木豆种质资源质量评价
English
-
参考文献
[1] 郑桌杰. 中国食用豆类学. 北京: 中国农业出版社, 1997. ZHENG Z J. Chinese Edible Beans. Beijing: China Agricultural Press, 1997.
[2] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2004. Editorial Committee of Chinese Journal of Plant of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 2004.
[3] 姚娜, 易显凤, 丘金花, 庞天德, 赖志强, 韦锦益. 四种南方豆科灌木饲料在华南地区的比较试验. 草业科学, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379 YAO N, YI X F, QIU J H, PANG T D, LAI Z Q, WEI J Y. Comparison of four fodder species of leguminous shrubs in southern China. Pratacultural Science, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379
[4] 蓝芙宁, 蒋忠诚, 谢运球, 张敏. 岩溶峰丛山地几种植物营养价值及饲喂效果研究. 草业科学, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017 LAN F N, JAING Z C, XIE Y Q, ZHANG M. Studies on the nutrition value and feeding effect of several forage cultivars in karst mountainous region. Pratacultural Science, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017
[5] 李正红, 周朝鸿, 谷勇, 张建云. 中国木豆研究利用现状及开发前景. 林业科学研究, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014 LI Z H, ZHOU C H, GU Y, ZHANG J Y. The present status of study and utilization of pigeonpea in China and its prospects. Forest Research, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014
[6] 付玉杰, 祖元刚, 吴楠, 孔羽, 刘威, 华欣. 木豆叶中木豆茋酸及球松素在制备抗疱疹病毒药物中的应用: 中国, CN200910071471.0. 2009-03-03. FU Y J, ZU Y G, WU N, KONG Y, LIU W, HUA X. The application of oleosolic acid and coccinin in pigeon pea leaves in the preparation of anti-herpes virus drugs: China, CN200910071471. 0. 2009-03-03.
[7] LI X L, ZHAO B X, HUANG X J, ZHANG D M, YE W C. (+)- and (-)-cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan. Organic Letters, 2014, 16(1): 224. doi: 10.1021/ol403211a
[8] WU G Y, ZHANG X, GUO X Y, HUO L Q, LIU H X, SHAN X L, QIU S X, HU Y J, TAN H B. Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan. Chinese Journal of Natural Medicines, 2019, 17(5): 381-386. doi: 10.1016/S1875-5364(19)30044-5
[9] 蔡佳仲, 戴湾, 张嫩玲. 木豆化学成分和药理活性研究进展. 天然产物研究与开发, 2020, 32(3): 515-524, 506. CAI J Z, DAI W, ZHANG N L. Advance on chemical constituents and pharmacological activities of Cajanus cajan (L.) Millsp. Natural Product Research and Development, 2020, 32(3): 515-524, 506.
[10] LIU S, LUO Z H, JI G M, GUO W, CAI J Z, FU L C, ZHOU J, HU Y J, SHEN X L. Cajanolactone A from Cajanus cajan promoted osteoblast differentiation in human bone marrow mesenchymal stem cells via stimulating Wnt/LRP5/β-catenin signaling. Molecules, 2019, 24(2): 271. doi: 10.3390/molecules24020271
[11] 刘少军, 陈小俊, 冯丽敏, 赵瑞芝. 通络生骨胶囊对大鼠应力缺失性骨质疏松的防治作用. 中国实验方剂学杂志, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053 LIU S J, CHEN X J, FENG L M, ZHAO R Z. Effect of tongluo shenggu capsules on osteoporosis induced by stress absence. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053
[12] CHANG H Y, WU J R, GAO W Y, LIN H R, CHEN P Y, CHEN C I, WU M J, YEN J H, WENG C F. The cholesterol-modulating effect of methanol extract of pigeon pea [Cajanus cajan (L.) Millsp. ] leaves on regulating LDLR and PCSK9 expression in HepG2 cells. Molecules, 2019, 24(2): 493. doi: 10.3390/molecules24030493
[13] YANG R Y, WANG L, XIE J, LI X, LIU S, QIU S X, HU Y J, SHEN X L. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. International Journal of Molecular Medicine, 2018, 42(5): 2329.
[14] LIU Y M, SHEN S N, LI Z Y, JIANG Y M, SI J Y, CHANG Q, LIU X M, PAN R L. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis. Neurochemistry International, 2014, 78: 43. doi: 10.1016/j.neuint.2014.08.007
[15] JIANG B P, LIU Y M, LE L, LI Z Y, SI J Y, LIU X M, CHANG Q, PAN R L. Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway. Cellular Physiology and Biochemistry, 2014, 34(3): 1015-1026. doi: 10.1159/000366317
[16] 姜保平, 刘亚旻, 李宗阳, 宋波, 潘瑞乐. 木豆叶醇提物对皮质酮诱导的PC12细胞损伤的保护作用. 天然产物研究与开发, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027 JIANG B P, LIU Y M, LI Z Y, SONG B, PAN R L. Protective effect of alcohol extract of Cajanus cajan on corticosterone-induced lesion in cultured PC12 cells. Natural Product Research and Development, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027
[17] 孙琳, 马艳苗, 严维花, 张娜, 柴智. 木豆叶对心肌缺血-再灌注损伤大鼠心功能的影响及其作用机制初探. 中药材, 2017, 40(4): 916. SUN L, MA Y M, YAN W H, ZHANG N, CHAI Z. Effects and mechanism of Cajanus cajan leaves on functional influence of rat hearts induced by ischemia-reperfusion. Journal of Chinese Medicinal Materials, 2017, 40(4): 916.
[18] 孙琳, 张涛, 柴智. 木豆叶提取物对心肌缺血再灌注损伤大鼠的保护作用. 中草药, 2015, 46(22): 3382. SUN L, ZHANG T, CHAI Z. Protection of extract from pigeonpea leaves on myocardial ischemia reperfusion injury in rats. Chinese Traditional and Herbal Drugs, 2015, 46(22): 3382.
[19] ZHANG N L, SHE X C, JIANG X F, CAI J Z, SHEN X L, HU Y J, QIU S X. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan. Journal of Natural Medicines, 2018, 72(1): 304. doi: 10.1007/s11418-017-1138-x
[20] ZHANG N L, ZHU Y H, HUANG R M, FU M Q, SU Z W, CAI J Z, HU Y J, QIU S X. Two new stilbenoids from Cajanus cajan. Zeitschrift Für Naturforschung B, 2012, 67(12): 1314-1318. doi: 10.5560/znb.2012-0184
[21] DEODIKER G B, THAKER C V. Cyto-taxonomic evidence for the affinity between Cajanus indicus Spreng. and certain erect species of Atylosia W. & A. Proceedings of the Indian Academy of Sciences-Section A, 1956, 43(1): 37-45.
[22] 毕玉芬, 姜华, 许岳飞. 干热河谷草地灌草组合模式的研究. 草业科学, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017 BI Y F, JIANG H, XU Y F. Study on shrub-grass combined mode in the hot-arid valley grassland. Pratacultural Science, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017
[23] PUNDIR R P S, SINGH R B. Biosystematic relationships among Cajanus, Atylosia and Rhynehosia species and evolution of pigeonpea [Cajanus cajan (L.) Millsp]. Theoretical and Applied Genetics, 1985, 69(5/6): 531-534.
[24] 吴涛, 姚红艳, 莫本田, 龙忠富, 罗充. 8种豆科灌木栽培种丛枝菌根真菌种类及分布. 草业科学, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345 WU T, YAO H Y, MO B T, LONG Z F, LUO C. The category and distribution of arbuscular mycorrhizal fungi from the rhizosphere of eight cultivat leguminous shrubs. Pratacultural Science, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345
[25] 冼芸轩. 用发根农杆菌介导转化的方法探究木豆耐铝基因的特性. 南宁: 广西大学硕士学位论文, 2017. XIAN Y X. Agrobacterium rhizogenes-mediated transformation for cha racterizing al tolerance genes. Master Thesis. Nanning: Guangxi University, 2017.
[26] 韩蓉蓉, 文亦芾, 史亮涛. 牧草磷素营养及其耐低磷特性. 草业科学, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671 HAN R R, WEN Y P, SHI L T. Advances in grass phosphorus nutrition and tolerance to low phosphorus. Pratacultural Science, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671
[27] 闫龙. 木豆种质资源遗传多样性分析. 北京: 中国农业科学院硕士学位论文, 2005. YAN L. Assessment of genetic diversity of pigeonpea [Cajanus cajan (L.) Millspaugh] germplasm resources. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2005.
[28] THOMBER B B, AHER R P, DAHAT D V. Genetic diversity in pigeonpea. Indian Journal of Agricultural Research, 2000, 34(2): 126 .
[29] SAMAL K M, SENAPATI N, PATNAIK H E. Genetic divergence in mutant lines of pigeon pea. Legume Research, 2001, 24(3): 186.
[30] SIVARAMAKRISHNAN S, SEETHA K, NAGESHWAR R A, SINGH L. RFLP analysis of cytoplasmic male-sterile lines of pigeonpea[Cajanus cajan (L.) Millsp. ] developed by interspecific crosses. Euphytica, 1997, 93(3): 307-312. doi: 10.1023/A:1002958623171
[31] SOUFHMANIEN J, MANJAVA J G, KRISHNA T G, PAWAR S E. Random amplified polymorphic DNA analyses of cytoplasmic male sterile and male fertile Pigeonpea. International Journal of Dairy Technology, 2003, 129(3): 293.
[32] BUMS M J, EDWARDS K J, NEWBURY H J. Development of simple sequence repeat (SSR) markers for assessment of gene now and genetic diversity in pigeonpea. Molecular Ecology Resources, 200l, l(4): 283-285.
[33] 蒋慧萍. 不同木豆品种亲缘关系及生理生化指标的研究. 南宁: 广西大学硕士学位论文, 2002. JIANG H P. Study on genetic relationship and physiological and biochemical parameters in different pigeonpea varieties. Master Thesis. Nanning: Guangxi University, 2002.
[34] 闫龙, 关建平, 宗绪晓. 木豆种质资源AFLP标记遗传多样性分析. 作物学报, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015 YAN L, GUAN J P, ZONG X X. Genetic diversity analysis of pigeonpea germplasm resources by AFLP. Acta Agronomica Sinica, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015
[35] SHARMA H C, SHARMA K K, SEETHARAMA N, ORTIZ R. Prospects for using transgenetic resistance to insects in crop improvement. Electronic Journal Biotechology, 2000, 3(2): 21-22.
[36] YARSHNEY R K, CHEN W B, LI Y P, BHARTI A K, SAXENA R K, SCHLUETER J A, DONOGHUE M T A, AZAM S, FAN G Y, WHALEY A M, FARMER A D, SHERIDAN J, LWATA A, TUTEJA R, PENMETSA R V, WU W, UPADHYAYA H D, YANG S P, SHAH T, SAXENA K B, MICHAEL T, MCCOMBIE W R, YANG B C, ZHANG G Y, YANG H M, WANG J, SPILLANE C, COOK D R, MAY G D, XU X, JACKSON S A. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30(1): 83. doi: 10.1038/nbt.2022
[37] 李鳌, 孙宏伟, 崔彦. 代谢组学应用与研究进展. 医学研究杂志, 2020, 49(1): 168. LI A, SUN H W, CUI Y. Application and research progress of metabolomics. Journal of Medical Research, 2020, 49(1): 168.
[38] 高燕. 不同大豆中异黄酮含量的差异性分析. 化学工程与装备, 2019(5): 9-11. GAO Y. Difference analysis of isoflavone content in different soybeans. Chemical Engineering and Equipment, 2019(5): 9-11.
[39] CHEN J, WANF J L, CHEN W, SUN W Q, PENG M, YUAN Z Y, SHEN S Q, XIE K, JIN C, SUN Y Y, LIU X Q, FERNIE A R, YU S B, LUO J. Metabolome analysis of multi-connected biparental chromosome segment substitution line population. Plant Physiology, 2018, 178(2): 612. doi: 10.1104/pp.18.00490
[40] ZHU G T, WANG S C, HUANG Z J, ZHANG S Z, LIAO Q G, ZHANG C, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, KNAAP E, ZHANG Z G, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249. doi: 10.1016/j.cell.2017.12.019
[41] 国家药典委员会. 中国药典. 北京: 中国医药科技出版社, 2015. National Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: China Medical Science and Technology Press, 2015.
[42] 廖丽. 夏枯草种质资源与药材质量评价研究. 南京: 南京农业大学博士学位论文, 2009. LIAO L. Study on germplasm resouces of Prunella vulgaris and its quality evaluation. PhD Thesis. Nanjing: Nanjing Agricultural University, 2009.
[43] CHEN W, GONG L, GUO Z L, WANG W S, ZHANG H Y, LIU X Q, YU S B, XIONG L Z, LUO J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 2013, 6(6): 1769. doi: 10.1093/mp/sst080
[44] FRAGA C G, CLOWERS B, MOORE R J, ZINK E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 2010, 82(10): 4165. doi: 10.1021/ac1003568
[45] 康智明, 徐晓俞, 郑开斌, 俞秀红, 李爱萍. 木豆种质资源形态与农艺性状的多样性分析. 热带亚热带植物学报, 2017, 25(1): 51. doi: 10.11926/jtsb.3633 KANG Z M, XU X Y, ZHENG K B, YU X H, LI A P. Diversity analysis of morphological and agronomic traits in Cajanus cajan. Journal of Tropical and Subtropical Botany, 2017, 25(1): 51. doi: 10.11926/jtsb.3633
[46] 高桂娟, 李志丹. 45份木豆种质资源物候期及形态多样性分析. 生态科学, 2017, 36(2): 100. GAO G J, LI Z D. Study on morphological features diversity and phonological period of pigeonpea germplasm materials. Ecological Science, 2017, 36(2): 100.
[47] 郑菲艳, 鞠玉栋, 邱珊莲, 吴维坚, 张树河, 郑开斌. 木豆种质不同部位总黄酮含量研究. 福建农业学报, 2016, 31(7): 733. ZHENG F Y, JU Y D, QIU S L, WU W J, ZHANG S H, ZHENG K B. Study on total flavonoid content in different parts from different kinds of pigeonpea. Fujian Journal of Agricultural Sciences, 2016, 31(7): 733.
[48] 徐晓俞, 李爱萍, 吴思逢, 李程勋, 黄旭旻, 郑开斌. 木豆不同品种和叶龄对叶片氨基酸形成的影响和聚类分析. 热带亚热带植物学报, 2018, 26(6): 617. doi: 10.11926/jtsb.3895 XU X Y, LI A P, WU S F, LI C X, HUANG X M, ZHENG K B. Effects of different germplasms and leaf ages on amino acid formation in pigeonpea leaves and cluster analysis. Journal of Tropical and Subtropical Botany, 2018, 26(6): 617. doi: 10.11926/jtsb.3895
[49] 元唯安, 杜炯, 闻辉, 刘又文, 沈霖, 韩永台, 杨凤云, 葛京华, 谷福顺, 张建新, 宁亚功, 陈卫衡, 姜益常, 张杰, 余桦, 董晓俊, 于浩, 詹红生. 通络生骨胶囊治疗股骨头坏死(筋脉瘀滞证)的多中心随机、双盲、双模拟、阳性药对照临床研究. 上海中医药杂志, 2019, 53(8): 53-59. YUAN W A, DU J, WEN H, LIU Y W, SHEN L, HAN Y T, YANG F Y, GE J H, GU F S, ZHANG J X, NING Y G, CHEN W H, JIANG Y C, ZHANG J, YU H, DONG X J, YU H, ZHAN H S. A multi-center, randomized, double-blind, double-dummy, positive-controlled clinical study on Tongluo Shenggu Capsule in treatment of osteonecrosis of femoral head (syndrome of stagnation of sinews and vessels). China Academic Journal Electronic Publishing House, 2019, 53(8): 53-59.
-
表 1 木豆种质资源编号与来源
Table 1 Sources of Cajanus cajan
序号 No. 编号 Code 来源 Source 1 1-DH1 云南德宏 Dehong, Yunnan 2 2-YJ 广东阳江 Yangjiang, Guangdong 3 6-DZ 江西都昌 Duchang, Jiangxi 4 7-QJ 海南乐东 Ledong, Hainan 5 8-BS 海南白沙 Baisha, Hainan 6 9-CM 云南嵩明 Chongming, Yunnan 7 3-QZ 海南琼中 Qiongzhong, Hainan 8 4-HK 海南海口 Haikou, Hainan 9 10-DH2 云南德宏 Dehong, Yunnan 10 5-DH3 云南德宏 Dehong, Yunnan 表 2 10份木豆种质资源形态性状(数量性状)差异比较
Table 2 Comparison of quantitative morphological differences among 10 Cajanus cajan accessions
编号
Code株高
Plant
height
(T1)/cm主茎分枝/枝
Main stem
branches
(T2)/branches叶长
Leaf
length
(T3)/mm叶宽
Leaf
width
(T4)/mm叶型指数
Leaf shape
index (T5)花序轴长度
Inflorescence
axis length
(T6)/cm旗瓣大小
Banner petal
size ( T7)/mm荚果长
Pod
length
(T8)/mm荚果宽
Pod
width
(T9)/mm单荚粒数/个
Number of
single pods
(T10)/Pc百粒重
Hundred-
seed weight
(T11)/g1-DH1 146.10 ± 0.00 10.00 ± 0.58 5.90 ± 0.11 2.62 ± 0.05 2.25 ± 0.04 16.72 ± 1.10 17.17 ± 0.20 53.52 ± 1.27 6.10 ± 0.00 2.50 ± 0.08 4.46 ± 0.22 2-YJ 162.24 ± 27.91 25.50 ± 2.50 4.41 ± 0.16 1.74 ± 0.06 2.53 ± 0.05 21.69 ± 2.40 17.25 ± 0.23 59.47 ± 1.25 7.71 ± 0.13 5.03 ± 0.13 4.15 ± 0.06 6-DZ 154.66 ± 5.41 13.43 ± 1.65 5.13 ± 0.19 1.66 ± 0.06 3.09 ± 0.10 28.99 ± 2.09 20.10 ± 0.23 80.63 ± 1.39 11.68 ± 0.16 4.13 ± 0.16 14.07 ± 0.43 7-QJ 125.54 ± 13.61 15.86 ± 3.12 7.40 ± 0.21 2.90 ± 0.08 2.56 ± 0.04 17.06 ± 1.04 17.19 ± 0.53 62.48 ± 0.74 8.51 ± 0.12 4.97 ± 0.12 6.47 ± 0.08 8-BS 108.25 ± 21.77 8.25 ± 0.75 6.52 ± 0.16 2.27 ± 0.06 2.87 ± 0.07 16.40 ± 9.20 16.50 ± 0.25 46.52 ± 1.03 8.70 ± 0.11 4.40 ± 0.11 7.58 ± 0.30 9-CM 149.28 ± 16.94 10.00 ± 1.00 5.54 ± 0.13 2.02 ± 0.07 2.74 ± 0.06 29.25 ± 2.41 18.17 ± 0.15 51.36 ± 1.05 9.24 ± 0.13 4.50 ± 0.13 6.64 ± 0.10 3-QZ 86.29 ± 7.46 12.00 ± 1.00 6.78 ± 0.25 2.51 ± 0.09 2.70 ± 0.06 32.65 ± 1.97 25.86 ± 7.10 58.47 ± 105 9.56 ± 0.20 4.53 ± 0.20 8.26 ± 0.13 4-HK 174.83 ± 7.18 16.40 ± 2.14 6.33 ± 0.22 1.89 ± 0.09 3.35 ± 0.08 33.98 ± 1.53 18.34 ± 0.27 63.09 ± 1.18 10.11 ± 0.16 4.97 ± 0.16 8.37 ± 0.13 10-DH2 125.07 ± 15.21 15.50 ± 3.14 5.12 ± 0.19 2.04 ± 0.09 2.51 ± 0.10 21.45 ± 1.85 17.88 ± 0.24 59.46 ± 1.47 8.38 ± 0.13 4.20 ± 0.13 11.06 ± 0.20 5-DH3 141.00 ± 7.19 8.75 ± 1.31 6.24 ± 0.17 2.23 ± 0.07 2.80 ± 0.06 22.52 ± 1.18 18.24 ± 0.36 56.92 ± 2.08 8.39 ± 0.12 4.93 ± 0.12 7.06 ± 0.15 均值
Mean137.33 13.57 5.94 2.19 2.74 24.07 18.67 59.19 8.84 4.42 7.81 标准差
Standard
deviation, SD26.46 5.15 0.90 0.40 0.31 6.66 2.71 9.10 1.48 0.75 2.96 变异系数
Coefficient
of variation,
CV/%19.27 37.96 15.15 18.14 11.48 27.69 14.51 15.37 16.73 17.00 8.75 F 5.39** 3.42** 23.78** 29.86** 22.52** 12.47** 0.94* 49.00** 64.15** 70.27** 192.54** 编号同表1;*表示在0.05水平上差异显著,**表示在0.01水平上差异极显著;表4、表5、表6和表7同。
Codes are same as Table 1. * indicate significant differences at the 0.05 level, and ** indicate extremely significant differences at the 0.01 level; this is applicable for Tables 4, 5, 6, and 7 as well.表 3 10份木豆种质资源形态性状(质量性状)差异比较
Table 3 Comparison of qualitative morphological differences among 10 Cajanus cajan accessions
编号 Code Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 1-DH1 紧凑 Compact 阔菱形 Wide rhombus 红 Red 橘黄 Orange 无 Colorless 绿底紫斑
Purple spot on
green background黑 Black 黑 Black 无 Colorless 奶黄 Creamy yellow 2-YJ 半紧凑
Semi-compact阔菱形 Wide rhombus 红条纹
Red stripe黄 Yellow 红 Red 绿 Green 橘黄 Orange 浅褐 Light brown 无 Colorless 黑 Black 6-DZ 半紧凑
Semi-compact窄菱形 Narrow rhombus 红条纹
Red stripe黄 Yellow 红 Red 绿底紫斑
Purple spot on
green background条纹 Striped 浅灰 Light gray 斑点加斑块
Speckled and
blotched浅褐 Light brown 7-QJ 半紧凑
Semi-compact阔菱形 Wide rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
Purple spot on
green background白 White 奶黄 Creamy yellow 斑块 Blotched 奶黄 Creamy yellow 8-BS 半紧凑
Semi-compact阔菱形 Wide rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
Purple spot on
green background白 White 奶黄 Creamy yellow 斑块 Blotched 奶黄 Creamy yellow 9-CM 半紧凑
Semi-compact阔菱形 Wide rhombus 红条纹
Red stripe橘黄 Orange 红 Red 绿 Green 浅褐 Light brown 奶黄 Creamy yellow 无 Colorless 奶黄 Creamy yellow 3-QZ 半紧凑
Semi-compact阔菱形 Wide rhombus 红条纹
Red stripe橘黄 Orange 红 Red 绿底紫斑
Purple spot on
green background黑 Black 黑 Black 无 Colorless 奶黄 Creamy yellow 4-HK 松散 Loose 窄菱形 Narrow rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
Purple spot on
green background紫 Purple 奶黄 Creamy yellow 斑点 Speckled 奶黄 Creamy yellow 10-DH2 紧凑 Compact 阔菱形 Wide rhombus 红 Red 橘黄 Orange 红 Red 绿底紫斑
Purple spot on
green background橘黄 Orange 浅褐 Light brown 斑点 Speckled 橘黄 Orange 5-DH3 披散 Scattered 阔菱形 Wide rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
Purple spot on
green background白 White 深紫 Deep purple 无 Colorless 白 White Y1:株型;Y2:小叶叶形;Y3:花色;Y4:旗瓣底色;Y5:旗瓣点缀色;Y6:鲜荚色;Y7:粒色;Y8:干籽粒底色;Y9:干籽粒色斑;Y10:干籽粒脐环色。
Y1: plant habit; Y2: leaflet shape; Y3: floral color; Y4: banner petal background color; Y5: banner petal highlight color; Y6: fresh pod color; Y7: seed color; Y8: dried seed background color; Y9: dried seed markings; Y10: dried seed hilum color.表 4 10个木豆品系活性成分差异性比较
Table 4 Concentration of active components in 10 Cajanus cajan strains
编号 Code 水分 Water content/% 总黄酮 Total flavonoids/(mg·mL−1) 浸出物 Active components
in extracts/%多糖含量 Polysaccharide content/(μg·mL−1) 1-DH1 0.66 ± 0.01d 3.01 ± 0.08c 22.00 ± 1.15ab 2.89 ± 0.10a 2-YJ 0.63 ± 0.02de 2.99 ± 0.11c 18.00 ± 1.15cd 2.54 ± 0.14ab 6-DZ 0.61 ± 0.01e 3.33 ± 0.13b 16.67 ± 1.76d 2.52 ± 0.19ab 7-QJ 0.96 ± 0.02bc 2.60 ± 0.03d 15.33 ± 0.67d 2.87 ± 0.09a 8-BS 1.06 ± 0.01a 2.32 ± 0.01e 22.67 ± 1.33ab 2.78 ± 0.11a 9-CM 0.96 ± 0.02bc 3.05 ± 0.02c 22.00 ± 0.00ab 2.61 ± 0.12ab 3-QZ 1.00 ± 0.01b 3.67 ± 0.05a 20.00 ± 1.15bc 2.41 ± 0.09ab 4-HK 0.95 ± 0.01c 2.62 ± 0.03d 20.00 ± 1.15bc 2.80 ± 0.41a 10-DH2 0.91 ± 0.01c 2.92 ± 0.07c 21.33 ± 0.67ab 2.24 ± 0.10b 5-DH3 0.92 ± 0.01c 2.55 ± 0.04d 23.33 ± 0.67a 2.24 ± 0.19b 均值 Mean 0.866 7 2.905 7 20.133 3 2.590 4 标准差 Standard deviation 0.164 72 0.402 75 2.681 44 0.244 01 变异系数 Coefficient of variation/% 19.01 13.86 13.32 9.42 F 139.46** 35.15** 6.22** 1.84* 同列不同小写字母表示处理间差异显著(P < 0.05)。
Different lowercase letters within the same column indicate significant differences between treatments at the 0.05 level.表 5 木豆形态性状与内在活性成分相关性比较
Table 5 Correlations between morphological characters of Cajanus cajan and intrinsic active ingredients
项目
Item水分
Water
content总黄酮
Total
flavonoids浸出物
Active
components
in extracts多糖含量
Polysac-
charide
contentT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 水分 Water
content1.000 总黄酮 Total
flavonoids−0.367 1.000 浸出物
Extracts0.349 −0.246 1.000 多糖含量
Polysaccharide
content−0.024 −0.312 −0.249 1.000 T1 −0.549 −0.195 −0.145 0.202 1.000 T2 −0.433 0.118 −0.612 −0.016 0.402 1.000 T3 0.685* −0.280 −0.022 0.377 −0.510 −0.470 1.000 T4 0.392 −0.129 0.004 0.360 −0.581 −0.371 0.788** 1.000 T5 0.234 −0.155 −0.081 0.015 0.302 −0.062 0.111 −0.517 1.000 T6 0.092 0.529 −0.077 −0.252 0.182 0.066 −0.076 −0.463 0.651* 1.000 T7 0.134 0.789** −0.111 −0.374 −0.497 −0.108 0.196 0.064 0.155 0.659* 1.000 T8 −0.521 0.394 −0.707* −0.159 0.340 0.349 −0.231 −0.395 0.393 0.395 0.269 1.000 T9 0.110 0.263 −0.360 −0.188 0.071 −0.026 0.012 −0.491 0.822** 0.709* 0.435 0.653* 1.000 T10 0.413 −0.247 −0.283 −0.267 0.044 0.395 0.127 −0.246 0.481 0.314 0.075 0.117 0.426 1.000 T11 −0.027 0.270 −0.212 −0.393 −0.068 −0.142 −0.135 −0.420 0.520 0.403 0.321 0.679* 0.787** 0.042 1.000 T1:株高;T2:主茎分枝;T3:叶长;T4:叶宽;T5:叶型指数;T6:花序轴长度;T7:旗瓣大小;T8:荚果长;T9:荚果宽;T10:单荚粒数;T11:百粒重。
T1: Plant height; T2: Main stem branches; T3: Leaf length; T4: Leaf width; T5: Leaf shape index; T6: Inflorescence axis length; T7: Banner petal size; T8: Pod length; T9: Pod width; T10: Number of single pods; T11: Hundred-seed weight.表 6 4份木豆种质黄酮类化合物分析
Table 6 Analysis of flavonoid compounds in four Cajanus cajan accessions
化合物 Compound 3-QZ 4-HK 5-DH3 6-DZ F 柚皮甙 Naringin 280 000 205 000 261 000 280 000 * 圣草次苷 Eriodictyol 1230000 1490000 1770000 769 000 * 松属素(二氢黄芩苷) Pinocembrin (dihydrochrysin) 9290000 9180000 14200000 6080000 * 乔松酮 Pinostrobin 5280000 4820000 5040000 4660000 * 柚皮素-7-O-葡糖苷 Naringenin-7-O-glucoside 6310000 5710000 6040000 5840000 * 雌三醇 C-己糖苷 Eriodictyol C-hexoside 563 000 403 000 861 000 627 000 * 柚皮素 Naringenin 1090000 317 000 729 000 1230000 * 芸香甙 Butin 1240000 393 000 868 000 1410000 * 去甲酸酐 Noranhydrocaritin 1780000 179 000 328 000 4320000 * 黄杉素 Taxifolin 547 000 104 000 323 000 187 000 * 二氢山柰酚 Dihydrokaempferol 110 000 31 700 73 800 59 900 * 黄杞苷 Engeletin 124 000 55 800 77 700 70 600 * 橙皮素 O-己糖基-O-己糖苷 Hesperetin O-hexosyl-O-hexoside 68 500 52 300 49 700 82 100 * 橙皮素5-O-葡萄糖苷 Hesperetin 5-O-glucoside 857 000 502 000 698 000 879 000 * 球松素查尔酮 Pinostrobin chalcone 7760000 2760000 4700000 12200000 * 柚配基查尔酮(4',2',4',6'-四羟基查尔酮)
Naringenin chalcone (4',2',4',6'-Tetrahydroxychalcone)1600000 1790000 2210000 1340000 * 黄烷酮 Licoisoflavanone 1800000 193 000 339 000 4140000 * 花青素3-芸香苷(花青素鼠李葡糖苷)
Cyanidin 3-rutinoside (keracyanin chloride)266 000 201 000 233 000 346 000 * 氯化花青苷 Cyanin chloride 2340000 1370000 1940 000 4990000 * 氯化花翠素 Delphinidin chloride 63 700 68 600 50 800 95 800 * 芍药色素 Peonidin 18 100 19 400 17 500 21 900 * 锦葵花素双葡萄糖苷(锦葵色素苷)
Malvidin 3,5-diglucoside (malvin)14 100 12 200 11 400 10 100 * 棕矢车菊素 Jaceosidin 1480000 154 000 131 000 3410000 * 槲皮素3-O-甲醚 Quercetin 3-O-methyl ether 321 000 178 000 164 000 740 000 * 白杨素 Chrysin 16 100 6 080 4 100 18 100 * 黃芩素 Baicalein 13 000 10 400 12 500 22 000 * 刺槐素 Acacetin 797 000 656 000 639 000 1670000 * 香叶木素 Diosmetin 6470000 10300000 11400000 11200000 * 芹菜素4-O-鼠李糖苷 Apigenin 4-O-rhamnoside 84 500 192 000 215 000 39 900 * 芹菜素5-O-葡萄糖苷 Apigenin 5-O-glucoside 6010000 12500000 12600000 4800000 * 三粒小麦黄酮 Tricetin 219 000 102 000 181 000 174 000 * 芹菜素6,8-C-二葡萄糖苷 Apigenin 6,8-C-diglucoside 1120000 1030000 1080000 1210000 * 木犀草素 O-阿魏酰己糖苷 Luteolin O-feruloylhexoside 18 700 13 400 10 700 32 000 * 木犀草素 O-己糖基-O-戊糖苷 Luteolin O-hexosyl-O-pentoside 41 300 95 200 96 900 50 900 * 芹菜素 O-己糖基-O-戊糖苷 Apigenin O-hexosyl-O-pentoside 31 600 15 600 13 100 21 900 * 木犀草素 O-芥子基己糖苷 Luteolin O-sinapoylhexoside 14 100 1 910 2 660 19 100 * 木犀草素3',7-二-O-葡萄糖苷 Luteolin 3',7-di-O-glucoside 171 000 212 000 176 000 160 000 * 芹菜素6-C-己糖基-8-C-己糖基-O-己糖苷
Apigenin 6-C-hexosyl-8-C-hexosyl-O-hexoside112 000 159 000 152 000 106 000 * 二-C,C-己糖芹菜素 Di-C,C-hexosyl-apigenin 927 000 1780000 1780000 1040000 * 芹菜素二-C,C-戊糖苷 Apigenin di-C,C-pentoside 64 100 71 700 73 400 56 500 * 木犀草素8-C-己糖基-O-己糖苷
Luteolin 8-C-hexosyl-O-hexoside62 200 62 100 63 300 78 400 * 芹菜素8-C-戊糖苷 Apigenin 8-C-pentoside 491 000 703 000 844 000 371 000 * 麦黄酮 O-丙二酸己糖苷 Tricin O-malonylhexoside 34 900 75 500 61 500 118 000 * 麦黄酮7-邻己糖苷 Tricin 7-O-hexoside 240 000 168 000 145 000 371 000 * 木犀草素6-己糖苷8-己糖基-O-己糖苷
Luteolin 6-C-hexoside 8-C-hexosyl-O-hexoside30 400 42 700 32 500 19 100 * 麦黄酮4'-O-丁香酸 Tricin 4'-O-syringic acid 61 800 42 500 60 300 118 000 * 芹菜素7-O-葡萄糖苷(波斯菊甙)
Apigenin 7-O-glucoside (cosmosiin)4430000 2100000 2170000 2520000 * 金圣草黄素7-O-己糖苷 Chrysoeriol 7-O-hexoside 334 000 759 000 449 000 556 000 * 木犀草素 C-己糖苷 Luteolin C-hexoside 3240000 5240000 5340000 2440000 * 槲皮素 O-乙酰己糖苷 Quercetin O-acetylhexoside 5 700 8 960 8 680 7 730 * 麦黄酮邻甘油 Tricin O-glycerol 7 330 8 570 16 800 6 280 * 麦黄酮邻糖酸 Tricin O-saccharic acid 153 000 206 000 286 000 193 000 * 木犀草素 Luteolin 7940000 8190000 10300000 5940000 * 芹菜素7-芸香苷(异野漆树苷)
Apigenin 7-rutinoside (isorhoifolin)7 010 1140000 962 000 23100000 * 木犀草素7-O-葡萄糖苷(木犀草苷)
Luteolin 7-O-glucoside (cynaroside)43500000 35200000 31400000 35400000 * 氯化芹菜定 Apigeninidin chloride 2040000 656 000 1020000 1330000 * 芹菜素-3-O-α-L-鼠李糖苷 Apigenin-3-O-α-L-rhamnoside 405 000 299 000 335 000 485 000 * 木犀草素-7-O-β-D-葡糖苷酸 Luteolin-7-O-β-D-glucuronide 1720000 9290000 9670000 1010000 * 木犀草素-7-O-β-D-芸香苷 Luteolin-7-O-β-D-rutinoside 11000000 10700000 10200000 11700000 * 高车前素 Hispidulin 3910000 5990000 6930000 6310000 * 泽兰黄酮 Nepetin 70 400 127 000 161 000 110 000 * 异泽兰黄素 Eupatilin 21 300 1 140 796 40 200 * 木犀草素-6,8-二-C-葡萄糖苷 Luteolin-6,8-di-C-glucoside 1810 000 1900 000 1690000 1590000 * 木犀草素7-O-β-D-葡萄糖基-6-C-α-L-阿拉伯糖
Luteolin 7-O-β-D-glucosyl-6-C-α-L-arabinose2480000 2550000 2240000 2520000 * 木犀草素-6-C-5-葡萄糖醛酸甲酰亚胺
Luteolin-6-C-5-glucuronylxyloside6380000 8920000 9120000 7640000 * 木犀草素-6-C-2-葡萄糖醛酸葡糖苷
Luteolin-6-C-2-glucuronylglucoside116 000 90 700 92 400 224 000 * 芹菜素 Apigenin 578 000 556 000 794 000 345 000 * 香叶木素-7-O-半乳糖苷 Diosmetin-7-O-galactoside 19800000 27200000 22100000 35400000 * 芹菜素-7-O-(6'-O-乙酰基)-β-D-葡萄糖苷
Apigenin-7-O-(6'-O-acetyl)-β-D-glucoside99 200 53 600 50 600 91 000 * 芹菜素-7-O-(6-O-丙二酰葡萄糖苷)
Apigenin-7-O-(6-O-malonyl glucoside)191 000 176 000 145 000 215 000 * 木犀草素-7-O-(6'-O-丙二酰)-β-D-葡萄糖苷
Luteolin-7-O-(6'-O-malonyl)-β-D-glucoside314 000 704 000 528 000 448 000 * 芹菜素-葡萄糖苷-葡萄糖苷 Apigenin-glucoside-glucoside 9 000 5 390 10 400 11 900 * 木犀草素-7-O-芸香糖苷 Luteolin-7-O-rutinoside 2 450 101 000 72 500 7780000 * 木犀草素-7,3'-二-O-β-D-葡萄糖苷
Luteolin-7,3'-Di-O-β-D-glucoside62 000 101 000 81 000 68 000 * 黄芩素 Wogonin 803 000 656 000 641 000 1670000 * 芹菜素-7,4'-二甲醚 Apigenin-7,4'-dimethylether 63 800 16 600 27 700 65 600 * 槲皮素-O-芸香苷-己糖 Quercetin-O-rutinoside-hexose 16 200 20 900 16 000 16 300 * 异鼠李素-3-O-芸香苷 Isorhamnetin-3-O-rutinoside 608 000 623 000 607 000 934 000 * 山奈酚-3-O-葡萄糖苷-7-O-鼠李糖苷
Kaempferol-3-O-glucoside-7-O-rhamnoside25 100 104 000 85 000 7330000 * 槲皮素3-O-鼠李糖基半乳糖苷
Quercetin 3-O-rhanosylgalactoside3 430 11 500 10 100 482 000 * 槲皮素 Quercitrin 31 100 4 300 7 420 39 500 * 芦丁 Rutin 2580000 2330000 2340000 3130000 * 金丝桃甙 Hyperin 2250000 1080000 936 000 2310000 * 异鼠李素 Isorhamnetin 193 000 49 900 49 800 393 000 * 山奈酚7-O-葡糖苷 Kaempferol 7-O-glucosdie 2260000 1290000 1520000 1990 000 * 异槲皮素 Isoquercitrin 305 000 221 000 260 000 468 000 * 绣线菊苷 Spiraeoside 767 000 471 000 565 000 654 000 * 三叶草素 Trifolin 36000000 31200000 28100000 22100000 * 3,7-二氧甲基槲皮素 3,7-Di-O-methylquercetin 551 000 71 100 64 700 1210000 * 鼠李素(7-邻甲基槲皮素) Rhamnetin (7-O-methxyl quercetin) 192 000 37 400 77 800 174 000 * 棉籽苷 Gossypitrin 1010000 716 000 889 000 1050000 * 黄芪甲素 Astragalin 2610000 1950 000 2380000 2580000 * 柽柳黄素 Tamarixetin 426 000 78 700 107 000 739 000 * 槲皮素-3-O-α-L-阿拉伯吡喃糖苷(愈创木苷)
Quercetin-3-O-α-L-arabinopyranoside (guaijaverin)68 700 11 000 15 800 89 100 * 山奈酚3-O-芸香苷(烟酰胺)
Kaempferol 3-O-rutinoside (nicotiflorin)5 490 482 000 390 000 28800000 * 山奈酚-3-O-刺槐二糖苷(鼠李糖甙)
Kaempferol 3-O-robinobioside (biorobin)5 920 444 000 435 000 28700000 * 槲皮黄酮 Quercetin 249 000 387 000 297 000 263 000 * 3-羟基黄酮3-Hydroxyflavone 56 800 38 200 41 200 56 500 * 生物槲皮素 Bioquercetin 2610000 2660000 3210000 4250000 * 山奈酚-3,7-O-α-L-鼠李糖苷 Kaempferol-3,7-O-α-L-rhamnoside 31 800 10 500 8 970 21 000 * 山奈酚3-O-β-(2''-O-乙酰基-β- D-葡萄糖醛酸盐)
Kaempferol 3-O-β- (2''-O-acetyl-β-D-glucuronide)873 000 1450000 1500000 2810000 * 3,5,6,7,8,3',4'-七甲氧基黄酮
3,5,6,7,8,3′,4′-Heptamethoxyflavone1 050 5 730 1 990 2 330 * 槲皮素-7-O-(6'-O-丙二酰)-β-D--葡萄糖苷
Quercetin-7-O-(6'-O-malonyl)-β-D-glucoside3 520 11 300 7 830 7 870 * 槲皮素3,7-双-O-β-D-葡萄糖苷
Quercetin 3,7-bis-O-β-D-glucoside2960000 1790000 2220000 2160000 * 6-羟基羰基丙烯-7-O-葡萄糖苷
6-Hydroxykaempferol-7-O-glucoside86 000 13 600 14 000 227 000 * 6-羟基卡伯醇-3,6-O-二葡萄糖苷
6-Hydroxykaempferol-3,6-O-diglucoside7 330 7 560 7 070 9 430 * 6-羟基卡伯醇-7,6-O-二葡萄糖苷
6-Hydroxykaempferol-7,6-O-diglucoside3260000 1980 000 2620000 2340000 * 牡荆素 Vitexin 1610000 1460000 1580000 1050000 * 荭草素 Orientin 470 000 981 000 905 000 306 000 * 异牡荆素 Isovitexin 1570000 1260000 1510000 1000000 * 异荭草素 Homoorientin 23000000 32100000 33700000 16500000 * 夏佛塔苷 Schaftoside 3060000 2630000 2460000 3110000 * C-己糖基木犀草素 O-己糖基-O-戊糖苷
C-Hexosyl-luteolin O-hexosyl-O-pentoside9 870 17 200 14 100 7 610 * 8-C-己基橙皮素 O-己糖苷 8-C-Hexosyl-hesperetin O-hexoside 1360000 813 000 942 000 985 000 * C-己糖基木犀草素 O-己糖苷 C-Hexosyl-luteolin O-hexoside 1780000 1950 000 1650000 1550000 * 6-C-己糖基木犀草素 O-己糖苷 6-C-Hexosyl-luteolin O-hexoside 438 000 459 000 436 000 391 000 * C-己基木犀草素 C-戊糖苷 C-Hexosyl-luteolin C-pentoside 24600000 22400000 20000000 24100000 * 6-C-己糖基木犀草素 O-戊糖苷 6-C-Hexosyl luteolin O-pentoside 16200000 15700000 13700000 17500000 * 8-C-己糖基芹菜素 O-己糖基-O-己糖苷
8-C-Hexosyl-apigenin O-hexosyl-O-hexoside25 600 43 300 34 300 47 600 * 8-C-己糖基木犀草素 O-戊糖苷 8-C-Hexosyl-luteolin O-pentoside 6460000 5990000 5230000 6570000 * C-己糖基芹菜素 O-戊糖苷 C-Hexosyl-apigenin O-pentoside 4940000 3800000 3990000 5000000 * 异牡荆素7-O-葡萄糖苷(皂甙) Isovitexin 7-O-glucoside (saponarin) 585 000 499 000 599 000 660 000 * 牡荆素2'''-O-β-L-鼠李糖苷 Vitexin 2''-O-β-L-rhamnoside 69 400 83 300 70 200 104 000 * 金雀异黄素8-C-葡萄糖苷 Genistein 8-C-glucoside 736 000 1390000 1510000 548 000 * 牡荆素-2-O-D-吡喃葡萄糖苷 Vitexin-2-O-D-glucopyranoside 27900000 24900000 24600000 32500000 * 芹菜素-6-C-β-D-木糖苷-8-C-β-阿拉伯糖苷
Apigenin-6-C-β-D-xyloside-8-C-β-darabinoside9160000 7350000 8030000 9490000 * 橙皮素 C-丙二酰己糖苷 Hesperetin C-malonylhexoside 7140000 5180000 5350000 7890000 * (-)-表棓儿茶素 (-)-Epigallocatechin 19100000 12300000 21700000 23200000 * (+)-表没食子儿茶素 (+)-Gallocatechin 66800000 47700000 65600000 87900000 * 儿茶素 Catechin 686 000 293 000 500 000 1350000 * 原儿茶酸 Protocatechuic acid 4860000 4200000 2750000 6350000 * (-)-儿茶素没食子酸盐 (-)-Catechin gallate 194 000 576 000 514 000 461 000 * 4-甲基儿茶酚 4-Methylcatechol 36 600 34 600 20 800 70 200 * (-)-表儿茶素没食子酸盐 (-)-Epicatechin gallate 200 000 630 000 584 000 476 000 * 表儿茶素 L-Epicatechin 101 000 255 000 178 000 283 000 * 原儿茶醛 Protocatechuic aldehyde 32 400 37 800 31 100 39 200 * 2'-羟基异黄酮 2'-Hydroxygenistein 1260000 1390000 1660000 960 000 * 二氢异黄酮 Cajanol 8530000 693 000 1860 000 9810000 * 香豌豆甙元 Orobol 758 000 844 000 1040000 586 000 * 染料木黄酮 Genistein 27 700 29 600 40 100 18 800 * 黄豆黄素 Glycitin 41 500 70 300 33 800 105 000 * 金雀异黄素7-葡萄糖苷(金雀异黄素) Genistein 7-glucoside (genistin) 160 000 436 000 468 000 120 000 * 大豆黄素 Glycitein 80 100 108 000 99 500 98 900 * 三羟基异黄酮 Demethyltexasin 13 100 45 800 57 500 9 350 * 黄豆苷元 Daidzein 53 500 114 000 130 000 36 200 * 大豆苷元7-O-葡萄糖苷(大豆苷元) Daidzein 7-O-glucoside (daidzin) 893 000 560 000 659 000 1130000 * 鹰嘴豆芽素 Abiochanin A 553 000 457 000 463 000 1170000 * 印度黄檀苷 Sissotrin 928 000 381 000 357 000 988 000 * 芒柄花素7-O-葡萄糖苷(刺芒柄花苷) Formononetin 7-O-glucoside (ononin) 173 000 102 000 82 800 111 000 * 丙二酸 Malonyldaidzin 17 200 53 500 52 100 40 200 * 丙二酸甘氨酸 Malonylglycitin 45 400 116 000 89 300 77 300 * 3'-甲氧基大豆苷3'-Methoxydaidzin 328 000 124 000 188 000 271 000 * 大豆苷元-4'-葡萄糖苷 Daidzein-4'-glucoside 144 000 46 000 78 000 118 000 * 表 7 4份木豆种质茋类化合物分析
Table 7 Analysis of stilbene compounds in 4 Cajanus cajan accessions
编号
Code木豆素
ALongistylin A木豆素
CLongistylin C白藜芦醇
Resveratrol2,3,5,4'-四羟基-二苯乙烯-2-O-D-葡萄吡喃糖苷
2,3,5,4'-Tetrahydroxy-stilbene-2-O-D-glucopyranoside3-QZ 4.790 000 5150 000 12 800 6840 000 4-HK 3390 000 3340 000 10 900 8050 000 5-DH3 2340 000 2640 000 6 530 6720 000 6-DZ 4580 000 6230 000 7 310 4580 000 F * * * * -
[1] 郑桌杰. 中国食用豆类学. 北京: 中国农业出版社, 1997. ZHENG Z J. Chinese Edible Beans. Beijing: China Agricultural Press, 1997.
[2] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2004. Editorial Committee of Chinese Journal of Plant of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 2004.
[3] 姚娜, 易显凤, 丘金花, 庞天德, 赖志强, 韦锦益. 四种南方豆科灌木饲料在华南地区的比较试验. 草业科学, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379 YAO N, YI X F, QIU J H, PANG T D, LAI Z Q, WEI J Y. Comparison of four fodder species of leguminous shrubs in southern China. Pratacultural Science, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379
[4] 蓝芙宁, 蒋忠诚, 谢运球, 张敏. 岩溶峰丛山地几种植物营养价值及饲喂效果研究. 草业科学, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017 LAN F N, JAING Z C, XIE Y Q, ZHANG M. Studies on the nutrition value and feeding effect of several forage cultivars in karst mountainous region. Pratacultural Science, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017
[5] 李正红, 周朝鸿, 谷勇, 张建云. 中国木豆研究利用现状及开发前景. 林业科学研究, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014 LI Z H, ZHOU C H, GU Y, ZHANG J Y. The present status of study and utilization of pigeonpea in China and its prospects. Forest Research, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014
[6] 付玉杰, 祖元刚, 吴楠, 孔羽, 刘威, 华欣. 木豆叶中木豆茋酸及球松素在制备抗疱疹病毒药物中的应用: 中国, CN200910071471.0. 2009-03-03. FU Y J, ZU Y G, WU N, KONG Y, LIU W, HUA X. The application of oleosolic acid and coccinin in pigeon pea leaves in the preparation of anti-herpes virus drugs: China, CN200910071471. 0. 2009-03-03.
[7] LI X L, ZHAO B X, HUANG X J, ZHANG D M, YE W C. (+)- and (-)-cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan. Organic Letters, 2014, 16(1): 224. doi: 10.1021/ol403211a
[8] WU G Y, ZHANG X, GUO X Y, HUO L Q, LIU H X, SHAN X L, QIU S X, HU Y J, TAN H B. Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan. Chinese Journal of Natural Medicines, 2019, 17(5): 381-386. doi: 10.1016/S1875-5364(19)30044-5
[9] 蔡佳仲, 戴湾, 张嫩玲. 木豆化学成分和药理活性研究进展. 天然产物研究与开发, 2020, 32(3): 515-524, 506. CAI J Z, DAI W, ZHANG N L. Advance on chemical constituents and pharmacological activities of Cajanus cajan (L.) Millsp. Natural Product Research and Development, 2020, 32(3): 515-524, 506.
[10] LIU S, LUO Z H, JI G M, GUO W, CAI J Z, FU L C, ZHOU J, HU Y J, SHEN X L. Cajanolactone A from Cajanus cajan promoted osteoblast differentiation in human bone marrow mesenchymal stem cells via stimulating Wnt/LRP5/β-catenin signaling. Molecules, 2019, 24(2): 271. doi: 10.3390/molecules24020271
[11] 刘少军, 陈小俊, 冯丽敏, 赵瑞芝. 通络生骨胶囊对大鼠应力缺失性骨质疏松的防治作用. 中国实验方剂学杂志, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053 LIU S J, CHEN X J, FENG L M, ZHAO R Z. Effect of tongluo shenggu capsules on osteoporosis induced by stress absence. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053
[12] CHANG H Y, WU J R, GAO W Y, LIN H R, CHEN P Y, CHEN C I, WU M J, YEN J H, WENG C F. The cholesterol-modulating effect of methanol extract of pigeon pea [Cajanus cajan (L.) Millsp. ] leaves on regulating LDLR and PCSK9 expression in HepG2 cells. Molecules, 2019, 24(2): 493. doi: 10.3390/molecules24030493
[13] YANG R Y, WANG L, XIE J, LI X, LIU S, QIU S X, HU Y J, SHEN X L. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. International Journal of Molecular Medicine, 2018, 42(5): 2329.
[14] LIU Y M, SHEN S N, LI Z Y, JIANG Y M, SI J Y, CHANG Q, LIU X M, PAN R L. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis. Neurochemistry International, 2014, 78: 43. doi: 10.1016/j.neuint.2014.08.007
[15] JIANG B P, LIU Y M, LE L, LI Z Y, SI J Y, LIU X M, CHANG Q, PAN R L. Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway. Cellular Physiology and Biochemistry, 2014, 34(3): 1015-1026. doi: 10.1159/000366317
[16] 姜保平, 刘亚旻, 李宗阳, 宋波, 潘瑞乐. 木豆叶醇提物对皮质酮诱导的PC12细胞损伤的保护作用. 天然产物研究与开发, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027 JIANG B P, LIU Y M, LI Z Y, SONG B, PAN R L. Protective effect of alcohol extract of Cajanus cajan on corticosterone-induced lesion in cultured PC12 cells. Natural Product Research and Development, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027
[17] 孙琳, 马艳苗, 严维花, 张娜, 柴智. 木豆叶对心肌缺血-再灌注损伤大鼠心功能的影响及其作用机制初探. 中药材, 2017, 40(4): 916. SUN L, MA Y M, YAN W H, ZHANG N, CHAI Z. Effects and mechanism of Cajanus cajan leaves on functional influence of rat hearts induced by ischemia-reperfusion. Journal of Chinese Medicinal Materials, 2017, 40(4): 916.
[18] 孙琳, 张涛, 柴智. 木豆叶提取物对心肌缺血再灌注损伤大鼠的保护作用. 中草药, 2015, 46(22): 3382. SUN L, ZHANG T, CHAI Z. Protection of extract from pigeonpea leaves on myocardial ischemia reperfusion injury in rats. Chinese Traditional and Herbal Drugs, 2015, 46(22): 3382.
[19] ZHANG N L, SHE X C, JIANG X F, CAI J Z, SHEN X L, HU Y J, QIU S X. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan. Journal of Natural Medicines, 2018, 72(1): 304. doi: 10.1007/s11418-017-1138-x
[20] ZHANG N L, ZHU Y H, HUANG R M, FU M Q, SU Z W, CAI J Z, HU Y J, QIU S X. Two new stilbenoids from Cajanus cajan. Zeitschrift Für Naturforschung B, 2012, 67(12): 1314-1318. doi: 10.5560/znb.2012-0184
[21] DEODIKER G B, THAKER C V. Cyto-taxonomic evidence for the affinity between Cajanus indicus Spreng. and certain erect species of Atylosia W. & A. Proceedings of the Indian Academy of Sciences-Section A, 1956, 43(1): 37-45.
[22] 毕玉芬, 姜华, 许岳飞. 干热河谷草地灌草组合模式的研究. 草业科学, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017 BI Y F, JIANG H, XU Y F. Study on shrub-grass combined mode in the hot-arid valley grassland. Pratacultural Science, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017
[23] PUNDIR R P S, SINGH R B. Biosystematic relationships among Cajanus, Atylosia and Rhynehosia species and evolution of pigeonpea [Cajanus cajan (L.) Millsp]. Theoretical and Applied Genetics, 1985, 69(5/6): 531-534.
[24] 吴涛, 姚红艳, 莫本田, 龙忠富, 罗充. 8种豆科灌木栽培种丛枝菌根真菌种类及分布. 草业科学, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345 WU T, YAO H Y, MO B T, LONG Z F, LUO C. The category and distribution of arbuscular mycorrhizal fungi from the rhizosphere of eight cultivat leguminous shrubs. Pratacultural Science, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345
[25] 冼芸轩. 用发根农杆菌介导转化的方法探究木豆耐铝基因的特性. 南宁: 广西大学硕士学位论文, 2017. XIAN Y X. Agrobacterium rhizogenes-mediated transformation for cha racterizing al tolerance genes. Master Thesis. Nanning: Guangxi University, 2017.
[26] 韩蓉蓉, 文亦芾, 史亮涛. 牧草磷素营养及其耐低磷特性. 草业科学, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671 HAN R R, WEN Y P, SHI L T. Advances in grass phosphorus nutrition and tolerance to low phosphorus. Pratacultural Science, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671
[27] 闫龙. 木豆种质资源遗传多样性分析. 北京: 中国农业科学院硕士学位论文, 2005. YAN L. Assessment of genetic diversity of pigeonpea [Cajanus cajan (L.) Millspaugh] germplasm resources. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2005.
[28] THOMBER B B, AHER R P, DAHAT D V. Genetic diversity in pigeonpea. Indian Journal of Agricultural Research, 2000, 34(2): 126 .
[29] SAMAL K M, SENAPATI N, PATNAIK H E. Genetic divergence in mutant lines of pigeon pea. Legume Research, 2001, 24(3): 186.
[30] SIVARAMAKRISHNAN S, SEETHA K, NAGESHWAR R A, SINGH L. RFLP analysis of cytoplasmic male-sterile lines of pigeonpea[Cajanus cajan (L.) Millsp. ] developed by interspecific crosses. Euphytica, 1997, 93(3): 307-312. doi: 10.1023/A:1002958623171
[31] SOUFHMANIEN J, MANJAVA J G, KRISHNA T G, PAWAR S E. Random amplified polymorphic DNA analyses of cytoplasmic male sterile and male fertile Pigeonpea. International Journal of Dairy Technology, 2003, 129(3): 293.
[32] BUMS M J, EDWARDS K J, NEWBURY H J. Development of simple sequence repeat (SSR) markers for assessment of gene now and genetic diversity in pigeonpea. Molecular Ecology Resources, 200l, l(4): 283-285.
[33] 蒋慧萍. 不同木豆品种亲缘关系及生理生化指标的研究. 南宁: 广西大学硕士学位论文, 2002. JIANG H P. Study on genetic relationship and physiological and biochemical parameters in different pigeonpea varieties. Master Thesis. Nanning: Guangxi University, 2002.
[34] 闫龙, 关建平, 宗绪晓. 木豆种质资源AFLP标记遗传多样性分析. 作物学报, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015 YAN L, GUAN J P, ZONG X X. Genetic diversity analysis of pigeonpea germplasm resources by AFLP. Acta Agronomica Sinica, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015
[35] SHARMA H C, SHARMA K K, SEETHARAMA N, ORTIZ R. Prospects for using transgenetic resistance to insects in crop improvement. Electronic Journal Biotechology, 2000, 3(2): 21-22.
[36] YARSHNEY R K, CHEN W B, LI Y P, BHARTI A K, SAXENA R K, SCHLUETER J A, DONOGHUE M T A, AZAM S, FAN G Y, WHALEY A M, FARMER A D, SHERIDAN J, LWATA A, TUTEJA R, PENMETSA R V, WU W, UPADHYAYA H D, YANG S P, SHAH T, SAXENA K B, MICHAEL T, MCCOMBIE W R, YANG B C, ZHANG G Y, YANG H M, WANG J, SPILLANE C, COOK D R, MAY G D, XU X, JACKSON S A. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30(1): 83. doi: 10.1038/nbt.2022
[37] 李鳌, 孙宏伟, 崔彦. 代谢组学应用与研究进展. 医学研究杂志, 2020, 49(1): 168. LI A, SUN H W, CUI Y. Application and research progress of metabolomics. Journal of Medical Research, 2020, 49(1): 168.
[38] 高燕. 不同大豆中异黄酮含量的差异性分析. 化学工程与装备, 2019(5): 9-11. GAO Y. Difference analysis of isoflavone content in different soybeans. Chemical Engineering and Equipment, 2019(5): 9-11.
[39] CHEN J, WANF J L, CHEN W, SUN W Q, PENG M, YUAN Z Y, SHEN S Q, XIE K, JIN C, SUN Y Y, LIU X Q, FERNIE A R, YU S B, LUO J. Metabolome analysis of multi-connected biparental chromosome segment substitution line population. Plant Physiology, 2018, 178(2): 612. doi: 10.1104/pp.18.00490
[40] ZHU G T, WANG S C, HUANG Z J, ZHANG S Z, LIAO Q G, ZHANG C, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, KNAAP E, ZHANG Z G, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249. doi: 10.1016/j.cell.2017.12.019
[41] 国家药典委员会. 中国药典. 北京: 中国医药科技出版社, 2015. National Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: China Medical Science and Technology Press, 2015.
[42] 廖丽. 夏枯草种质资源与药材质量评价研究. 南京: 南京农业大学博士学位论文, 2009. LIAO L. Study on germplasm resouces of Prunella vulgaris and its quality evaluation. PhD Thesis. Nanjing: Nanjing Agricultural University, 2009.
[43] CHEN W, GONG L, GUO Z L, WANG W S, ZHANG H Y, LIU X Q, YU S B, XIONG L Z, LUO J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 2013, 6(6): 1769. doi: 10.1093/mp/sst080
[44] FRAGA C G, CLOWERS B, MOORE R J, ZINK E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 2010, 82(10): 4165. doi: 10.1021/ac1003568
[45] 康智明, 徐晓俞, 郑开斌, 俞秀红, 李爱萍. 木豆种质资源形态与农艺性状的多样性分析. 热带亚热带植物学报, 2017, 25(1): 51. doi: 10.11926/jtsb.3633 KANG Z M, XU X Y, ZHENG K B, YU X H, LI A P. Diversity analysis of morphological and agronomic traits in Cajanus cajan. Journal of Tropical and Subtropical Botany, 2017, 25(1): 51. doi: 10.11926/jtsb.3633
[46] 高桂娟, 李志丹. 45份木豆种质资源物候期及形态多样性分析. 生态科学, 2017, 36(2): 100. GAO G J, LI Z D. Study on morphological features diversity and phonological period of pigeonpea germplasm materials. Ecological Science, 2017, 36(2): 100.
[47] 郑菲艳, 鞠玉栋, 邱珊莲, 吴维坚, 张树河, 郑开斌. 木豆种质不同部位总黄酮含量研究. 福建农业学报, 2016, 31(7): 733. ZHENG F Y, JU Y D, QIU S L, WU W J, ZHANG S H, ZHENG K B. Study on total flavonoid content in different parts from different kinds of pigeonpea. Fujian Journal of Agricultural Sciences, 2016, 31(7): 733.
[48] 徐晓俞, 李爱萍, 吴思逢, 李程勋, 黄旭旻, 郑开斌. 木豆不同品种和叶龄对叶片氨基酸形成的影响和聚类分析. 热带亚热带植物学报, 2018, 26(6): 617. doi: 10.11926/jtsb.3895 XU X Y, LI A P, WU S F, LI C X, HUANG X M, ZHENG K B. Effects of different germplasms and leaf ages on amino acid formation in pigeonpea leaves and cluster analysis. Journal of Tropical and Subtropical Botany, 2018, 26(6): 617. doi: 10.11926/jtsb.3895
[49] 元唯安, 杜炯, 闻辉, 刘又文, 沈霖, 韩永台, 杨凤云, 葛京华, 谷福顺, 张建新, 宁亚功, 陈卫衡, 姜益常, 张杰, 余桦, 董晓俊, 于浩, 詹红生. 通络生骨胶囊治疗股骨头坏死(筋脉瘀滞证)的多中心随机、双盲、双模拟、阳性药对照临床研究. 上海中医药杂志, 2019, 53(8): 53-59. YUAN W A, DU J, WEN H, LIU Y W, SHEN L, HAN Y T, YANG F Y, GE J H, GU F S, ZHANG J X, NING Y G, CHEN W H, JIANG Y C, ZHANG J, YU H, DONG X J, YU H, ZHAN H S. A multi-center, randomized, double-blind, double-dummy, positive-controlled clinical study on Tongluo Shenggu Capsule in treatment of osteonecrosis of femoral head (syndrome of stagnation of sinews and vessels). China Academic Journal Electronic Publishing House, 2019, 53(8): 53-59.
-
期刊类型引用(1)
1. 余正勇,肖钊富,宋志高. 中国草原旅游网络关注度时空差异及其影响因素研究. 草原与草坪. 2024(06): 79-87 . 百度学术
其他类型引用(0)