单宁酸对青海田鼠食物摄入量与小肠结构的影响
English
-
土壤是人类生存的物质基础,也是地球生命活力的自然支撑[1],土壤质量的好坏直接关系到人类的健康和社会经济的可持续发展。土壤质量指的是土壤在生态系统中保持生物生产力、维护环境质量并促进植物和动物健康的能力[2]。土壤的理化性质作为其基本属性,能够反映土壤的质地、结构、水分情况、肥力水平以及透气透水状况[3],而土地利用方式对土壤的理化特性有着深远且直接的影响。研究表明,合理的土地利用方式有助于改善土壤的结构,促进土壤生态系统的可持续发展;反之,不合理的土地利用方式会使土壤生产力下降,削弱土壤的生态服务功能[4]。土壤质量评价通过结合不同的土壤功能,结合土壤理化特性和生物特性进行时间或空间上的衡量[5]。在土壤质量评价过程中选取的指标越多越能体现土壤的综合质量,然而指标间通常存在一定的相关性,这可能导致指标之间的数据冗余,并且测定大量指标十分耗时耗力。因此,在进行土壤质量评价时,选择包含重要土壤信息的最小数据集至关重要[6-8]。主成分分析是一种多变量分析技术,它能够降低数据维度,去除指标数据中的冗余信息,在创建最小数据集时被广泛采用[9]。苟国花等[10]使用主成分分析方法对10项土壤理化指标进行筛选,分别确定以土壤pH、速效磷、有机质为最小数据集,以土壤有机质、全磷、硝态氮为最小数据集,对青藏高原北部、南部土壤质量进行了研究。朱鸣鸣等[11]利用土壤质量综合指数法对喀斯特地区不同土地利用类型土壤质量变化进行了评估,研究结果表明,基于最小数据集的土壤质量指数法可较为准确地评价研究区土壤质量的变化。青藏高原独特的高寒、干旱、缺氧环境特征,导致当地生态系统非常脆弱,部分地区植被退化、沙漠化情况严重,土地生产力逐渐下降[12]。目前,基于最小数据集对土壤质量进行评价已在黄土高原区[8]、东北黑土区[13]、紫色丘陵区[14]等地开展了广泛的研究,而针对青藏高原地区的研究仍需进一步深化。同时,为维持农业和畜牧业的可持续发展,明确土壤质量对土地利用变化的响应十分重要[6]。基于此,研究在青藏高原南部进行了大范围采样,以该地区4种典型土地利用类型(耕地、草地、乔木林地和灌木林地)为研究对象,使用主成分分析法构建最小数据集,然后运用土壤质量指数法对研究区内不同土地利用类型土壤质量进行综合评估,以期为青藏高原土地的合理利用和生态保护提供数据支持和科学建议。
1. 研究区概况与研究方法
1.1 研究区概况
研究区位于青藏高原南部(28°12′~33°34′ N,79°47′~101°52′ E) (图1)。青藏高原地区平均海拔在4 000 m以上,空气稀薄,含氧量较少;干湿分明,气温偏低,年温差小;年均气温1.1 ℃,年均降水量400 mm左右,降水集中在6月-9月,潜在蒸发量远高于降水量,为高山高原气候。受地形和气候影响,土壤和植被分异明显,土壤类型主要包括砖红壤、黄壤、黄棕壤、棕褐土、棕壤等[15]。土地利用和植被类型丰富(图2),耕地主要种植青稞(Hordeum vulgare)和油菜(Brassica campestris);草地主要植被类型有高山嵩草(Kobresia pygmaea)、高山豆(Sophora alopecuroides)和小山菊(Chrysanthemum oreastrum)等;乔木林地以云杉(Picea asperata)和巨柏(Cupressus gigantea)等为主;灌木林地以鬼箭锦鸡儿(Caragana jubata)、华西小石积(Osteomeles schwerinae)和匍匐栒子(Cotoneaster adpressus)等为主。本研究对于植被类型的调查,主要通过拍摄照片与《中国植物志》 [16]进行对照识别,并参考相关文献[10],以确定该地区主要植物类型。
1.2 土壤样品的采集和测定
本研究采样时间为2020-2021年每年7月份,在青藏高原南线按照每隔50 km设置一个样点的原则,共设置53个样地,其中草地34个(均为草本植被覆盖),耕地7个(青稞地57.1%,油菜地42.9%),乔木林地5个(均为混交林),灌木林地7个(郁闭灌木林28.6%、稀疏灌木林71.4%)。每个样地按照水平方向设置3个5 m × 5 m样方,将地表枯枝落叶及腐殖质层去除,采集表层(0-30 cm)土壤样品,包括原状土(保持天然含水量及天然形成结构的土样)和扰动土(原状土受到自然或人为因素干扰而性质发生改变的土样),每个样点采集3个重复。将扰动土装入自封袋中,带回实验室备用,在实验室去除可见的石块和植物残体等非土壤部分,混匀风干研磨过0.25、1、2 mm筛以供测定。参考《土壤农化分析》[17],土壤pH使用数显pH计测定,土壤电导率使用电导率仪测定,土壤容重通过环刀法进行测定,饱和导水率通过定水头自下供水法测定,土壤有机质通过硫酸重铬酸钾外加热法来测定,全氮通过凯氏定氮法来测定,土壤颗粒组成采用马尔文激光粒度仪测定。
1.3 土壤质量指数评价法
1.3.1 构建最小数据集
在土壤质量评价领域广泛应用主成分分析,这种方法通过线性代数矩阵方程来计算相关矩阵的特征值、特征向量和累积贡献率,从而将多个指标简化为几个相互独立的指标[18-19]。本研究使用主成分分析、相关性分析并计算Norm值,从全量数据集(total data set, TDS)中筛选出最能反映土壤质量特征的土壤指标作为最小数据集(minimum data set, MDS)。具体步骤参考[20]。Norm值的计算公式如下:
$$ {N}_{ik}=\sqrt{\displaystyle\sum _{i=1}^{k}({u}_{ik}^{2}\cdot {e}_{k})}\mathrm{。} $$ (1) 式中:Nik表示第i个变量在特征值≥1的前k个主成分的Norm值;uik表示第i个指标在第k个主成分的Norm值;ek表示第k个主成分的特征值。
1.3.2 评价指标隶属度的计算
由于不同评价指标之间没有统一的衡量单位,所以土壤质量不能直接使用数值来计算,因而需通过隶属度函数对各指标进行归一化处理,使评价指标间具有可比性。不同指标对应的隶属度函数需要根据指标在土壤中的功能来确定,本研究利用“S”升型函数确定有机质、全氮、饱和导水率的隶属度(公式2),利用“S”降型函数确定砂粒、粉粒、黏粒、电导率的隶属度(公式3),pH和容重对于植物的生长有一个最佳范围,因而利用抛物线型函数确定隶属度(公式4),根据以往研究[21],结合本研究区土壤特征,确定土壤pH的最佳范围为6~8,土壤容重的最佳范围为0.9~1.3 g·cm−3,各公式如下所示:
$$ F\left (X\right)= \left\{ {\begin{array}{*{20}{l}} { 1, }&{ X\geqslant {X}_{\mathrm{m}\mathrm{a}\mathrm{x}} }\\ { 0.9\times \dfrac{{X-X}_{\mathrm{m}\mathrm{i}\mathrm{n}}}{{X}_{\mathrm{m}\mathrm{a}\mathrm{x}}-{X}_{\mathrm{m}\mathrm{i}\mathrm{n}}} + 0.1, }&{ {X}_{\mathrm{m}\mathrm{a}\mathrm{x}} > {X > X}_{\mathrm{m}\mathrm{i}\mathrm{n}} }\\ { 0.1, }&{ X\leqslant {X}_{\mathrm{m}\mathrm{i}\mathrm{n}} }\end{array}} \right. \text{;} $$ (2) $$ F\left (X\right)= \left\{ {\begin{array}{*{20}{l}} {1, }&{X \geqslant {X}_{\mathrm{m}\mathrm{a}\mathrm{x}} }\\ { 0.9\times \dfrac{{X}_{\mathrm{m}\mathrm{a}\mathrm{x}}-X}{{X}_{\mathrm{m}\mathrm{a}\mathrm{x}}-{X}_{\mathrm{m}\mathrm{i}\mathrm{n}}} + 0.1, }&{ {X}_{\mathrm{m}\mathrm{a}\mathrm{x}}>{X > X}_{\mathrm{m}\mathrm{i}\mathrm{n}}}\\ { 0.1, }&{ X\leqslant {X}_{\mathrm{m}\mathrm{i}\mathrm{n}} }\end{array}} \right. \text{;} $$ (3) $$ F\left (X\right)= \left\{ {\begin{array}{*{20}{l}} { 0.1, }&{ X\leqslant {X}_{\mathrm{m}\mathrm{i}\mathrm{n}}或X\geqslant {X}_{\mathrm{m}\mathrm{a}\mathrm{x}} }\\ { 0.9\times \dfrac{X-{X}_{\mathrm{m}\mathrm{i}\mathrm{n}}}{{X}_{o1}-{X}_{\mathrm{m}\mathrm{i}\mathrm{n}}} + 0.1, }&{ {X}_{\mathrm{m}\mathrm{i}\mathrm{n}} < {X < X}_{o1} }\\ { 1, }&{ {X}_{o1}\leqslant X\leqslant {X}_{o2} }\\ { 0.9\times \dfrac{{X}_{\mathrm{m}\mathrm{a}\mathrm{x}}-X}{{X}_{\mathrm{m}\mathrm{a}\mathrm{x}}-{X}_{o2}} + 0.1, }&{ {X}_{o2} < {X < X}_{\mathrm{m}\mathrm{a}\mathrm{x}} }\end{array}} \right. 。 $$ (4) 式中:Xmax表示土壤指标的最大值;Xmin表示土壤指标的最小值。pH的Xo1、Xo2分别为6.0、8.0;容重的Xo1、Xo2分别为0.9、1.3。
1.3.3 评价指标权重的计算
为了评价土壤质量,需要综合土壤各项指标,然而不同指标对土壤质量的影响不同,因此,在评估过程中,需要引入权重系数来反映各个指标的重要性。可以利用主成分分析来计算每个指标的公因子方差,然后通过计算各指标的公因子方差与总的公因子方差之比来确定它们的权重。权重计算公式如下:
$$ {W}_{i}={CC}_{i}\Bigg/\displaystyle\sum _{i=1}^{n}\left ({CC}_{i}\right) 。 $$ (5) 式中:Wi表示各质量指标的权重;CCi表示第i项土壤质量评价指标的因子载荷。
1.3.4 土壤质量指数的计算
土壤质量指数可将各项评价指标的隶属度值与权重进行加权求和来计算,计算公式如下:
$$ SQI=\displaystyle\sum _{i=1}^{n}{W}_{i}\times F\left ({X}_{i}\right) 。 $$ (6) 式中:SQI代表土壤质量评价指数(soil quality index);Wi代表各评价指标的权重;F (Xi)代表各评价指标的隶属度值。
1.3.5 最小数据集的验证
验证最小数据集的合理性,是保证准确评价土壤质量的重要前提。为了验证MDS的合理性,对TDS计算得出的SQI与MDS计算得出的SQI进行比较,并进行线性回归分析,以评估MDS计算得出的SQI的准确性。
1.4 数据来源与处理
2020年土地利用数据和植被类型来源于Google Earth Engine (GEE)数据平台,空间分辨率500 m。使用Excel 2016和Origin 2022软件进行数据处理和绘制图表。利用SPSS 22.0软件进行主成分分析(principal component analysis,PCA)、Pearson相关性分析和Norm值的计算,利用单因素方差分析(ANOVA)对土壤指标进行检验。
2. 结果分析
2.1 各土地利用类型土壤理化性质
土壤pH表现为耕地和草地土壤显著高于乔木林地(P < 0.05) (表1);土壤电导率表现为耕地 > 草地 > 灌木林地 > 乔木林地,但4种土地利用类型土壤电导率间均无显著差异(P > 0.05);土壤容重表现为耕地土壤显著高于草地和乔木林地;土壤全氮表现为乔木林地土壤显著高于草地;土壤饱和导水率表现乔木林地显著高于其他3种土地利用类型;有机质表现为乔木林地显著高于耕地;土壤砂粒和黏粒含量表现为草地和灌木林地分别显著高于、低于耕地和乔木林地;土壤粉粒含量表现为灌木林地 > 乔木林地 > 耕地 > 草地,但4种土地利用类型土壤粉粒含量均无显著差异。
表 1 各土地利用类型土壤理化性质Table 1. Physical and chemical properties of soil for each land use type土壤指标
Soil indicator土地利用方式 Land use type 变异系数
Coefficient of
variation/%耕地
Plowland草地
Grassland乔木林地
Woodland灌木林地
ShrublandpH 7.89 ± 0.46a 7.32 ± 1.13a 5.45 ± 0.70b 6.73 ± 0.92ab 15.18 EC/(μs·cm−1) 116.00 ± 37.00a 107.00 ± 38.00a 83.00 ± 27.00a 92.00 ± 15.00a 66.18 BD/(g·cm−3) 1.48 ± 0.07a 1.26 ± 0.21b 1.02 ± 0.07b 1.38 ± 0.16ab 16.83 TN/(g·kg−1) 1.47 ± 0.96ab 1.06 ± 0.47b 2.46 ± 0.58a 1.82 ± 1.05ab 70.80 Ks/(mm·min−1) 0.05 ± 0.03c 0.22 ± 0.13b 1.58 ± 0.34a 0.18 ± 0.05bc 157.06 SOM/(g·kg−1) 16.81 ± 8.51b 27.29 ± 21.13ab 49.49 ± 10.11a 32.31 ± 17.96ab 92.98 Sand/% 10.06 ± 5.78b 21.59 ± 15.93a 7.25 ± 3.39b 18.84 ± 10.24a 71.06 Silt/% 48.43 ± 10.38a 47.00 ± 9.37a 53.35 ± 9.42a 54.53 ± 7.79a 17.67 Clay/% 41.51 ± 14.80a 31.41 ± 13.56b 39.40 ± 12.86a 26.63 ± 14.92b 42.61 不同小写字母表示不同土地利用类型间差异显著(P < 0.05)。EC:电导率;BD:容重;TN:全氮;Ks:饱和导水率;SOM:有机质;Sand:砂粒:Silt:粉粒;Clay:黏粒。下同。
Different lowercase letters indicate significant differences between different land use types by at the 0.05 level. EC: electrical conductivity; BD: bulk density; TN: total nitrogen; Ks: saturated hydraulic conductivity; SOM: soil organic matter; Sand: sand; Silt: silt; Clay: clay. This is applicable for the following figures and tables as well.对各指标变异系数分析发现,pH、容重、粉粒、黏粒变异系数(coefficient of variation,CV)介于15.18%~42.61%,属于中度敏感指标(10% ≤ CV ≤ 50%);电导率、全氮、有机质、砂粒变异系数介于66.18%~92.98%,属于高度敏感指标(50% ≤ CV ≤ 100%);饱和导水率变异系数高达157.06%,属于极敏感指标(CV > 100%)。
2.2 最小数据集的建立
为了减少数据的冗余,并确定对土壤质量影响较大的指标,需要建立土壤质量评价MDS。经过对上述9个理化指标进行主成分分析(表2),发现前3个主成分的特征值大于1,并且累积方差贡献率达到77.43%,这表明前3个主成分能够很好地解释大部分评价指标的变异性。土壤pH、容重、有机质、全氮、饱和导水率、砂粒和黏粒在PC-1上满足载荷值≥0.5,砂粒、黏粒和电导率在PC-2上满足载荷值≥0.5,其中砂粒、黏粒在PC-1和PC-2上均满足载荷值≥0.5,因此需分析这两个指标与其他指标的相关性。结果表明砂粒和黏粒与第2组的相关性更低,粉粒仅在PC-3中满足载荷值≥0.5。因此,将pH、容重、有机质、全氮、饱和导水率归为第1组,砂粒、黏粒和电导率归为第2组,粉粒归为第3组。
表 2 土壤指标在各主成分上的因子载荷和Norm值Table 2. Factor loadings and Norm values of soil indicators in each principal component土壤指标
Soil indicator载荷矩阵
Load matrix分组
GroupNorm值
Norm
valuePC-1 PC-2 PC-3 pH −0.82 0.23 −0.04 1 1.63 BD −0.74 −0.21 −0.19 1 1.50 SOM 0.85 0.38 −0.05 1 1.74 TN 0.87 0.31 0.00 1 1.76 Ks 0.70 0.41 −0.12 1 1.49 Sand −0.51 0.69 −0.43 2 1.45 Silt −0.09 −0.03 0.94 3 1.09 Clay 0.57 −0.68 −0.16 2 1.46 EC −0.48 0.67 0.43 2 1.39 特征值
Eigenvalues3.83 1.83 1.31 方差贡献率
Variance
contribution rate/%37.83 24.99 14.62 累积贡献率
Cumulative
contribution rate/%37.83 62.81 77.43 根据MDS指标筛选规则,对比各分组的Norm值,各组分别筛选出Norm值在最大值前10%范围内的指标,随后分析每组中所选参数的相关性(表3)。第1组中,全氮的Norm值达到了1.76,有机质和pH位于其10%的范围内,但全氮与pH、有机质均极显著相关(P < 0.01),因此仅全氮进入MDS。第2组中,黏粒的Norm值为1.46,砂粒和电导率数值在其10%的范围内,但黏粒与砂粒极显著相关(P < 0.01),因此黏粒和电导率进入MDS。第3组仅包含粉粒1个指标,因此粉粒进入MDS。最终,全氮、粉粒、黏粒、电导率4个指标构成土壤质量评价MDS。
表 3 土壤质量评价指标相关系数Table 3. Correlation coefficients of soil quality indicators土壤指标
Soil indicatorpH BD SOM TN Ks Sand Silt Clay EC pH 1.000 BD 0.665** 1.000 SOM −0.520** −0.550** 1.000 TN −0.565** −0.583** 0.968** 1.000 Ks −0.451** −0.495** 0.687** 0.628** 1.000 Sand 0.465** 0.238 −0.181 −0.252 −0.054 1.000 Silt −0.014 0.032 −0.123 −0.079 −0.123 −0.328 1.000 Clay −0.461** −0.220 0.261 0.304 0.132 −0.801** −0.302 1.000 EC 0.402* −0.069 0.058 0.034 −0.004 0.218 0.184 −0.223 1.000 *, P < 0.05; **, P < 0.01. 2.3 最小数据集的适用性验证
为验证MDS建立的准确性,需比较基于全量数据集的土壤质量指数(SQI-TDS)和基于最小数据集的土壤质量指数(SQI-MDS)间的差别。通过对SQI-TDS和SQI-MDS进行线性拟合,发现二者存在极显著正相关关系(y = 0.796x + 0.097,R2 = 0.603,P < 0.01) (图3)。这说明,针对青藏高原4种典型土地利用类型,可以使用MDS的土壤质量评价指标来替代TDS进行土壤质量评价。
2.4 土壤质量指数
土壤质量指数是一种定量化指标,可用于评估土壤的综合特性,能够反映青藏高原南部土壤质量的好坏。如表4所列,TDS中,砂粒的权重最大(0.132),其次为粉粒(0.128)、有机质(0.125)、全氮(0.123);MDS中,权重大小表现为全氮(0.323) > 黏粒(0.261) > 电导率(0.258) > 粉粒(0.158)。青藏高原南部基于TDS的土壤质量指数介于0.505~0.734 (图4);基于MDS的土壤质量指数介于0.494~0.675。通过对比SQI-TDS和SQI-MDS,发现二者具有较好的一致性,均表现为乔木林地 > 草地 > 耕地 > 灌木林地。将土壤质量分为Ⅰ~Ⅴ级[22],对应指数分别为0~0.2、0.2~0.4、0.4~0.6、0.6~0.8、0.8~1.0。乔木林地属于Ⅳ级(土壤质量较高),其他3种土地利用类型均属于Ⅲ级(土壤质量中等)。
表 4 各评价指标的公因子方差和权重Table 4. Common factor variance and weights of soil quality indicators土壤指标
Soil
indicator全量数据集
Total data set最小数据集
Minimum data set公因子方差
Common factor
variance权重
Weight公因子方差
Common factor
variance权重
WeightpH 0.725 0.104 - - BD 0.630 0.090 - - SOM 0.871 0.125 - - TN 0.857 0.123 0.863 0.323 Ks 0.674 0.097 - - Sand 0.921 0.132 - - Silt 0.889 0.128 0.422 0.158 Clay 0.816 0.117 0.699 0.261 EC 0.584 0.084 0.690 0.258 3. 讨论
3.1 土地利用类型对各评价指标的影响
土地利用类型是影响土壤理化性质最普遍、最直接、最深刻的因素[23]。在研究区4种土地利用类型中,耕地土壤pH最高,可能是由于采样时间在作物生长季节,耕地作物需水量大,土壤水分消耗大,土壤盐分基本饱和所致[24-25]。乔木林地土壤pH最低,一方面,在乔木林区域的土壤表层积累了许多枯枝落叶,经过微生物的分解作用,这些枯枝落叶会逐渐分解,并释放出各种有机酸物质,释放的H+对碱性环境具有一定的中和作用,从而显著降低了表层土壤pH [26];另一方面,在采样过程中发现乔木林地植被根系分布十分发达,而根系在生长过程中会分泌有机酸,导致土壤进一步酸化。耕地土壤电导率最大,这是因为为保证作物产量,人工向耕地施加了大量的化学肥料,经过长期累积导致耕地土壤盐分含量升高[27]。耕地土壤容重显著高于草地和乔木林地土壤,这可能与耕地长期耕作导致土壤形成犁底层有关[28]。乔木林地土壤有机质、全氮含量和饱和导水率在4种土地利用类型中均属最高,这是由于乔木林地土壤表层有大量植被凋落物,这些凋落物有助于腐殖质和腐殖酸的增加[29],植被的根系还能通过破碎和穿插作用来促进土壤孔隙度的增加,降低土壤的紧实度,同时有效提高土壤入渗能力[30]。在不同土地利用类型间,草地和灌木林地土壤砂粒含量均显著高于耕地和乔木林地,这基本与实地情况相符合,在实地采样过程中发现部分草地和灌木林地植被覆盖度低、退化较为严重。
3.2 基于最小数据集的土壤质量评价
土地利用方式、土壤属性和生态恢复措施对土壤质量评价结果的准确性有重要影响[31],因此关键在于如何筛选土壤指标并建立相应的评价体系。土壤质量评价主要围绕土壤的物理、化学和生物特性展开,进行时间和空间范围内的综合评估,以物理、化学指标选取率最高,生物和环境指标选取率相对较低[32]。本研究选取的9个指标中,容重和颗粒组成,有机质、pH和全氮均属于土壤质量评价的前5位。通过主成分分析,结合相关性分析和Norm值进行MDS的筛选,并充分考虑各个指标在各主成分上的载荷,保留了指标在其他主成分上的信息,最终确定了全氮、粉粒、黏粒和电导率为MDS。刘利昆等[20]在对青藏高原3种土地利用类型土壤质量的研究中,筛选出的最小数据集包括粉粒、黏粒、有机质、全磷、全钾。张宇恒等[33]对沂蒙山不同治理模式土壤质量评价的研究中,确定了土壤孔隙度、容重、全氮作为土壤质量评价的指标。本研究中,对于MDS的选取与上述研究结果存在相同之处。在不同土地利用方式MDS的选取中,土壤全氮和颗粒组成具有较高的选取率,均是重要的土壤质量评价指标,因为全氮在一定程度上代表了土壤肥力的高低[34];黏粒则在维持养分供应、提高养分利用效率以及维持土壤结构稳定性方面发挥着关键作用[20];土壤电导率是反映土壤水溶性盐含量的一个重要参数,在研究土壤污染特征、盐碱化程度和肥力质量特性方面具有关键性作用[35]。
对SQI-TDS和SQI-MDS进行线性拟合,发现二者呈现极显著正相关关系,表明MDS具备评估青藏高原南部不同土地利用方式土壤质量的准确性,可用于取代TDS。基于MDS建立的土壤质量评价体系结果表现为乔木林地 > 草地 > 耕地 > 灌木林地,并且乔木林地土壤质量显著高于其他3种土地利用类型(P < 0.05),这是因为乔木林地植被凋落物数量多,有利于土壤腐殖质的累积,对土壤结构具有明显的改善作用[30]。这与邵兴华等[36]在红壤地区不同土地利用类型土壤质量的评价结果相符。相较之下,草地、耕地和灌木林地土壤质量较低,主要是因为耕地长期受使用化学肥料及耕作方式的影响,导致耕地矿化作用较严重[1],而草地尤其是灌木林地部分样地植被存在较为严重的退化现象,地上生物量和植被覆盖度较低。王长庭等[37]也发现植被的退化会导致土壤理化属性的下降,从而降低土壤质量。
4. 结论
1)土地利用方式对土壤理化性质具有显著影响。饱和导水率属于极敏感指标,电导率、全氮、有机质、砂粒属于高度敏感指标,pH、容重、粉粒、黏粒属于中度敏感指标。
2)在青藏高原南部,全氮、粉粒、黏粒、电导率构成了研究区土壤质量评价最小数据集,其权重分别为0.323、0.158、0.261、0.258。基于MDS的土壤质量评价指标可以较准确地对研究区4种典型土地利用类型进行土壤质量评价。
3)基于MDS建立的土壤质量评价体系与TDS的评价结果一致,均表现为乔木林地 > 草地 > 耕地 > 灌木林地。总体来看,研究区乔木林地的土壤质量属于“较高”水平,灌木林地、草地和耕地的土壤质量属于“中等”水平。
参考文献
[1] 李俊生, 宋延龄, 曾治高. 反刍动物的食物选择及其影响因素. 兽类学报, 2003, 23(1): 66-73. doi: 10.3969/j.issn.1000-1050.2003.01.012 LI J S, SONG Y L, ZENG Z G. Food selectivity and influencing factors in ruminants. Acta Theriologica Sinica, 2003, 23(1): 66-73. doi: 10.3969/j.issn.1000-1050.2003.01.012
[2] KELLY J F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 2000, 78(1): 1-27. doi: 10.1139/z99-165
[3] 马建章, 陈化鹏, 孙中武, 李枫, 王槐, 李飞, 杜永欣, 李杰. 马鹿和狍饲料植物的营养质量. 生态学报, 1996, 16(2): 269-354. MA J Z, CHEN H P, SUN Z W, LI F, WANG H, LI F, DU Y X, LI J. Seasonal nutritional quality of red deer and roe deer forages in southern Xiao Xing'an Mountains, China. Acta Ecologica Sinica, 1996, 16(2): 269-354.
[4] 李绍文. 生态生物化学(九): 哺乳动物对食物的选择. 生态学杂志, 1991, 10(2): 65-71. LI S W. Ecological biochemistry (9): Selection of food by mammals. Chinese Journal of Ecology, 1991, 10(2): 65-71.
[5] SHIMADA A T T. Selective consumption of acorns by the Japanese wood mouse according to tannin content: A behavioral countermeasure against plant secondar metabolites. Ecological Research, 2008, 23(6): 1033-1038. doi: 10.1007/s11284-008-0473-5
[6] CHUNG-MACCOUBREY A L, HAGERMAN A E, KIRKPATRICK R L. Effects of tannins on digestion and detoxification activity in gray squirrels (Sciurus carolinensis). Physiological Zoology, 1997, 70(3): 270-277. doi: 10.1086/639595
[7] IASON G R, PALO R T. Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares. Journal of Chemical Ecology, 1991, 17(9): 1733-1743. doi: 10.1007/BF00993725
[8] HEWITT D G, LAFON N W, KIRKPATRICK R L. Effect of tannins on galliform cecal partitioning. Physiological Zoology, 1997, 70(2): 175-180. doi: 10.1086/639572
[9] FOLEY W J. Digestion and energy metabolism in a small arboreal marsupial, the greater glider (Petauroides volans), fed high-terpene Eucalyptus, foliage. Journal of Comparative Physiology B, 1987, 157(3): 355-362. doi: 10.1007/BF00693362
[10] 蒋巍. 单宁对高原鼠兔脂代谢的影响. 扬州: 扬州大学硕士学位论文, 2012. JIANG W. The effect of tannins on the lipids metabolism of plateau pikas (Ochotona curzoniae). Master Thesis. Yangzhou: Yangzhou University, 2012.
[11] 刘倩. 单宁酸对布氏田鼠代谢的影响. 扬州: 扬州大学硕士学位论文, 2014. LIU Q. Effects of tannin on metabolism in brandt's voles. Master Thesis. Yangzhou: Yangzhou University, 2014.
[12] LAWLER I, FOLEY W. Chemical ecology of eucalyptus essential oils in plant-herbivore interactions. Medicinal and Aromatic Plants, 2002, 15(1): 324-344.
[13] MARSH K, WALLIS I, FOLEY W. Behavioural contributions to the regulated intake of plant secondary metabolites in koalas. Oecologia, 2007, 154(2): 283-290. doi: 10.1007/s00442-007-0828-6
[14] RHOADES D F, CATES R G. Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry, 1976, 10: 168-213.
[15] CLAUSEN T P, PROVENZA F D, BURRITT E A, REICHARDT P B, BRYANT J P. Ecological implications of condensed tannin structure: A case study. Journal of Chemical Ecology, 1990, 16(8): 2381-2392. doi: 10.1007/BF01017463
[16] DAWSON J M, BUTTERY P J, JENKINS D. Effects of dietary quebracho tannin on nutrient utilisation and tissue metabolism in sheep and rats. Journal of the Science of Food and Agriculture, 1999, 79(11): 1423-1430. doi: 10.1002/(SICI)1097-0010(199908)79:11<1423::AID-JSFA383>3.0.CO;2-8
[17] 李可洲, 李宁, 黎介寿. 短链脂肪酸对大鼠移植小肠形态及功能的作用研究. 世界华人杂志, 2002, 10(6): 720-722. LI K Z, LI N, LI J S. Effects of short-chain fatty acids on the morphology and function of small intestine transplanted in rats. World Chinese Journal of Digestology, 2002, 10(6): 720-722.
[18] 韩正康. 家畜营养生理学. 北京: 中国农业出版社, 1991: 16-17. HAN Z K. Animal Nutrition Physiology. Beijing: China Agriculture Press, 1991: 16-17.
[19] 张玉仙, 王文利, 王金秋. 不同浓度的同源益生素对21日龄肉鸡小肠黏膜结构的影响. 中国兽医杂志, 2014, 50(7): 11-13. doi: 10.3969/j.issn.0529-6005.2014.07.004 ZHANG Y X, WANG W L, WANG J Q. Effects of different levels of homologous probiotics on small intestinal mucosa structure at 21-day-old broilers. Chinese Journal of Veterinary Medicine, 2014, 50(7): 11-13. doi: 10.3969/j.issn.0529-6005.2014.07.004
[20] 李茜, 侯海锋. 水解单宁酸对肉鸡肠道形态和内源酶活性的影响. 今日畜牧兽医, 2016(4): 45-48. LI Q, HOU H F. Effects of hydrolyzed tannic acid on intestinal morphology and endogenous enzyme activities of broilers. Hebei Xumu Shouyi, 2016(4): 45-48.
[21] 朱美霖. 单宁对布氏田鼠(Lasiopodomys brandtii)食物选择的影响. 郑州: 郑州大学硕士学位论文, 2017. ZHU M L. Effects of tannin on food selectivity of Lasiopodomys brandtii. Master Thesis. Zhengzhou: Zhengzhou University, 2017.
[22] 焦广强. 大小, 形状及单宁含量对人工种子扩散和命运的影响. 洛阳: 河南科技大学硕士学位论文, 2011. JIAO G Q. Effect of seed size, shape and tannin content on seed fate and dispersal of artificial seeds. Master Thesis. Luoyang: He'nan University of Science and Technology, 2011.
[23] 郭彩茹, 路纪琪. 单宁酸对棕色田鼠和小鼠食物选择、日食量和蛋白质消化率的影响. 中国比较医学杂志, 2009, 19(11): 42-46. GUO C R, LU J Q. Effect of tannic acid on food selection, food intake and protein digestion rate in mandarin vole and mice. Chinese Journal of Comparative Medicine, 2009, 19(11): 42-46.
[24] 李俊年, 刘季科, 陶双伦. 饥饿和食物单宁酸对东方田鼠(Microtus fortis)食物摄入量和觅食行为的影响. 生态学报, 2007, 27(11): 4478-4484. doi: 10.3321/j.issn:1000-0933.2007.11.013 LI J N, LIU J K, TAO S L. Effects of hunger and tannic acid on food intake and foraging behaviors in Microtus fortis. Acta Ecologica Sinica, 2007, 27(11): 4478-4484. doi: 10.3321/j.issn:1000-0933.2007.11.013
[25] SHIMADA T, SAITOH T, SASAKI E. Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. Journal of Chemical Ecology, 2006, 32(6): 1165-1180. doi: 10.1007/s10886-006-9078-z
[26] 贺连选, 刘宝汉. 不同海拔高度的高寒草甸植物群落多样性的研究. 青海畜牧兽医杂志, 2005, 35(5): 1-4. doi: 10.3969/j.issn.1003-7950.2005.05.001 HE L X, LIU B H. Study on diversity of plant community in alpine-cold meadow at different altitude. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2005, 35(5): 1-4. doi: 10.3969/j.issn.1003-7950.2005.05.001
[27] 张欣. 高寒草甸植物酚类物质含量及其生物学评价. 兰州: 甘肃农业大学硕士学位论文, 2006. ZHANG X. Phenols content and biology evaluation of alpine plants. Master Thesis. Lanzhou: Gansu Agricultural University, 2006.
[28] 李德浩. 青海经济动物志. 西宁: 青海人民出版社, 1989: 689-691. LI D H. Qinghai Economic Fauna. Xining: Qinghai People′s Publishing House, 1989: 689-691.
[29] HARBORNE J B. Ecological Chemistry and Biochemistry of Plant Terpenoids. Oxford: University Press, 1991: 234-276.
[30] LIN G H, XIE J X, CUI X F. Effects of supplemental dietary tannic acid on digestion in plateau zokors (Eospalax baileyi). Annales Zoologici Fennici, 2012, 49(5/6): 371-377. doi: 10.5735/086.049.0511
[31] 李俊年, 刘季科, 陶双伦. 单宁酸对根田鼠食物摄入量和蛋白质消化率的效应. 兽类学报, 2003, 23(1): 52-57. doi: 10.3969/j.issn.1000-1050.2003.01.010 LI J N, LIU J K, TAO S L. Effects of tannic acid on the food intake and protein digestibility of root voles. Acta Theriologica Sinica, 2003, 23(1): 52-57. doi: 10.3969/j.issn.1000-1050.2003.01.010
[32] 张宾. 单宁酸对布氏田鼠下丘脑黑色素浓集激素和食欲素表达的影响. 扬州: 扬州大学硕士学位论文, 2015. ZHANG B. Effects of tannin acid on the expression of melanin concentrating hormone and orexin in hypothalamus of Lasiopodomys brandtii. Master Thesis. Yangzhou: Yangzhou University, 2015.
[33] ROBBINS C T. Wildlife feeding and nutrition. Journal of Wildlife Management, 1997, 8(4): 80-88.
[34] 赵晋芳. 重复测量线性混合模型在医学研究中的应用. 太原: 山西医科大学硕士学位论文, 2002. ZHAO J F. Application of linear mixed model of repeated measurements in medical study. Master Thesis. Taiyuan: Shanxi Medical University, 2002.
[35] BURNHAM K P, ANDERSON D R. Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research, 2001, 28(2): 111-119. doi: 10.1071/WR99107
[36] ZHANG Y, BARTLOW A W, WANG Z. Effects of tannins on population dynamics of sympatric seed-eating rodents: The potential role of gut tannin-degrading bacteria. Oecologia, 2018, 187(3): 667-678. doi: 10.1007/s00442-018-4151-1
[37] 何岚, 李俊年, 杨冬梅. 植物酚类化合物对东方田鼠体重增长和内脏器官发育的作用. 兽类学报, 2010, 30(3): 297-303. HE L, LI J N, YANG D M. Effects of plant phenolic compound on the growth and organ development of reed voles (Microtus fortis). Acta Theriologica Sinica, 2010, 30(3): 297-303.
[38] 顾新州. 青藏高原高寒地区植物次生代谢物季节变化及其对小哺乳动物取食行为的影响. 扬州: 扬州大学硕士学位论文, 2009. GU X Z. The effect of plants secondary metabolites on the forage of little herbivorous mammals in Qing-Tibet alpine meadow ecosystem. Master Thesis. Yangzhou: Yangzhou University, 2009.
[39] CHARNOV, ERIC L. Optimal foraging: Attack strategy of a mantid. The American Naturalist, 1976, 110(971): 141-151. doi: 10.1086/283054
[40] ZUCKER W V. Tannins: Does structure determine function? An ecological perspective. The American Naturalist, 1983, 121(3): 335-365. doi: 10.1086/284065
[41] MEHANSHO H, BUTLER L G, CARLSON D M. Dietary tannins and salivary proline-rich proteins: Interactions, induction, and defense mechanisms. Annual Review of Nutrition, 1987, 7(1): 423-440. doi: 10.1146/annurev.nu.07.070187.002231
[42] MEHANSHO H, ANN D, BUTLER L G. Induction of proline-rich proteins in hamster salivary glands by isoproterenol treatment and an unusual growth inhibition by tannin. Journal of Biological Chemistry, 1987, 262(25): 12344-12350. doi: 10.1016/S0021-9258(18)45359-8
[43] GLICK Z, JOSLYN M A. Food intake depression and other metabolic effects of tannic acid in the rat1. The Journal of Nutrition, 1970, 100(5): 509-515. doi: 10.1093/jn/100.5.509
[44] MCARTHUR C, ROBBINS C T, HAGERMAN A E. Diet selection by a ruminant generalist browser in relation to plant chemistry. Canadian Journal of Zoology, 1993, 71(11): 2236-2243. doi: 10.1139/z93-314
[45] RAUBENHEIMER D. Tannic acid, protein, and digestible carbohydrate: Dietary imbalance and nutritional compensation in locusts. Ecology, 1992, 73(3): 1012-1017. doi: 10.2307/1940176
[46] ROBBINS C T, HAGERMAN A E, AUSTIN P J. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. Journal of Mammalogy, 1991, 72: 480-486. doi: 10.2307/1382130
[47] RIDPATH J F, BOLIN S R, DUBOVI E J. Segregation of bovine viral diarrhea virus into genotypes. Virology, 1994, 205(1): 66-74. doi: 10.1006/viro.1994.1620
[48] BOZINOVIC F, NOVOA F F, SABAT P. Feeding and digesting fiber and tannins by an herbivorous rodent, Octodon degus (Rodentia: Caviomorpha). Comparative Biochemistry and Physiology, 1997, 118(3): 625-630. doi: 10.1016/S0300-9629(96)00480-X
[49] 王子旭, 佘锐萍, 陈越. 日粮锌硒水平对肉鸡小肠黏膜结构的影响. 中国兽医科技, 2003, 33(7): 18-21. doi: 10.3969/j.issn.1673-4696.2003.07.005 WANG Z X, SHE R P, CHEN Y. Effect of different levels of zinc and selenium in diet on the structure of mucosa epithelium in broiler small intestine. Chinese Veterinary Science, 2003, 33(7): 18-21. doi: 10.3969/j.issn.1673-4696.2003.07.005
[50] 刘秋东, 张中文, 刘凤华. 复方白头翁胶囊对腹泻犬小肠绒毛长度和隐窝深度的影响. 北京农学院学报, 2011, 26(3): 42-44. LIU Q D, ZHANG Z W, LIU F H. Effects of herbal medicine on villus height and crypt depth in small intestine of canine. Journal of Beijing University of Agriculture, 2011, 26(3): 42-44.
[51] VALLET J, ROUANET J M, BESANÇON P. Dietary grape seed tannins: Effects on nutritional balance and on some enzymic activities along the crypt-villus axis of rat small intestine. Annals of Nutrition and Metabolism, 1994, 38(2): 75-84. doi: 10.1159/000177796
[52] 陈宝江, 裴素俭, 魏忠华. 单宁酸对肉仔鸡生产性能和消化道酶活性的影响研究. 中国家禽, 2012, 34(20): 26-28. doi: 10.3969/j.issn.1004-6364.2012.20.007 CHEN B J, FEI S J, WEI Z H. Effect of tannic acid on production performance and digestive enzyme activity of broiler. China Poultry, 2012, 34(20): 26-28. doi: 10.3969/j.issn.1004-6364.2012.20.007
[53] 苟昌勇, 施晓丽, 孙澄慧, 石靖, 罗志军, 刘丽, 李登赴, 彭珊. 五倍子单宁酸对断奶仔猪生长性能、腹泻和养分消化的影响. 动物营养学报, 2020, 32(11): 5137-5144. GOU C Y, SHI X L, SUN C H, SHI J, LUO Z J, LIU L, LI D F, PENG S. Effects of gallnut tannic acid on growth performance, diarrhea and nutrient digestion in weaned piglets. Chinese Journal of Animal Nutrition, 2020, 32(11): 5137-5144.
[54] 王亚, 赵峰, 张虎. 单宁酸对生长猪胃–小肠仿生消化中消化酶活性及饲粮粗蛋白消化率的影响. 畜牧兽医学报, 2020, 51(6): 1332-1341. doi: 10.11843/j.issn.0366-6964.2020.016 WANG Y, ZHAO F, ZHANG H. Effects of tannic acid on digestive enzyme activity and digestibility of dietary crude protein in simulated gastric and intestinal digestion for growing pigs. Acta Veterinaria Et Zootechnica Sinica, 2020, 51(6): 1332-1341. doi: 10.11843/j.issn.0366-6964.2020.016
[55] 刘华伟. 栗树单宁的抗氧化能力及其对肉兔生产性能的影响研究. 北京: 中国农业科学院博士学位论文, 2010. LIU H W. Study on antioxidant activity of chestnut tannins and its effect on growth performance of rabbits. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2010.
-
表 1 混合线性效应模型选择结果
Table 1 Mixed linear effect model selection results
响应变量
Response variable固定效应
Fixed effect随机效应
Random effect模型
Model自由度
DF赤池信息准则
AICΔAIC 对数似然比
logLik体重
Body weight单宁酸浓度、
饲喂时间
TA concentration,
feeding Time个体差异
Individual
differencesⅦ 15 960.7 0.0 −459.80 Ⅵ 8 965.3 4.6 −464.50 Ⅴ 8 966.0 5.3 −466.90 Ⅱ 10 967.2 6.5 −473.60 Ⅲ 6 967.3 6.6 −474.10 Ⅳ 10 972.3 11.6 −4725.80 Ⅰ 5 1125.6 164.9 −557.82 食物摄入量
Food intake单宁酸浓度、
饲喂时间
TA concentration,
feeding time个体差异
Individual
differencesencesⅦ 15 671.2 0.0 −319.60 Ⅵ 8 678.1 6.9 −327.10 Ⅴ 8 679.1 7.9 −329.40 Ⅲ 6 686.9 15.7 −332.50 Ⅳ 10 687.2 16.0 −333.45 Ⅱ 10 687.5 16.3 −333.57 Ⅰ 5 691.5 20.3 −340.70 ΔAIC = 每个模型的AIC值 − 最小的AIC值;下表同。
TA: tannic acid; DF: degrees of freedom; AIC: akaike information criterion; logLik: logarithm likelihood ratio statistic; ΔAIC: difference between the AIC value of each model and the minimum AIC value; this is applicable for the following tables as well.表 2 单宁酸对青海田鼠体重变化的影响
Table 2 Effects of tannic acid (TA) on body weight of Lasiopodomys fuscus
g 处理
Treatment处理天数 Days of treatment 0 d 7 d 14 d 28 d 42 d 60 d 0 TA (n = 8) 27.175 ± 2.175a 35.250 ± 1.896b 35.375 ± 2.306a 36.545 ± 2.890a 37.625 ± 3.484a 36.375 ± 3.683b 3% TA (n = 10) 29.800 ± 3.463a 42.851 ± 3.025a 41.878 ± 3.094a 42.621 ± 3.159a 42.611 ± 3.134a 44.100 ± 3.086a 6% TA (n = 10) 31.000 ± 2.905a 39.800 ± 2.374ab 38.341 ± 2.129a 39.678 ± 2.077a 40.854 ± 2.235a 44.945 ± 2.262a 组内 Between groups F = 62.943, P < 0.001* 交互作用 Interaction F = 2.235, P = 0.015* 同列不同字母表示相同时间不同单宁酸处理间青海田鼠体重差异显著(P < 0.05);下表同。
Different lowercase letters within the same column indicate that the body weight of Lasiopodomys fuscu was significantly different between the different tannic acid (TA) treatments at the 0.05 level; this is applicable for the following tables as well.表 3 单宁酸对青海田鼠食物摄入量的影响
Table 3 Effects of tannic acid (TA) on food intake of Lasiopodomys fuscus
g 处理
Treatment处理天数 Days of treatment 0 d 7 d 14 d 28 d 42 d 60 d 0 TA (n = 8) 4.125 ± 0.914b 3.125 ± 0.295b 3.500 ± 0.500a 3.000 ± 0.267b 2.750 ± 0.366b 4.000 ± 0.378b 3% TA (n = 10) 7.500 ± 0.764a 5.000 ± 0.447a 4.600 ± 0.562a 5.700 ± 0.517a 6.100 ± 0.458a 6.000 ± 0.516a 6% TA (n = 10) 2.200 ± 0.573c 3.600 ± 0.521ab 3.900 ± 0.379a 5.300 ± 0.335a 5.000 ± 0.298a 5.800 ± 0.359a 组内 Between Groups F = 8.726, P < 0.001* 交互作用 Interaction F = 5.949, P < 0.001* 表 4 单宁酸对青海田鼠绒毛长度和隐窝深度的影响
Table 4 Effects of tannic acid (TA) on the villus length and crypt depth of Lasiopodomys fuscus
处理 Treatment 绒毛长度 Villus length/μm 隐窝深度 Crypt depth/μm 绒毛长度/隐窝深度 Villus length/crypt depth 0 TA (n = 8) 356.753 ± 39.147c 110.022 ± 4.260b 3.236 ± 0.420a 3% TA (n = 10) 365.846 ± 49.460b 133.720 ± 4.247a 2.736 ± 0.537a 6% TA (n = 10) 449.033 ± 43.095a 130.229 ± 8.380a 3.448 ± 0.340a F 26.83 22.36 0.86 P < 0.001* < 0.001* 0.448 -
[1] 李俊生, 宋延龄, 曾治高. 反刍动物的食物选择及其影响因素. 兽类学报, 2003, 23(1): 66-73. doi: 10.3969/j.issn.1000-1050.2003.01.012 LI J S, SONG Y L, ZENG Z G. Food selectivity and influencing factors in ruminants. Acta Theriologica Sinica, 2003, 23(1): 66-73. doi: 10.3969/j.issn.1000-1050.2003.01.012
[2] KELLY J F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology, 2000, 78(1): 1-27. doi: 10.1139/z99-165
[3] 马建章, 陈化鹏, 孙中武, 李枫, 王槐, 李飞, 杜永欣, 李杰. 马鹿和狍饲料植物的营养质量. 生态学报, 1996, 16(2): 269-354. MA J Z, CHEN H P, SUN Z W, LI F, WANG H, LI F, DU Y X, LI J. Seasonal nutritional quality of red deer and roe deer forages in southern Xiao Xing'an Mountains, China. Acta Ecologica Sinica, 1996, 16(2): 269-354.
[4] 李绍文. 生态生物化学(九): 哺乳动物对食物的选择. 生态学杂志, 1991, 10(2): 65-71. LI S W. Ecological biochemistry (9): Selection of food by mammals. Chinese Journal of Ecology, 1991, 10(2): 65-71.
[5] SHIMADA A T T. Selective consumption of acorns by the Japanese wood mouse according to tannin content: A behavioral countermeasure against plant secondar metabolites. Ecological Research, 2008, 23(6): 1033-1038. doi: 10.1007/s11284-008-0473-5
[6] CHUNG-MACCOUBREY A L, HAGERMAN A E, KIRKPATRICK R L. Effects of tannins on digestion and detoxification activity in gray squirrels (Sciurus carolinensis). Physiological Zoology, 1997, 70(3): 270-277. doi: 10.1086/639595
[7] IASON G R, PALO R T. Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares. Journal of Chemical Ecology, 1991, 17(9): 1733-1743. doi: 10.1007/BF00993725
[8] HEWITT D G, LAFON N W, KIRKPATRICK R L. Effect of tannins on galliform cecal partitioning. Physiological Zoology, 1997, 70(2): 175-180. doi: 10.1086/639572
[9] FOLEY W J. Digestion and energy metabolism in a small arboreal marsupial, the greater glider (Petauroides volans), fed high-terpene Eucalyptus, foliage. Journal of Comparative Physiology B, 1987, 157(3): 355-362. doi: 10.1007/BF00693362
[10] 蒋巍. 单宁对高原鼠兔脂代谢的影响. 扬州: 扬州大学硕士学位论文, 2012. JIANG W. The effect of tannins on the lipids metabolism of plateau pikas (Ochotona curzoniae). Master Thesis. Yangzhou: Yangzhou University, 2012.
[11] 刘倩. 单宁酸对布氏田鼠代谢的影响. 扬州: 扬州大学硕士学位论文, 2014. LIU Q. Effects of tannin on metabolism in brandt's voles. Master Thesis. Yangzhou: Yangzhou University, 2014.
[12] LAWLER I, FOLEY W. Chemical ecology of eucalyptus essential oils in plant-herbivore interactions. Medicinal and Aromatic Plants, 2002, 15(1): 324-344.
[13] MARSH K, WALLIS I, FOLEY W. Behavioural contributions to the regulated intake of plant secondary metabolites in koalas. Oecologia, 2007, 154(2): 283-290. doi: 10.1007/s00442-007-0828-6
[14] RHOADES D F, CATES R G. Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry, 1976, 10: 168-213.
[15] CLAUSEN T P, PROVENZA F D, BURRITT E A, REICHARDT P B, BRYANT J P. Ecological implications of condensed tannin structure: A case study. Journal of Chemical Ecology, 1990, 16(8): 2381-2392. doi: 10.1007/BF01017463
[16] DAWSON J M, BUTTERY P J, JENKINS D. Effects of dietary quebracho tannin on nutrient utilisation and tissue metabolism in sheep and rats. Journal of the Science of Food and Agriculture, 1999, 79(11): 1423-1430. doi: 10.1002/(SICI)1097-0010(199908)79:11<1423::AID-JSFA383>3.0.CO;2-8
[17] 李可洲, 李宁, 黎介寿. 短链脂肪酸对大鼠移植小肠形态及功能的作用研究. 世界华人杂志, 2002, 10(6): 720-722. LI K Z, LI N, LI J S. Effects of short-chain fatty acids on the morphology and function of small intestine transplanted in rats. World Chinese Journal of Digestology, 2002, 10(6): 720-722.
[18] 韩正康. 家畜营养生理学. 北京: 中国农业出版社, 1991: 16-17. HAN Z K. Animal Nutrition Physiology. Beijing: China Agriculture Press, 1991: 16-17.
[19] 张玉仙, 王文利, 王金秋. 不同浓度的同源益生素对21日龄肉鸡小肠黏膜结构的影响. 中国兽医杂志, 2014, 50(7): 11-13. doi: 10.3969/j.issn.0529-6005.2014.07.004 ZHANG Y X, WANG W L, WANG J Q. Effects of different levels of homologous probiotics on small intestinal mucosa structure at 21-day-old broilers. Chinese Journal of Veterinary Medicine, 2014, 50(7): 11-13. doi: 10.3969/j.issn.0529-6005.2014.07.004
[20] 李茜, 侯海锋. 水解单宁酸对肉鸡肠道形态和内源酶活性的影响. 今日畜牧兽医, 2016(4): 45-48. LI Q, HOU H F. Effects of hydrolyzed tannic acid on intestinal morphology and endogenous enzyme activities of broilers. Hebei Xumu Shouyi, 2016(4): 45-48.
[21] 朱美霖. 单宁对布氏田鼠(Lasiopodomys brandtii)食物选择的影响. 郑州: 郑州大学硕士学位论文, 2017. ZHU M L. Effects of tannin on food selectivity of Lasiopodomys brandtii. Master Thesis. Zhengzhou: Zhengzhou University, 2017.
[22] 焦广强. 大小, 形状及单宁含量对人工种子扩散和命运的影响. 洛阳: 河南科技大学硕士学位论文, 2011. JIAO G Q. Effect of seed size, shape and tannin content on seed fate and dispersal of artificial seeds. Master Thesis. Luoyang: He'nan University of Science and Technology, 2011.
[23] 郭彩茹, 路纪琪. 单宁酸对棕色田鼠和小鼠食物选择、日食量和蛋白质消化率的影响. 中国比较医学杂志, 2009, 19(11): 42-46. GUO C R, LU J Q. Effect of tannic acid on food selection, food intake and protein digestion rate in mandarin vole and mice. Chinese Journal of Comparative Medicine, 2009, 19(11): 42-46.
[24] 李俊年, 刘季科, 陶双伦. 饥饿和食物单宁酸对东方田鼠(Microtus fortis)食物摄入量和觅食行为的影响. 生态学报, 2007, 27(11): 4478-4484. doi: 10.3321/j.issn:1000-0933.2007.11.013 LI J N, LIU J K, TAO S L. Effects of hunger and tannic acid on food intake and foraging behaviors in Microtus fortis. Acta Ecologica Sinica, 2007, 27(11): 4478-4484. doi: 10.3321/j.issn:1000-0933.2007.11.013
[25] SHIMADA T, SAITOH T, SASAKI E. Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. Journal of Chemical Ecology, 2006, 32(6): 1165-1180. doi: 10.1007/s10886-006-9078-z
[26] 贺连选, 刘宝汉. 不同海拔高度的高寒草甸植物群落多样性的研究. 青海畜牧兽医杂志, 2005, 35(5): 1-4. doi: 10.3969/j.issn.1003-7950.2005.05.001 HE L X, LIU B H. Study on diversity of plant community in alpine-cold meadow at different altitude. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2005, 35(5): 1-4. doi: 10.3969/j.issn.1003-7950.2005.05.001
[27] 张欣. 高寒草甸植物酚类物质含量及其生物学评价. 兰州: 甘肃农业大学硕士学位论文, 2006. ZHANG X. Phenols content and biology evaluation of alpine plants. Master Thesis. Lanzhou: Gansu Agricultural University, 2006.
[28] 李德浩. 青海经济动物志. 西宁: 青海人民出版社, 1989: 689-691. LI D H. Qinghai Economic Fauna. Xining: Qinghai People′s Publishing House, 1989: 689-691.
[29] HARBORNE J B. Ecological Chemistry and Biochemistry of Plant Terpenoids. Oxford: University Press, 1991: 234-276.
[30] LIN G H, XIE J X, CUI X F. Effects of supplemental dietary tannic acid on digestion in plateau zokors (Eospalax baileyi). Annales Zoologici Fennici, 2012, 49(5/6): 371-377. doi: 10.5735/086.049.0511
[31] 李俊年, 刘季科, 陶双伦. 单宁酸对根田鼠食物摄入量和蛋白质消化率的效应. 兽类学报, 2003, 23(1): 52-57. doi: 10.3969/j.issn.1000-1050.2003.01.010 LI J N, LIU J K, TAO S L. Effects of tannic acid on the food intake and protein digestibility of root voles. Acta Theriologica Sinica, 2003, 23(1): 52-57. doi: 10.3969/j.issn.1000-1050.2003.01.010
[32] 张宾. 单宁酸对布氏田鼠下丘脑黑色素浓集激素和食欲素表达的影响. 扬州: 扬州大学硕士学位论文, 2015. ZHANG B. Effects of tannin acid on the expression of melanin concentrating hormone and orexin in hypothalamus of Lasiopodomys brandtii. Master Thesis. Yangzhou: Yangzhou University, 2015.
[33] ROBBINS C T. Wildlife feeding and nutrition. Journal of Wildlife Management, 1997, 8(4): 80-88.
[34] 赵晋芳. 重复测量线性混合模型在医学研究中的应用. 太原: 山西医科大学硕士学位论文, 2002. ZHAO J F. Application of linear mixed model of repeated measurements in medical study. Master Thesis. Taiyuan: Shanxi Medical University, 2002.
[35] BURNHAM K P, ANDERSON D R. Kullback-Leibler information as a basis for strong inference in ecological studies. Wildlife Research, 2001, 28(2): 111-119. doi: 10.1071/WR99107
[36] ZHANG Y, BARTLOW A W, WANG Z. Effects of tannins on population dynamics of sympatric seed-eating rodents: The potential role of gut tannin-degrading bacteria. Oecologia, 2018, 187(3): 667-678. doi: 10.1007/s00442-018-4151-1
[37] 何岚, 李俊年, 杨冬梅. 植物酚类化合物对东方田鼠体重增长和内脏器官发育的作用. 兽类学报, 2010, 30(3): 297-303. HE L, LI J N, YANG D M. Effects of plant phenolic compound on the growth and organ development of reed voles (Microtus fortis). Acta Theriologica Sinica, 2010, 30(3): 297-303.
[38] 顾新州. 青藏高原高寒地区植物次生代谢物季节变化及其对小哺乳动物取食行为的影响. 扬州: 扬州大学硕士学位论文, 2009. GU X Z. The effect of plants secondary metabolites on the forage of little herbivorous mammals in Qing-Tibet alpine meadow ecosystem. Master Thesis. Yangzhou: Yangzhou University, 2009.
[39] CHARNOV, ERIC L. Optimal foraging: Attack strategy of a mantid. The American Naturalist, 1976, 110(971): 141-151. doi: 10.1086/283054
[40] ZUCKER W V. Tannins: Does structure determine function? An ecological perspective. The American Naturalist, 1983, 121(3): 335-365. doi: 10.1086/284065
[41] MEHANSHO H, BUTLER L G, CARLSON D M. Dietary tannins and salivary proline-rich proteins: Interactions, induction, and defense mechanisms. Annual Review of Nutrition, 1987, 7(1): 423-440. doi: 10.1146/annurev.nu.07.070187.002231
[42] MEHANSHO H, ANN D, BUTLER L G. Induction of proline-rich proteins in hamster salivary glands by isoproterenol treatment and an unusual growth inhibition by tannin. Journal of Biological Chemistry, 1987, 262(25): 12344-12350. doi: 10.1016/S0021-9258(18)45359-8
[43] GLICK Z, JOSLYN M A. Food intake depression and other metabolic effects of tannic acid in the rat1. The Journal of Nutrition, 1970, 100(5): 509-515. doi: 10.1093/jn/100.5.509
[44] MCARTHUR C, ROBBINS C T, HAGERMAN A E. Diet selection by a ruminant generalist browser in relation to plant chemistry. Canadian Journal of Zoology, 1993, 71(11): 2236-2243. doi: 10.1139/z93-314
[45] RAUBENHEIMER D. Tannic acid, protein, and digestible carbohydrate: Dietary imbalance and nutritional compensation in locusts. Ecology, 1992, 73(3): 1012-1017. doi: 10.2307/1940176
[46] ROBBINS C T, HAGERMAN A E, AUSTIN P J. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. Journal of Mammalogy, 1991, 72: 480-486. doi: 10.2307/1382130
[47] RIDPATH J F, BOLIN S R, DUBOVI E J. Segregation of bovine viral diarrhea virus into genotypes. Virology, 1994, 205(1): 66-74. doi: 10.1006/viro.1994.1620
[48] BOZINOVIC F, NOVOA F F, SABAT P. Feeding and digesting fiber and tannins by an herbivorous rodent, Octodon degus (Rodentia: Caviomorpha). Comparative Biochemistry and Physiology, 1997, 118(3): 625-630. doi: 10.1016/S0300-9629(96)00480-X
[49] 王子旭, 佘锐萍, 陈越. 日粮锌硒水平对肉鸡小肠黏膜结构的影响. 中国兽医科技, 2003, 33(7): 18-21. doi: 10.3969/j.issn.1673-4696.2003.07.005 WANG Z X, SHE R P, CHEN Y. Effect of different levels of zinc and selenium in diet on the structure of mucosa epithelium in broiler small intestine. Chinese Veterinary Science, 2003, 33(7): 18-21. doi: 10.3969/j.issn.1673-4696.2003.07.005
[50] 刘秋东, 张中文, 刘凤华. 复方白头翁胶囊对腹泻犬小肠绒毛长度和隐窝深度的影响. 北京农学院学报, 2011, 26(3): 42-44. LIU Q D, ZHANG Z W, LIU F H. Effects of herbal medicine on villus height and crypt depth in small intestine of canine. Journal of Beijing University of Agriculture, 2011, 26(3): 42-44.
[51] VALLET J, ROUANET J M, BESANÇON P. Dietary grape seed tannins: Effects on nutritional balance and on some enzymic activities along the crypt-villus axis of rat small intestine. Annals of Nutrition and Metabolism, 1994, 38(2): 75-84. doi: 10.1159/000177796
[52] 陈宝江, 裴素俭, 魏忠华. 单宁酸对肉仔鸡生产性能和消化道酶活性的影响研究. 中国家禽, 2012, 34(20): 26-28. doi: 10.3969/j.issn.1004-6364.2012.20.007 CHEN B J, FEI S J, WEI Z H. Effect of tannic acid on production performance and digestive enzyme activity of broiler. China Poultry, 2012, 34(20): 26-28. doi: 10.3969/j.issn.1004-6364.2012.20.007
[53] 苟昌勇, 施晓丽, 孙澄慧, 石靖, 罗志军, 刘丽, 李登赴, 彭珊. 五倍子单宁酸对断奶仔猪生长性能、腹泻和养分消化的影响. 动物营养学报, 2020, 32(11): 5137-5144. GOU C Y, SHI X L, SUN C H, SHI J, LUO Z J, LIU L, LI D F, PENG S. Effects of gallnut tannic acid on growth performance, diarrhea and nutrient digestion in weaned piglets. Chinese Journal of Animal Nutrition, 2020, 32(11): 5137-5144.
[54] 王亚, 赵峰, 张虎. 单宁酸对生长猪胃–小肠仿生消化中消化酶活性及饲粮粗蛋白消化率的影响. 畜牧兽医学报, 2020, 51(6): 1332-1341. doi: 10.11843/j.issn.0366-6964.2020.016 WANG Y, ZHAO F, ZHANG H. Effects of tannic acid on digestive enzyme activity and digestibility of dietary crude protein in simulated gastric and intestinal digestion for growing pigs. Acta Veterinaria Et Zootechnica Sinica, 2020, 51(6): 1332-1341. doi: 10.11843/j.issn.0366-6964.2020.016
[55] 刘华伟. 栗树单宁的抗氧化能力及其对肉兔生产性能的影响研究. 北京: 中国农业科学院博士学位论文, 2010. LIU H W. Study on antioxidant activity of chestnut tannins and its effect on growth performance of rabbits. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2010.
-
期刊类型引用(1)
1. 金哲浩,王克勤,黄帅,于君宝,刘芝芹. 基于MDS的滇池流域5种典型林分土壤质量评价. 水土保持学报. 2025(01): 141-151 . 百度学术
其他类型引用(2)
计量
- PDF下载量: 22
- 文章访问数: 3146
- HTML全文浏览量: 746
- 被引次数: 3