 17.06 ± 0.32Aa
    CM 5.78 ± 0.75Aa 6.15 ± 0.18Aa 5.50 ± 0.62Aa 0.28 ± 0.12Ba 0.52 ± 0.17Aa 0.43 ± 0.17Ab 16.66 ± 0.11Bab 17.18 ± 0.14Aa 17.06 ± 0.07Aa
    GSG ZM1 6.11 ± 0.05ABa 6.11 ± 0.09Aa 5.32 ± 0.04Aab 1.48 ± 0.16Aa 1.07 ± 0.14Aa 0.64 ± 0.23ABa 16.19 ± 0.45Ab 17.73 ± 0.28Aa 18.45 ± 0.03Aa
    ZM2 6.00 ± 0.40ABa 6.13 ± 0.08Aa 5.84 ± 0.38Aa 1.03 ± 0.1ABa 0.71 ± 0.12ABa 0.92 ± 0.3ABa 17.22 ± 0.36Aa 17.24 ± 0.29ABa 17.40 ± 0.95Aa
    ZM3 5.75 ± 0.44ABa 5.91 ± 0.27Aa 5.79 ± 0.45Aa 1.12 ± 0.43ABa 1.05 ± 0.11Aa 1.34 ± 0.25Aa 17.76 ± 0.47Aa 17.84 ± 0.27Aa 12.55 ± 5.30Aa
    ZMM 5.44 ± 0.29Ba 5.59 ± 1.26Aa 5.25 ± 0.84Aab 0.77 ± 0.07ABa 0.49 ± 0.16Ba 0.41 ± 0.2Ba 16.85 ± 0.04Aab 17.46 ± 0.03ABa 16.98 ± 0.01Aa
    CM 7.16 ± 0.81Aa 6.09 ± 0.46Aa 5.69 ± 0.52Aa 0.61 ± 0.3Ba 0.72 ± 0.09ABa 1.11 ± 0.33ABa 16.76 ± 0.21Aab 16.89 ± 0.12Ba 17.08 ± 0.36Aa
    下载: 导出CSV
    续表 4(1)
    Table 4(Continued)
    放牧管理模式
    grazing
    management
    regimes
    鼠丘年限
    Zokor
    mounds
    ages
    土壤有机碳 Soil organic carbon/(g·kg−1)碳氮比 carbon nitrogen ratiopH
    0 − 10 cm10 − 20 cm20 − 30 cm0 − 10 cm10 − 20 cm20 − 30 cm0 − 10 cm10 − 20 cm20 − 30 cm
    RG ZM1 59.40 ± 3.50Aa 59.80 ± 2.91Aa 55.19 ± 4.97Aa 12.30 ± 1.47Aa 13.47 ± 0.65Aa 12.05 ± 1.63Aa 7.85 ± 0.11Aa 7.76 ± 0.11Aa 7.67 ± 0.15Aa
    ZM2 44.70 ± 1.13Aa 45.63 ± 1.29Aa 43.35 ± 2.16Ba 10.49 ± 0.20Aa 11.23 ± 0.31Aa 11.06 ± 0.33Aa 7.79 ± 0.05Aa 7.67 ± 0.07Aa 7.78 ± 0.07Aa
    ZM3 47.88 ± 1.24Aa 48.05 ± 0.99Aa 46.80 ± 0.27Bab 11.62 ± 0.77Aa 11.43 ± 0.85Aa 10.69 ± 0.33Aa 7.8 ± 0.07Aa 7.79 ± 0.09Aa 7.62 ± 0.12Aa
    ZMM 53.87 ± 6.01Aa 60.81 ± 3.16Aa 57.15 ± 4.70Aa 10.37 ± 1.31Aa 11.91 ± 1.71Aab 10.74 ± 0.23Aa 7.61 ± 0.04Aa 7.67 ± 0.05Aa 7.67 ± 0.1Aa
    CM 65.13 ± 1.19Aab 55.24 ± 3.19Aa 47.28 ± 3.60Ba 11.57 ± 0.91Aa 12.19 ± 0.33Aa 8.37 ± 1.08Aa 7.71 ± 0.08Aa 7.76 ± 0.03Aa 7.76 ± 0.06Aa
    PG ZM1 46.07 ± 4.57BCa 51.23 ± 8.65Aa 49.87 ± 5.85Aa 9.26 ± 1.55Aab 10.23 ± 0.51Ab 11.72 ± 0.14Aa 7.70 ± 0.04Aa 7.74 ± 0.1Aa 7.68 ± 0.03Aa
    ZM2 43.54 ± 2.70Ca 43.07 ± 2.23ABa 41.39 ± 1.27Ba 11.26 ± 1.20Aa 10.79 ± 0.87Aa 11.37 ± 0.40ABa 7.67 ± 0.03Aa 7.72 ± 0.04Aa 7.71 ± 0.05Aa
    ZM3 42.42 ± 0.85Ca 43.16 ± 0.41ABa 33.66 ± 9.63Bb 10.39 ± 0.50Aab 11.06 ± 0.71Aa 10.57 ± 2.58ABa 7.70 ± 0.07Aa 7.74 ± 0.02Aa 7.72 ± 0.08Aa
    ZMM 52.21 ± 7.17ABa 42.10 ± 2.31ABab 43.22 ± 0.03ABa 10.75 ± 0.58Aa 14.07 ± 3.01Aa 11.16 ± 0.25ABa 7.69 ± 0.05AAa 7.73 ± 0.02Aa 7.7 ± 0.04Aa
    CM 55.19 ± 5.96Ab 41.14 ± 4.15ABb 26.10 ± 3.65Bb 11.09 ± 0.44Aa 11.35 ± 1.23Aa 9.23 ± 2.93Ba 7.69 ± 0.04Aa 7.73 ± 0.06Aa 7.71 ± 0.05Aa
    CG ZM1 44.15 ± 9.00Aa 48.23 ± 4.69ABa 59.89 ± 6.26Aa 6.97 ± 1.42ABab 9.18 ± 1.04ABb 9.69 ± 0.22Aab 7.69 ± 0.02Aa 7.73 ± 0.07Aa 7.71 ± 0.08Aa
    ZM2 45.91 ± 5.85Aa 47.47 ± 2.40ABa 50.09 ± 7.48Aa 8.13 ± 0.19ABb 8.64 ± 0.40ABb 15.06 ± 7.39Aa 7.69 ± 0.01Aa 7.73 ± 0.02Aa 7.71 ± 0.05Aa
    ZM3 48.04 ± 0.27Aa 58.12 ± 6.47ABa 55.69 ± 4.51Aa 8.13 ± 0.50ABb 9.31 ± 0.34ABa 10.08 ± 1.46Aa 7.69 ± 0.04Aa 7.73 ± 0.03Aa 7.71 ± 0.11Aa
    ZMM 37.91 ± 10.51Aa 45.98 ± 8.57Bab 41.49 ± 14.43Aa 6.21 ± 1.55Bb 7.82 ± 0.99Bab 7.01 ± 2.43Aa 7.69 ± 0.01Aa 7.73 ± 0.09Aa 7.71 ± 0.02Aa
    CM 60.74 ± 6.26Ab 66.39 ± 4.45Aa 47.12 ± 3.70Aa 10.96 ± 1.95Aa 10.79 ± 0.68Aa 8.84 ± 1.32Aa 7.69 ± 0.01Aa 7.73 ± 0.04ABa 7.71 ± 0.03Aa
    GSG ZM1 52.77 ± 2.21Ba 52.97 ± 0.81ABa 46.66 ± 2.17Aa 8.64 ± 0.29ABb 8.67 ± 0.01Ab 8.78 ± 0.47Ab 7.69 ± 0.06Aa 7.73 ± 0.05Aa 7.71 ± 0.07Aa
    ZM2 43.42 ± 2.96Ba 47.81 ± 1.83ABa 50.25 ± 2.96Aa 7.24 ± 0.10Bb 7.79 ± 0.20Ab 8.66 ± 0.56Aa 7.69 ± 0.05Aa 7.73 ± 0.03Aa 7.71 ± 0.01Aa
    ZM3 46.91 ± 4.65Ba 44.13 ± 9.89Ba 52.47 ± 6.49Aab 8.36 ± 1.37ABb 7.59 ± 1.97Aa 9.35 ± 1.92Aa 7.69 ± 0.02Aa 7.73 ± 0.01Aa 7.71 ± 0.11Aa
    ZMM 41.11 ± 5.61Ba 37.80 ± 8.52Bb 37.53 ± 12.09Aa 7.61 ± 1.14Bab 7.20 ± 1.40Ab 8.22 ± 3.36Aa 7.69 ± 0.12Aa 7.73 ± 0.09Aa 7.71 ± 0.06Aa
    CM 77.77 ± 0.33Aa 65.46 ± 2.38Aa 43.33 ± 0.51Aa 11.16 ± 1.31Aa 10.85 ± 0.75Aa 7.74 ± 0.67Aa 7.69 ± 0.01Aa 7.73 ± 0.02Aa 7.71 ± 0.1Aa
    下载: 导出CSV

    表  5   各土壤因子载荷

    Table  5   Loads of various soil factors

    指标
    Index
    ZM1ZM2ZM3ZMMCM
    PC1PC2PC3PC1PC2PC3PC1PC2PC3PC1PC2PC3PC1PC2PC3
    土壤含水量
    Soil water content
    0.82 0.12 −0.22 0.67 0.45 −0.35 0.73 −0.22 0.36 0.67 0.51 0.38 0.82 0.20 −0.20
    容重 Bulk density −0.77 −0.52 0.26 −0.89 −0.29 −0.02 −0.86 −0.19 −0.19 −0.82 −0.43 −0.09 −0.93 0.00 0.12
    pH −0.47 0.10 −0.68 −0.68 −0.12 0.02 0.03 −0.71 0.22 −0.18 0.66 0.10 −0.46 0.47 −0.47
    孔隙度 Porosity 0.51 0.56 −0.37 0.65 0.35 −0.22 0.92 0.04 0.19 0.78 0.38 −0.02 0.82 0.14 −0.15
    全氮 Total nitrogen 0.82 −0.40 0.02 0.69 −0.54 0.37 0.71 0.45 −0.27 0.61 0.03 −0.66 0.70 −0.57 −0.26
    全磷 Total phosphorus 0.27 −0.19 0.49 0.48 −0.61 −0.04 0.07 0.59 −0.40 0.07 −0.12 0.72 0.01 −0.44 0.78
    全钾 Total potassium 0.28 −0.84 0.15 0.68 −0.13 −0.19 0.52 −0.51 0.06 0.59 −0.46 0.31 0.58 0.16 0.23
    有机碳 Organic carbon 0.39 0.57 0.60 0.35 0.32 0.86 0.05 0.81 0.49 −0.33 0.71 −0.27 0.83 0.20 0.21
    碳氮比 C/N ratio −0.43 0.79 0.40 −0.28 0.82 0.13 −0.65 0.27 0.68 −0.72 0.52 0.30 0.10 0.83 0.47
    特征值 Eigenvalues 2.88 2.46 1.48 3.50 1.87 1.11 3.33 2.13 1.20 3.11 2.02 1.37 3.95 1.56 1.29
    VCR/% 32.0 27.3 16.5 38.8 20.8 12.4 37.0 23.6 13.3 34.5 22.5 15.2 43.9 17.3 14.3
    CCR/% 32.0 59.3 75.8 38.8 59.6 72.0 37.0 60.6 74.0 34.5 57.0 72.2 43.9 61.2 75.5
     VCR:方差贡献率;CCR:累计贡献率。
      VCR: Variance contribution rate; CCR: Cumulative contribution rate.
    下载: 导出CSV
  • [1] 何贵永, 孙浩智, 史小明, 齐威, 杜国祯. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应. 草业学报, 2015, 24(4): 12-20. doi: 10.11686/cyxb20150402

    HE G Y, SUN H Z, SHI X M, QI W, DU G Z. Soil properties of Tibetan Plateau alpine wetland affected by grazing and season. Acta Prataculture Sinica, 2015, 24(4): 12-20. doi: 10.11686/cyxb20150402

    [2] 董世魁, 江源, 黄晓霞. 草地放牧适宜度理论及牧场管理策略. 资源科学, 2002, 24(6): 35-41. doi: 10.3321/j.issn:1007-7588.2002.06.007

    DONG S K, JIANG Y, HUANG X X. Suitability-degree of grassland grazing and strategies for pasture management. Resources Science, 2002, 24(6): 35-41. doi: 10.3321/j.issn:1007-7588.2002.06.007

    [3]

    YANG Z N, ZHU Q A, ZHAN W, XU Y Y, ZHU E X, GAO Y H, LI S Q, ZHENG Q Y, ZHU D, HE Y X, PENG C H, CHEN H. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecological Engineering, 2018, 110: 128-136.

    [4]

    KOTZE E, SANDHAGE-HOTGANN A, MEINEL J A, PREEZ C C, AMELUNG W. Rangeland management impacts on the properties of clayey soils along grazing gradients in the semi-arid grassland biome of South Africa. Journal of Arid Environments, 2013, 97(1): 220-229.

    [5]

    NIU K C, HE J S, LECHOWICZ M J. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 2016, 53(5): 1554-1564. doi: 10.1111/1365-2664.12727

    [6] 王仁忠, 李建东. 放牧对松嫩平原羊草草地影响的研究. 草业科学, 1992, 9(2): 11-14.

    WANG R Z, LI J D. The influence of grazing on the Aneurolepidium chinense grassland in Songnen Plain. Pratacultural Science, 1992, 9(2): 11-14.

    [7] 苏军虎, 南志标, 纪维红. 家畜放牧对草地啮齿动物影响的研究进展. 草业学报, 2016, 25(11): 136-148. doi: 10.11686/cyxb2015587

    SU J H, NAN Z B, JI W H. Effects of livestock grazing on rodents in grassland ecosystems. Acta Prataculturae Sinica, 2016, 25(11): 136-148. doi: 10.11686/cyxb2015587

    [8]

    ZHANG Y M, LIU J K. Effects of plateau zokors (Myospalax fontanierii) on plant community and soil in an alpine meadow. Journal of Mammalogy, 2003, 84(2): 644-651. doi: 10.1644/1545-1542(2003)084<0644:EOPZMF>2.0.CO;2

    [9]

    NYSTUEN K O, EVJU M, RUSCH G M, GRAAE B J, EIDE N E. Rodent population dynamics affect seedling recruitment in alpine habitats. Journal of Vegetation Science, 2014, 25(4): 1004-1014. doi: 10.1111/jvs.12163

    [10] 辛小娟, 杨莹博, 王刚, 任正炜, 储诚进, 张仁懿. 鼢鼠土丘植物群落演替生态位动态及草地质量指数. 生态学杂志, 2011, 30(4): 700-706.

    XIN X J, YANG Y B, WANG G, REN Z W, CHU C J, ZHANG R Y. Niche dynamics of plant community succession and grassland quality index on zokor mounds. Chinese Journal of Ecology, 2011, 30(4): 700-706.

    [11] 张倩, 杨晶, 姚宝辉, 蔡志远, 孙小妹, 王缠, 郭怀亮, 谭宇尘, 苏军虎. 放牧管理模式对高寒草甸鼢鼠鼠丘群落演替的影响. 生态学报, 2020, 40(8): 2802-2811.

    ZHANG Q, YANG J, YAO B H, CAI Z Y, SUN X M, WANG C, GUO H L, TAN Y C, SU J H. Effects of different grazing strategies on zokor mounds plant community succession in alpine meadow. Acta Ecologica Sinica, 2020, 40(8): 2802-2811.

    [12] 李晓强, 殷秀琴, 孙立娜. 松嫩草原不同演替阶段大型土壤动物功能类群特征. 生态学报, 2014, 34(2): 442-450.

    LI X Q, YIN X Q, SUN L N. Soil macro-faunal guild characteristics at different successional stages in the Songnen grassland of China. Acta Ecologica Sinica, 2014, 34(2): 442-450.

    [13]

    TILMAN D. Resource Competition and Community Structure. Princeton: Princeton University Press, 1982.

    [14]

    JONES A L, LONGLAND W S. Effects of cattle grazing on salt desert rodent communities. The American midland Naturalist, 1999, 141(1): 1-11. doi: 10.1674/0003-0031(1999)141[0001:EOCGOS]2.0.CO;2

    [15] 特喜铁, 夏远春. 不同放牧制度下大针茅草原啮齿动物种群数量分析. 呼伦贝尔学院学报, 2017, 25(1): 146-148. doi: 10.3969/j.issn.1009-4601.2017.01.035

    TE X T, XIA Y C. Quantitative analysis of rodent population of Stipa grandis under different grazing systems. Journal of Hulunbeier University, 2017, 25(1): 146-148. doi: 10.3969/j.issn.1009-4601.2017.01.035

    [16] 满都呼, 乌仁其其格, 张福顺, 袁帅, 武晓东, 付和平. 不同放牧强度下东北鼢鼠对栖息地植被地下生物量的影响. 中国草地学报, 2015, 37(4): 92-97. doi: 10.3969/j.issn.1673-5021.2015.04.015

    Manduhu, Wurenqiqige, ZHANG F S, WU X D, FU H P. Influence of transbaikal zokor (Myospalax psilurus) on the underground biomass of habitat vegetation under different grazing intensity. Chinese Journal of Grassland, 2015, 37(4): 92-97. doi: 10.3969/j.issn.1673-5021.2015.04.015

    [17] 岳闯, 纪羽, 袁帅, 付和平, 杨素文, 郭乾伟, 武晓东. 放牧方式对东北鼢鼠秋季种群数量的影响. 草业科学, 2018, 35(10): 2512-2519. doi: 10.11829/j.issn.1001-0629.2018-0071

    YUE C, JI Y, YUAN S, FU H P, YANG S W, GUO Q W, WU X D. Effect of different grazing patterns on the population density of Transbaikal zokor in autumn. Pratacultural Science, 2018, 35(10): 2512-2519. doi: 10.11829/j.issn.1001-0629.2018-0071

    [18]

    ZHANG Y M, ZHANG Z B, LIU J K. Burrowing rodents as ecosystem engineers: The ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Review, 2003, 33(3/4): 284-294.

    [19] 姬万忠, 王庆华. 补播对天祝高寒退化草地植被和土壤理化性质的影响. 草业科学, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372

    JI W Z, WANG Q H. Effects of over-seeding on plant community and soil physical and chemical properties of degraded grassland in Tianzhu County. Pratacultural Science, 2016, 33(5): 886-890. doi: 10.11829/j.issn.1001-0629.2015-0372

    [20] 胡雷, 阿的鲁骥, 字洪标, 王长廷. 高原鼢鼠扰动及恢复年限对高寒草甸土壤养分和微生物功能多样性的影响. 应用生态学报, 2015, 26(9): 2794-2802.

    HU L, Adeluji, ZI H B, WANG C T. Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow. Chinese Journal of Applied Ecology, 2015, 26(9): 2794-2802.

    [21] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.

    BAO S D. Soil and Agricultural Chemistry Analysis. 3rd Edition. Beijing: China Agriculture Press, 2000.

    [22] 赖江山, 米湘成. 基于Vegan软件包的生态学数据排序分析.//第九届全国生物多样性保护与持续利用研讨会论文集. 厦门: 厦门大学, 2012: 332-343.

    LAI J S, MI X C. Analysis of ecological data sorting based on vegan software package. //Proceedings of the Ninth National Biodiversity Conservation and Sustainable Utilization Symposium. Xiamen: Xiamen University, 2012: 332-343.

    [23]

    WU G L, DU G Z, LIU Z H, SIMON T. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 2009, 319(1/2): 115-126.

    [24]

    HUI D, JACKSON R B. Geographic and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist, 2005, 169(1): 85-93.

    [25]

    HUNTLY N, INOUYE R. Pocket gophers in ecosystems: patterns and mechanisms. Bioscience, 1988, 38(11): 786-793. doi: 10.2307/1310788

    [26]

    WANG Q Y, BIAN J H, SHI Y Z. Influence of plateau zokor mounds on the vegetation nutrients in a alpine meadow. Acta Theriologia Sinica, 1993, 13(1): 31-37.

    [27] 鲍根生, 王宏生, 王玉琴, 曾辉, 马戈亮, 洛藏昂毛. 高原鼢鼠造丘活动对高寒草地土壤养分空间异质性的影响. 草业学报, 2016, 25(7): 95-103. doi: 10.11686/cyxb2015560

    BAO G S, WANG H S, WANG Y Q, ZENG H, MA G L, Luozangangmao. Effects of plateau zokor burrowing activity on soil nutrient spatial heterogeneity in alpine grasslands. Acta Prataculturae Sinica, 2016, 25(7): 95-103. doi: 10.11686/cyxb2015560

    [28]

    WANG T C, XIONG Y C, GE J P, WANG S M, LI Y, YUE D X, WANG T M, WANG G. Four-year dynamic of vegetation on mounds created by zokors (Myospalax baileyi) in a subalpine meadow of the Qinghai-Tibet Plateau. Journal of Arid Environments, 2008, 72(2): 84-96. doi: 10.1016/j.jaridenv.2007.05.002

    [29]

    ZHANG W G, HANG X L, YAN L, YING H. Patterns of change amongst plant functional groups along a successional status of zokor mounds in the Qinghai-Tibetan Plateau. New Zealand Journal of Agricultural Research, 2009, 52(3): 299-305. doi: 10.1080/00288230909510514

    [30]

    ELDRIDGE D J, WHITFORD W G. Disturbances by desert rodents are more strongly associated with spatial changes in soil texture than woody encroachment. Plant and Soil, 2014, 381(1): 395-404.

    [31]

    ZHANG Y M, ZHOU W, FAN N, ZHANG D. Population dynamics and prediction of the plateau zokors. //LIU J, WANG Z. Alpine Meadow Ecosystem Fascicle 3. Beijing: Science Press, 1991: 175-179.

    [32]

    LAYCOCK W, RICHARDSON B. Long-term effects of pocket gopher control on vegetation and soils of a subalpine grassland. Journal of Range Management, 1975, 28(6): 458-462. doi: 10.2307/3897222

图(2)  /  表(6)
计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 通讯作者: 苏军虎
  • 收稿日期:  2021-01-20
  • 接受日期:  2021-05-11
  • 网络出版日期:  2022-01-07
  • 发布日期:  2022-02-14

目录

/

返回文章
返回