欢迎访问 草业科学,今天是2025年4月12日 星期六!

木豆种质资源质量评价

廖丽, 罗英, 潘佳慧, 罗小燕, 杨虎彪, 丁西朋, 王志勇

廖丽,罗英,潘佳慧,罗小燕,杨虎彪,丁西朋,王志勇. 木豆种质资源质量评价. 草业科学, 2020, 37(11): 2293-2308. DOI: 10.11829/j.issn.1001-0629.2020-0254
引用本文: 廖丽,罗英,潘佳慧,罗小燕,杨虎彪,丁西朋,王志勇. 木豆种质资源质量评价. 草业科学, 2020, 37(11): 2293-2308. DOI: 10.11829/j.issn.1001-0629.2020-0254
LIAO L, LUO Y, PAN J H, LUO X Y, YANG H B, DING X P, WANG Z Y. Study on the quality evaluation of pigeon pea accessions. Pratacultural Science, 2020, 37(11): 2293-2308. DOI: 10.11829/j.issn.1001-0629.2020-0254
Citation: LIAO L, LUO Y, PAN J H, LUO X Y, YANG H B, DING X P, WANG Z Y. Study on the quality evaluation of pigeon pea accessions. Pratacultural Science, 2020, 37(11): 2293-2308. DOI: 10.11829/j.issn.1001-0629.2020-0254

木豆种质资源质量评价

基金项目: 科技基础资源调查专项(2017FY100600);中国热带农业科学院基本科研业务费专项资金(1630032020033)
摘要: 木豆(Cajanus cajan)是一种药食兼用型的豆科植物,为了对木豆不同种质资源植物形态特征、活性成分和代谢产物进行质量分析,本研究以叶片含水量、浸出物、总黄酮、多糖与外部形态特征为指标对10份木豆种质的质量进行差异比较,进而对4份差异种质(3-QZ、4-HK、5-DH3和6-DZ)进行代谢差异分析。结果表明:不同种质在形态性状上具有丰富的遗传变异,变异系数范围在8.75% (百粒重)~37.96% (分枝);水分含量与叶长、浸出物与荚果长、叶型指数与花序轴长度、花序轴长度与旗瓣大小和荚果宽以及荚果长与荚果宽和百粒重之间均呈显著相关关系(P < 0.05);总黄酮含量与旗瓣大小、叶长与叶宽、叶型指数与荚果宽、荚果宽与百粒重均呈极显著相关关系( P < 0.01);不同品系间活性成分存在显著差异( P < 0.05);根据外形形态和活性成分分析,选取4份种质进行代谢物质差异分析,共获得脂类、有机酸、萜类、生物碱、鞣质、氨基酸及其衍生物、酚酸类、核苷酸及其衍生物、黄酮、醌类、木脂素和香豆素及其他类化合物453个,其中黄酮类化学物最多,不同品系间化合物物质含量差异显著( P < 0.05)。本研究结果可为今后开展木豆新品种选育和药效成分分析提供参考。

 

English

  • [1] 郑桌杰. 中国食用豆类学. 北京: 中国农业出版社, 1997.

    ZHENG Z J. Chinese Edible Beans. Beijing: China Agricultural Press, 1997.

    [2] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2004.

    Editorial Committee of Chinese Journal of Plant of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 2004.

    [3] 姚娜, 易显凤, 丘金花, 庞天德, 赖志强, 韦锦益. 四种南方豆科灌木饲料在华南地区的比较试验. 草业科学, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379

    YAO N, YI X F, QIU J H, PANG T D, LAI Z Q, WEI J Y. Comparison of four fodder species of leguminous shrubs in southern China. Pratacultural Science, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379

    [4] 蓝芙宁, 蒋忠诚, 谢运球, 张敏. 岩溶峰丛山地几种植物营养价值及饲喂效果研究. 草业科学, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017

    LAN F N, JAING Z C, XIE Y Q, ZHANG M. Studies on the nutrition value and feeding effect of several forage cultivars in karst mountainous region. Pratacultural Science, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017

    [5] 李正红, 周朝鸿, 谷勇, 张建云. 中国木豆研究利用现状及开发前景. 林业科学研究, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014

    LI Z H, ZHOU C H, GU Y, ZHANG J Y. The present status of study and utilization of pigeonpea in China and its prospects. Forest Research, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014

    [6] 付玉杰, 祖元刚, 吴楠, 孔羽, 刘威, 华欣. 木豆叶中木豆茋酸及球松素在制备抗疱疹病毒药物中的应用: 中国, CN200910071471.0. 2009-03-03.

    FU Y J, ZU Y G, WU N, KONG Y, LIU W, HUA X. The application of oleosolic acid and coccinin in pigeon pea leaves in the preparation of anti-herpes virus drugs: China, CN200910071471. 0. 2009-03-03.

    [7]

    LI X L, ZHAO B X, HUANG X J, ZHANG D M, YE W C. (+)- and (-)-cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan. Organic Letters, 2014, 16(1): 224. doi: 10.1021/ol403211a

    [8]

    WU G Y, ZHANG X, GUO X Y, HUO L Q, LIU H X, SHAN X L, QIU S X, HU Y J, TAN H B. Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan. Chinese Journal of Natural Medicines, 2019, 17(5): 381-386. doi: 10.1016/S1875-5364(19)30044-5

    [9] 蔡佳仲, 戴湾, 张嫩玲. 木豆化学成分和药理活性研究进展. 天然产物研究与开发, 2020, 32(3): 515-524, 506.

    CAI J Z, DAI W, ZHANG N L. Advance on chemical constituents and pharmacological activities of Cajanus cajan (L.) Millsp. Natural Product Research and Development, 2020, 32(3): 515-524, 506.

    [10]

    LIU S, LUO Z H, JI G M, GUO W, CAI J Z, FU L C, ZHOU J, HU Y J, SHEN X L. Cajanolactone A from Cajanus cajan promoted osteoblast differentiation in human bone marrow mesenchymal stem cells via stimulating Wnt/LRP5/β-catenin signaling. Molecules, 2019, 24(2): 271. doi: 10.3390/molecules24020271

    [11] 刘少军, 陈小俊, 冯丽敏, 赵瑞芝. 通络生骨胶囊对大鼠应力缺失性骨质疏松的防治作用. 中国实验方剂学杂志, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053

    LIU S J, CHEN X J, FENG L M, ZHAO R Z. Effect of tongluo shenggu capsules on osteoporosis induced by stress absence. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053

    [12]

    CHANG H Y, WU J R, GAO W Y, LIN H R, CHEN P Y, CHEN C I, WU M J, YEN J H, WENG C F. The cholesterol-modulating effect of methanol extract of pigeon pea [Cajanus cajan (L.) Millsp. ] leaves on regulating LDLR and PCSK9 expression in HepG2 cells. Molecules, 2019, 24(2): 493. doi: 10.3390/molecules24030493

    [13]

    YANG R Y, WANG L, XIE J, LI X, LIU S, QIU S X, HU Y J, SHEN X L. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. International Journal of Molecular Medicine, 2018, 42(5): 2329.

    [14]

    LIU Y M, SHEN S N, LI Z Y, JIANG Y M, SI J Y, CHANG Q, LIU X M, PAN R L. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis. Neurochemistry International, 2014, 78: 43. doi: 10.1016/j.neuint.2014.08.007

    [15]

    JIANG B P, LIU Y M, LE L, LI Z Y, SI J Y, LIU X M, CHANG Q, PAN R L. Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway. Cellular Physiology and Biochemistry, 2014, 34(3): 1015-1026. doi: 10.1159/000366317

    [16] 姜保平, 刘亚旻, 李宗阳, 宋波, 潘瑞乐. 木豆叶醇提物对皮质酮诱导的PC12细胞损伤的保护作用. 天然产物研究与开发, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027

    JIANG B P, LIU Y M, LI Z Y, SONG B, PAN R L. Protective effect of alcohol extract of Cajanus cajan on corticosterone-induced lesion in cultured PC12 cells. Natural Product Research and Development, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027

    [17] 孙琳, 马艳苗, 严维花, 张娜, 柴智. 木豆叶对心肌缺血-再灌注损伤大鼠心功能的影响及其作用机制初探. 中药材, 2017, 40(4): 916.

    SUN L, MA Y M, YAN W H, ZHANG N, CHAI Z. Effects and mechanism of Cajanus cajan leaves on functional influence of rat hearts induced by ischemia-reperfusion. Journal of Chinese Medicinal Materials, 2017, 40(4): 916.

    [18] 孙琳, 张涛, 柴智. 木豆叶提取物对心肌缺血再灌注损伤大鼠的保护作用. 中草药, 2015, 46(22): 3382.

    SUN L, ZHANG T, CHAI Z. Protection of extract from pigeonpea leaves on myocardial ischemia reperfusion injury in rats. Chinese Traditional and Herbal Drugs, 2015, 46(22): 3382.

    [19]

    ZHANG N L, SHE X C, JIANG X F, CAI J Z, SHEN X L, HU Y J, QIU S X. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan. Journal of Natural Medicines, 2018, 72(1): 304. doi: 10.1007/s11418-017-1138-x

    [20]

    ZHANG N L, ZHU Y H, HUANG R M, FU M Q, SU Z W, CAI J Z, HU Y J, QIU S X. Two new stilbenoids from Cajanus cajan. Zeitschrift Für Naturforschung B, 2012, 67(12): 1314-1318. doi: 10.5560/znb.2012-0184

    [21]

    DEODIKER G B, THAKER C V. Cyto-taxonomic evidence for the affinity between Cajanus indicus Spreng. and certain erect species of Atylosia W. & A. Proceedings of the Indian Academy of Sciences-Section A, 1956, 43(1): 37-45.

    [22] 毕玉芬, 姜华, 许岳飞. 干热河谷草地灌草组合模式的研究. 草业科学, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017

    BI Y F, JIANG H, XU Y F. Study on shrub-grass combined mode in the hot-arid valley grassland. Pratacultural Science, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017

    [23]

    PUNDIR R P S, SINGH R B. Biosystematic relationships among Cajanus, Atylosia and Rhynehosia species and evolution of pigeonpea [Cajanus cajan (L.) Millsp]. Theoretical and Applied Genetics, 1985, 69(5/6): 531-534.

    [24] 吴涛, 姚红艳, 莫本田, 龙忠富, 罗充. 8种豆科灌木栽培种丛枝菌根真菌种类及分布. 草业科学, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345

    WU T, YAO H Y, MO B T, LONG Z F, LUO C. The category and distribution of arbuscular mycorrhizal fungi from the rhizosphere of eight cultivat leguminous shrubs. Pratacultural Science, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345

    [25] 冼芸轩. 用发根农杆菌介导转化的方法探究木豆耐铝基因的特性. 南宁: 广西大学硕士学位论文, 2017.

    XIAN Y X. Agrobacterium rhizogenes-mediated transformation for cha racterizing al tolerance genes. Master Thesis. Nanning: Guangxi University, 2017.

    [26] 韩蓉蓉, 文亦芾, 史亮涛. 牧草磷素营养及其耐低磷特性. 草业科学, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671

    HAN R R, WEN Y P, SHI L T. Advances in grass phosphorus nutrition and tolerance to low phosphorus. Pratacultural Science, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671

    [27] 闫龙. 木豆种质资源遗传多样性分析. 北京: 中国农业科学院硕士学位论文, 2005.

    YAN L. Assessment of genetic diversity of pigeonpea [Cajanus cajan (L.) Millspaugh] germplasm resources. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2005.

    [28]

    THOMBER B B, AHER R P, DAHAT D V. Genetic diversity in pigeonpea. Indian Journal of Agricultural Research, 2000, 34(2): 126 .

    [29]

    SAMAL K M, SENAPATI N, PATNAIK H E. Genetic divergence in mutant lines of pigeon pea. Legume Research, 2001, 24(3): 186.

    [30]

    SIVARAMAKRISHNAN S, SEETHA K, NAGESHWAR R A, SINGH L. RFLP analysis of cytoplasmic male-sterile lines of pigeonpea[Cajanus cajan (L.) Millsp. ] developed by interspecific crosses. Euphytica, 1997, 93(3): 307-312. doi: 10.1023/A:1002958623171

    [31]

    SOUFHMANIEN J, MANJAVA J G, KRISHNA T G, PAWAR S E. Random amplified polymorphic DNA analyses of cytoplasmic male sterile and male fertile Pigeonpea. International Journal of Dairy Technology, 2003, 129(3): 293.

    [32]

    BUMS M J, EDWARDS K J, NEWBURY H J. Development of simple sequence repeat (SSR) markers for assessment of gene now and genetic diversity in pigeonpea. Molecular Ecology Resources, 200l, l(4): 283-285.

    [33] 蒋慧萍. 不同木豆品种亲缘关系及生理生化指标的研究. 南宁: 广西大学硕士学位论文, 2002.

    JIANG H P. Study on genetic relationship and physiological and biochemical parameters in different pigeonpea varieties. Master Thesis. Nanning: Guangxi University, 2002.

    [34] 闫龙, 关建平, 宗绪晓. 木豆种质资源AFLP标记遗传多样性分析. 作物学报, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015

    YAN L, GUAN J P, ZONG X X. Genetic diversity analysis of pigeonpea germplasm resources by AFLP. Acta Agronomica Sinica, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015

    [35]

    SHARMA H C, SHARMA K K, SEETHARAMA N, ORTIZ R. Prospects for using transgenetic resistance to insects in crop improvement. Electronic Journal Biotechology, 2000, 3(2): 21-22.

    [36]

    YARSHNEY R K, CHEN W B, LI Y P, BHARTI A K, SAXENA R K, SCHLUETER J A, DONOGHUE M T A, AZAM S, FAN G Y, WHALEY A M, FARMER A D, SHERIDAN J, LWATA A, TUTEJA R, PENMETSA R V, WU W, UPADHYAYA H D, YANG S P, SHAH T, SAXENA K B, MICHAEL T, MCCOMBIE W R, YANG B C, ZHANG G Y, YANG H M, WANG J, SPILLANE C, COOK D R, MAY G D, XU X, JACKSON S A. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30(1): 83. doi: 10.1038/nbt.2022

    [37] 李鳌, 孙宏伟, 崔彦. 代谢组学应用与研究进展. 医学研究杂志, 2020, 49(1): 168.

    LI A, SUN H W, CUI Y. Application and research progress of metabolomics. Journal of Medical Research, 2020, 49(1): 168.

    [38] 高燕. 不同大豆中异黄酮含量的差异性分析. 化学工程与装备, 2019(5): 9-11.

    GAO Y. Difference analysis of isoflavone content in different soybeans. Chemical Engineering and Equipment, 2019(5): 9-11.

    [39]

    CHEN J, WANF J L, CHEN W, SUN W Q, PENG M, YUAN Z Y, SHEN S Q, XIE K, JIN C, SUN Y Y, LIU X Q, FERNIE A R, YU S B, LUO J. Metabolome analysis of multi-connected biparental chromosome segment substitution line population. Plant Physiology, 2018, 178(2): 612. doi: 10.1104/pp.18.00490

    [40]

    ZHU G T, WANG S C, HUANG Z J, ZHANG S Z, LIAO Q G, ZHANG C, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, KNAAP E, ZHANG Z G, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249. doi: 10.1016/j.cell.2017.12.019

    [41] 国家药典委员会. 中国药典. 北京: 中国医药科技出版社, 2015.

    National Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: China Medical Science and Technology Press, 2015.

    [42] 廖丽. 夏枯草种质资源与药材质量评价研究. 南京: 南京农业大学博士学位论文, 2009.

    LIAO L. Study on germplasm resouces of Prunella vulgaris and its quality evaluation. PhD Thesis. Nanjing: Nanjing Agricultural University, 2009.

    [43]

    CHEN W, GONG L, GUO Z L, WANG W S, ZHANG H Y, LIU X Q, YU S B, XIONG L Z, LUO J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 2013, 6(6): 1769. doi: 10.1093/mp/sst080

    [44]

    FRAGA C G, CLOWERS B, MOORE R J, ZINK E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 2010, 82(10): 4165. doi: 10.1021/ac1003568

    [45] 康智明, 徐晓俞, 郑开斌, 俞秀红, 李爱萍. 木豆种质资源形态与农艺性状的多样性分析. 热带亚热带植物学报, 2017, 25(1): 51. doi: 10.11926/jtsb.3633

    KANG Z M, XU X Y, ZHENG K B, YU X H, LI A P. Diversity analysis of morphological and agronomic traits in Cajanus cajan. Journal of Tropical and Subtropical Botany, 2017, 25(1): 51. doi: 10.11926/jtsb.3633

    [46] 高桂娟, 李志丹. 45份木豆种质资源物候期及形态多样性分析. 生态科学, 2017, 36(2): 100.

    GAO G J, LI Z D. Study on morphological features diversity and phonological period of pigeonpea germplasm materials. Ecological Science, 2017, 36(2): 100.

    [47] 郑菲艳, 鞠玉栋, 邱珊莲, 吴维坚, 张树河, 郑开斌. 木豆种质不同部位总黄酮含量研究. 福建农业学报, 2016, 31(7): 733.

    ZHENG F Y, JU Y D, QIU S L, WU W J, ZHANG S H, ZHENG K B. Study on total flavonoid content in different parts from different kinds of pigeonpea. Fujian Journal of Agricultural Sciences, 2016, 31(7): 733.

    [48] 徐晓俞, 李爱萍, 吴思逢, 李程勋, 黄旭旻, 郑开斌. 木豆不同品种和叶龄对叶片氨基酸形成的影响和聚类分析. 热带亚热带植物学报, 2018, 26(6): 617. doi: 10.11926/jtsb.3895

    XU X Y, LI A P, WU S F, LI C X, HUANG X M, ZHENG K B. Effects of different germplasms and leaf ages on amino acid formation in pigeonpea leaves and cluster analysis. Journal of Tropical and Subtropical Botany, 2018, 26(6): 617. doi: 10.11926/jtsb.3895

    [49] 元唯安, 杜炯, 闻辉, 刘又文, 沈霖, 韩永台, 杨凤云, 葛京华, 谷福顺, 张建新, 宁亚功, 陈卫衡, 姜益常, 张杰, 余桦, 董晓俊, 于浩, 詹红生. 通络生骨胶囊治疗股骨头坏死(筋脉瘀滞证)的多中心随机、双盲、双模拟、阳性药对照临床研究. 上海中医药杂志, 2019, 53(8): 53-59.

    YUAN W A, DU J, WEN H, LIU Y W, SHEN L, HAN Y T, YANG F Y, GE J H, GU F S, ZHANG J X, NING Y G, CHEN W H, JIANG Y C, ZHANG J, YU H, DONG X J, YU H, ZHAN H S. A multi-center, randomized, double-blind, double-dummy, positive-controlled clinical study on Tongluo Shenggu Capsule in treatment of osteonecrosis of femoral head (syndrome of stagnation of sinews and vessels). China Academic Journal Electronic Publishing House, 2019, 53(8): 53-59.

  • 图  1   木豆形态性状与活性成分聚类分析

    Figure  1.   Cluster analysis of morphological characters and active components of Cajanus cajan

    图  2   4 份木豆样品 (3-QZ、4-HK、5-DH3和 6-DZ) 形态图

    Figure  2.   Morphological characteristics of 4 Cajanus cajan samples (3-QZ, 4-HK, 5-DH3, and 6-DZ)

    表  1   木豆种质资源编号与来源

    Table  1   Sources of Cajanus cajan

    序号 No. 编号 Code 来源 Source
    1 1-DH1 云南德宏 Dehong, Yunnan
    2 2-YJ 广东阳江 Yangjiang, Guangdong
    3 6-DZ 江西都昌 Duchang, Jiangxi
    4 7-QJ 海南乐东 Ledong, Hainan
    5 8-BS 海南白沙 Baisha, Hainan
    6 9-CM 云南嵩明 Chongming, Yunnan
    7 3-QZ 海南琼中 Qiongzhong, Hainan
    8 4-HK 海南海口 Haikou, Hainan
    9 10-DH2 云南德宏 Dehong, Yunnan
    10 5-DH3 云南德宏 Dehong, Yunnan
    下载: 导出CSV

    表  2   10份木豆种质资源形态性状(数量性状)差异比较

    Table  2   Comparison of quantitative morphological differences among 10 Cajanus cajan accessions

    编号
    Code
    株高
    Plant
    height
    (T1)/cm
    主茎分枝/枝
    Main stem
    branches
    (T2)/branches
    叶长
    Leaf
    length
    (T3)/mm
    叶宽
    Leaf
    width
    (T4)/mm
    叶型指数
    Leaf shape
    index (T5)
    花序轴长度
    Inflorescence
    axis length
    (T6)/cm
    旗瓣大小
    Banner petal
    size ( T7)/mm
    荚果长
    Pod
    length
    (T8)/mm
    荚果宽
    Pod
    width
    (T9)/mm
    单荚粒数/个
    Number of
    single pods
    (T10)/Pc
    百粒重
    Hundred-
    seed weight
    (T11)/g
    1-DH1 146.10 ± 0.00 10.00 ± 0.58 5.90 ± 0.11 2.62 ± 0.05 2.25 ± 0.04 16.72 ± 1.10 17.17 ± 0.20 53.52 ± 1.27 6.10 ± 0.00 2.50 ± 0.08 4.46 ± 0.22
    2-YJ 162.24 ± 27.91 25.50 ± 2.50 4.41 ± 0.16 1.74 ± 0.06 2.53 ± 0.05 21.69 ± 2.40 17.25 ± 0.23 59.47 ± 1.25 7.71 ± 0.13 5.03 ± 0.13 4.15 ± 0.06
    6-DZ 154.66 ± 5.41 13.43 ± 1.65 5.13 ± 0.19 1.66 ± 0.06 3.09 ± 0.10 28.99 ± 2.09 20.10 ± 0.23 80.63 ± 1.39 11.68 ± 0.16 4.13 ± 0.16 14.07 ± 0.43
    7-QJ 125.54 ± 13.61 15.86 ± 3.12 7.40 ± 0.21 2.90 ± 0.08 2.56 ± 0.04 17.06 ± 1.04 17.19 ± 0.53 62.48 ± 0.74 8.51 ± 0.12 4.97 ± 0.12 6.47 ± 0.08
    8-BS 108.25 ± 21.77 8.25 ± 0.75 6.52 ± 0.16 2.27 ± 0.06 2.87 ± 0.07 16.40 ± 9.20 16.50 ± 0.25 46.52 ± 1.03 8.70 ± 0.11 4.40 ± 0.11 7.58 ± 0.30
    9-CM 149.28 ± 16.94 10.00 ± 1.00 5.54 ± 0.13 2.02 ± 0.07 2.74 ± 0.06 29.25 ± 2.41 18.17 ± 0.15 51.36 ± 1.05 9.24 ± 0.13 4.50 ± 0.13 6.64 ± 0.10
    3-QZ 86.29 ± 7.46 12.00 ± 1.00 6.78 ± 0.25 2.51 ± 0.09 2.70 ± 0.06 32.65 ± 1.97 25.86 ± 7.10 58.47 ± 105 9.56 ± 0.20 4.53 ± 0.20 8.26 ± 0.13
    4-HK 174.83 ± 7.18 16.40 ± 2.14 6.33 ± 0.22 1.89 ± 0.09 3.35 ± 0.08 33.98 ± 1.53 18.34 ± 0.27 63.09 ± 1.18 10.11 ± 0.16 4.97 ± 0.16 8.37 ± 0.13
    10-DH2 125.07 ± 15.21 15.50 ± 3.14 5.12 ± 0.19 2.04 ± 0.09 2.51 ± 0.10 21.45 ± 1.85 17.88 ± 0.24 59.46 ± 1.47 8.38 ± 0.13 4.20 ± 0.13 11.06 ± 0.20
    5-DH3 141.00 ± 7.19 8.75 ± 1.31 6.24 ± 0.17 2.23 ± 0.07 2.80 ± 0.06 22.52 ± 1.18 18.24 ± 0.36 56.92 ± 2.08 8.39 ± 0.12 4.93 ± 0.12 7.06 ± 0.15
    均值
    Mean
    137.33 13.57 5.94 2.19 2.74 24.07 18.67 59.19 8.84 4.42 7.81
    标准差
    Standard
    deviation, SD
    26.46 5.15 0.90 0.40 0.31 6.66 2.71 9.10 1.48 0.75 2.96
    变异系数
    Coefficient
    of variation,
    CV/%
    19.27 37.96 15.15 18.14 11.48 27.69 14.51 15.37 16.73 17.00 8.75
    F 5.39** 3.42** 23.78** 29.86** 22.52** 12.47** 0.94* 49.00** 64.15** 70.27** 192.54**
     编号同表1;*表示在0.05水平上差异显著,**表示在0.01水平上差异极显著;表4表5表6表7同。
     Codes are same as Table 1. * indicate significant differences at the 0.05 level, and ** indicate extremely significant differences at the 0.01 level; this is applicable for Tables 4, 5, 6, and 7 as well.
    下载: 导出CSV

    表  3   10份木豆种质资源形态性状(质量性状)差异比较

    Table  3   Comparison of qualitative morphological differences among 10 Cajanus cajan accessions

    编号 Code Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10
    1-DH1 紧凑 Compact 阔菱形 Wide rhombus 红 Red 橘黄 Orange 无 Colorless 绿底紫斑
    Purple spot on
    green background
    黑 Black 黑 Black 无 Colorless 奶黄 Creamy yellow
    2-YJ 半紧凑
    Semi-compact
    阔菱形 Wide rhombus 红条纹
    Red stripe
    黄 Yellow 红 Red 绿 Green 橘黄 Orange 浅褐 Light brown 无 Colorless 黑 Black
    6-DZ 半紧凑
    Semi-compact
    窄菱形 Narrow rhombus 红条纹
    Red stripe
    黄 Yellow 红 Red 绿底紫斑
    Purple spot on
    green background
    条纹 Striped 浅灰 Light gray 斑点加斑块
    Speckled and
    blotched
    浅褐 Light brown
    7-QJ 半紧凑
    Semi-compact
    阔菱形 Wide rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
    Purple spot on
    green background
    白 White 奶黄 Creamy yellow 斑块 Blotched 奶黄 Creamy yellow
    8-BS 半紧凑
    Semi-compact
    阔菱形 Wide rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
    Purple spot on
    green background
    白 White 奶黄 Creamy yellow 斑块 Blotched 奶黄 Creamy yellow
    9-CM 半紧凑
    Semi-compact
    阔菱形 Wide rhombus 红条纹
    Red stripe
    橘黄 Orange 红 Red 绿 Green 浅褐 Light brown 奶黄 Creamy yellow 无 Colorless 奶黄 Creamy yellow
    3-QZ 半紧凑
    Semi-compact
    阔菱形 Wide rhombus 红条纹
    Red stripe
    橘黄 Orange 红 Red 绿底紫斑
    Purple spot on
    green background
    黑 Black 黑 Black 无 Colorless 奶黄 Creamy yellow
    4-HK 松散 Loose 窄菱形 Narrow rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
    Purple spot on
    green background
    紫 Purple 奶黄 Creamy yellow 斑点 Speckled 奶黄 Creamy yellow
    10-DH2 紧凑 Compact 阔菱形 Wide rhombus 红 Red 橘黄 Orange 红 Red 绿底紫斑
    Purple spot on
    green background
    橘黄 Orange 浅褐 Light brown 斑点 Speckled 橘黄 Orange
    5-DH3 披散 Scattered 阔菱形 Wide rhombus 黄 Yellow 橘黄 Orange 红 Red 绿底紫斑
    Purple spot on
    green background
    白 White 深紫 Deep purple 无 Colorless 白 White
     Y1:株型;Y2:小叶叶形;Y3:花色;Y4:旗瓣底色;Y5:旗瓣点缀色;Y6:鲜荚色;Y7:粒色;Y8:干籽粒底色;Y9:干籽粒色斑;Y10:干籽粒脐环色。
     Y1: plant habit; Y2: leaflet shape; Y3: floral color; Y4: banner petal background color; Y5: banner petal highlight color; Y6: fresh pod color; Y7: seed color; Y8: dried seed background color; Y9: dried seed markings; Y10: dried seed hilum color.
    下载: 导出CSV

    表  4   10个木豆品系活性成分差异性比较

    Table  4   Concentration of active components in 10 Cajanus cajan strains

    编号 Code 水分 Water content/% 总黄酮 Total flavonoids/(mg·mL−1) 浸出物 Active components
    in extracts/%
    多糖含量 Polysaccharide content/(μg·mL−1)
    1-DH1 0.66 ± 0.01d 3.01 ± 0.08c 22.00 ± 1.15ab 2.89 ± 0.10a
    2-YJ 0.63 ± 0.02de 2.99 ± 0.11c 18.00 ± 1.15cd 2.54 ± 0.14ab
    6-DZ 0.61 ± 0.01e 3.33 ± 0.13b 16.67 ± 1.76d 2.52 ± 0.19ab
    7-QJ 0.96 ± 0.02bc 2.60 ± 0.03d 15.33 ± 0.67d 2.87 ± 0.09a
    8-BS 1.06 ± 0.01a 2.32 ± 0.01e 22.67 ± 1.33ab 2.78 ± 0.11a
    9-CM 0.96 ± 0.02bc 3.05 ± 0.02c 22.00 ± 0.00ab 2.61 ± 0.12ab
    3-QZ 1.00 ± 0.01b 3.67 ± 0.05a 20.00 ± 1.15bc 2.41 ± 0.09ab
    4-HK 0.95 ± 0.01c 2.62 ± 0.03d 20.00 ± 1.15bc 2.80 ± 0.41a
    10-DH2 0.91 ± 0.01c 2.92 ± 0.07c 21.33 ± 0.67ab 2.24 ± 0.10b
    5-DH3 0.92 ± 0.01c 2.55 ± 0.04d 23.33 ± 0.67a 2.24 ± 0.19b
    均值 Mean 0.866 7 2.905 7 20.133 3 2.590 4
    标准差 Standard deviation 0.164 72 0.402 75 2.681 44 0.244 01
    变异系数 Coefficient of variation/% 19.01 13.86 13.32 9.42
    F 139.46** 35.15** 6.22** 1.84*
     同列不同小写字母表示处理间差异显著(P < 0.05)。
     Different lowercase letters within the same column indicate significant differences between treatments at the 0.05 level.
    下载: 导出CSV

    表  5   木豆形态性状与内在活性成分相关性比较

    Table  5   Correlations between morphological characters of Cajanus cajan and intrinsic active ingredients

    项目
    Item
    水分
    Water
    content
    总黄酮
    Total
    flavonoids
    浸出物
    Active
    components
    in extracts
    多糖含量
    Polysac-
    charide
    content
    T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
    水分 Water
    content
    1.000
    总黄酮 Total
    flavonoids
    −0.367 1.000
    浸出物
    Extracts
    0.349 −0.246 1.000
    多糖含量
    Polysaccharide
    content
    −0.024 −0.312 −0.249 1.000
    T1 −0.549 −0.195 −0.145 0.202 1.000
    T2 −0.433 0.118 −0.612 −0.016 0.402 1.000
    T3 0.685* −0.280 −0.022 0.377 −0.510 −0.470 1.000
    T4 0.392 −0.129 0.004 0.360 −0.581 −0.371 0.788** 1.000
    T5 0.234 −0.155 −0.081 0.015 0.302 −0.062 0.111 −0.517 1.000
    T6 0.092 0.529 −0.077 −0.252 0.182 0.066 −0.076 −0.463 0.651* 1.000
    T7 0.134 0.789** −0.111 −0.374 −0.497 −0.108 0.196 0.064 0.155 0.659* 1.000
    T8 −0.521 0.394 −0.707* −0.159 0.340 0.349 −0.231 −0.395 0.393 0.395 0.269 1.000
    T9 0.110 0.263 −0.360 −0.188 0.071 −0.026 0.012 −0.491 0.822** 0.709* 0.435 0.653* 1.000
    T10 0.413 −0.247 −0.283 −0.267 0.044 0.395 0.127 −0.246 0.481 0.314 0.075 0.117 0.426 1.000
    T11 −0.027 0.270 −0.212 −0.393 −0.068 −0.142 −0.135 −0.420 0.520 0.403 0.321 0.679* 0.787** 0.042 1.000
     T1:株高;T2:主茎分枝;T3:叶长;T4:叶宽;T5:叶型指数;T6:花序轴长度;T7:旗瓣大小;T8:荚果长;T9:荚果宽;T10:单荚粒数;T11:百粒重。
     T1: Plant height; T2: Main stem branches; T3: Leaf length; T4: Leaf width; T5: Leaf shape index; T6: Inflorescence axis length; T7: Banner petal size; T8: Pod length; T9: Pod width; T10: Number of single pods; T11: Hundred-seed weight.
    下载: 导出CSV

    表  6   4份木豆种质黄酮类化合物分析

    Table  6   Analysis of flavonoid compounds in four Cajanus cajan accessions

    化合物 Compound 3-QZ 4-HK 5-DH3 6-DZ F
    柚皮甙 Naringin 280 000 205 000 261 000 280 000 *
    圣草次苷 Eriodictyol 1230000 1490000 1770000 769 000 *
    松属素(二氢黄芩苷) Pinocembrin (dihydrochrysin) 9290000 9180000 14200000 6080000 *
    乔松酮 Pinostrobin 5280000 4820000 5040000 4660000 *
    柚皮素-7-O-葡糖苷 Naringenin-7-O-glucoside 6310000 5710000 6040000 5840000 *
    雌三醇 C-己糖苷 Eriodictyol C-hexoside 563 000 403 000 861 000 627 000 *
    柚皮素 Naringenin 1090000 317 000 729 000 1230000 *
    芸香甙 Butin 1240000 393 000 868 000 1410000 *
    去甲酸酐 Noranhydrocaritin 1780000 179 000 328 000 4320000 *
    黄杉素 Taxifolin 547 000 104 000 323 000 187 000 *
    二氢山柰酚 Dihydrokaempferol 110 000 31 700 73 800 59 900 *
    黄杞苷 Engeletin 124 000 55 800 77 700 70 600 *
    橙皮素 O-己糖基-O-己糖苷 Hesperetin O-hexosyl-O-hexoside 68 500 52 300 49 700 82 100 *
    橙皮素5-O-葡萄糖苷 Hesperetin 5-O-glucoside 857 000 502 000 698 000 879 000 *
    球松素查尔酮 Pinostrobin chalcone 7760000 2760000 4700000 12200000 *
    柚配基查尔酮(4',2',4',6'-四羟基查尔酮)
    Naringenin chalcone (4',2',4',6'-Tetrahydroxychalcone)
    1600000 1790000 2210000 1340000 *
    黄烷酮 Licoisoflavanone 1800000 193 000 339 000 4140000 *
    花青素3-芸香苷(花青素鼠李葡糖苷)
    Cyanidin 3-rutinoside (keracyanin chloride)
    266 000 201 000 233 000 346 000 *
    氯化花青苷 Cyanin chloride 2340000 1370000 1940 000 4990000 *
    氯化花翠素 Delphinidin chloride 63 700 68 600 50 800 95 800 *
    芍药色素 Peonidin 18 100 19 400 17 500 21 900 *
    锦葵花素双葡萄糖苷(锦葵色素苷)
    Malvidin 3,5-diglucoside (malvin)
    14 100 12 200 11 400 10 100 *
    棕矢车菊素 Jaceosidin 1480000 154 000 131 000 3410000 *
    槲皮素3-O-甲醚 Quercetin 3-O-methyl ether 321 000 178 000 164 000 740 000 *
    白杨素 Chrysin 16 100 6 080 4 100 18 100 *
    黃芩素 Baicalein 13 000 10 400 12 500 22 000 *
    刺槐素 Acacetin 797 000 656 000 639 000 1670000 *
    香叶木素 Diosmetin 6470000 10300000 11400000 11200000 *
    芹菜素4-O-鼠李糖苷 Apigenin 4-O-rhamnoside 84 500 192 000 215 000 39 900 *
    芹菜素5-O-葡萄糖苷 Apigenin 5-O-glucoside 6010000 12500000 12600000 4800000 *
    三粒小麦黄酮 Tricetin 219 000 102 000 181 000 174 000 *
    芹菜素6,8-C-二葡萄糖苷 Apigenin 6,8-C-diglucoside 1120000 1030000 1080000 1210000 *
    木犀草素 O-阿魏酰己糖苷 Luteolin O-feruloylhexoside 18 700 13 400 10 700 32 000 *
    木犀草素 O-己糖基-O-戊糖苷 Luteolin O-hexosyl-O-pentoside 41 300 95 200 96 900 50 900 *
    芹菜素 O-己糖基-O-戊糖苷 Apigenin O-hexosyl-O-pentoside 31 600 15 600 13 100 21 900 *
    木犀草素 O-芥子基己糖苷 Luteolin O-sinapoylhexoside 14 100 1 910 2 660 19 100 *
    木犀草素3',7-二-O-葡萄糖苷 Luteolin 3',7-di-O-glucoside 171 000 212 000 176 000 160 000 *
    芹菜素6-C-己糖基-8-C-己糖基-O-己糖苷
    Apigenin 6-C-hexosyl-8-C-hexosyl-O-hexoside
    112 000 159 000 152 000 106 000 *
    二-C,C-己糖芹菜素 Di-C,C-hexosyl-apigenin 927 000 1780000 1780000 1040000 *
    芹菜素二-C,C-戊糖苷 Apigenin di-C,C-pentoside 64 100 71 700 73 400 56 500 *
    木犀草素8-C-己糖基-O-己糖苷
    Luteolin 8-C-hexosyl-O-hexoside
    62 200 62 100 63 300 78 400 *
    芹菜素8-C-戊糖苷 Apigenin 8-C-pentoside 491 000 703 000 844 000 371 000 *
    麦黄酮 O-丙二酸己糖苷 Tricin O-malonylhexoside 34 900 75 500 61 500 118 000 *
    麦黄酮7-邻己糖苷 Tricin 7-O-hexoside 240 000 168 000 145 000 371 000 *
    木犀草素6-己糖苷8-己糖基-O-己糖苷
    Luteolin 6-C-hexoside 8-C-hexosyl-O-hexoside
    30 400 42 700 32 500 19 100 *
    麦黄酮4'-O-丁香酸 Tricin 4'-O-syringic acid 61 800 42 500 60 300 118 000 *
    芹菜素7-O-葡萄糖苷(波斯菊甙)
    Apigenin 7-O-glucoside (cosmosiin)
    4430000 2100000 2170000 2520000 *
    金圣草黄素7-O-己糖苷 Chrysoeriol 7-O-hexoside 334 000 759 000 449 000 556 000 *
    木犀草素 C-己糖苷 Luteolin C-hexoside 3240000 5240000 5340000 2440000 *
    槲皮素 O-乙酰己糖苷 Quercetin O-acetylhexoside 5 700 8 960 8 680 7 730 *
    麦黄酮邻甘油 Tricin O-glycerol 7 330 8 570 16 800 6 280 *
    麦黄酮邻糖酸 Tricin O-saccharic acid 153 000 206 000 286 000 193 000 *
    木犀草素 Luteolin 7940000 8190000 10300000 5940000 *
    芹菜素7-芸香苷(异野漆树苷)
    Apigenin 7-rutinoside (isorhoifolin)
    7 010 1140000 962 000 23100000 *
    木犀草素7-O-葡萄糖苷(木犀草苷)
    Luteolin 7-O-glucoside (cynaroside)
    43500000 35200000 31400000 35400000 *
    氯化芹菜定 Apigeninidin chloride 2040000 656 000 1020000 1330000 *
    芹菜素-3-O-α-L-鼠李糖苷 Apigenin-3-O-α-L-rhamnoside 405 000 299 000 335 000 485 000 *
    木犀草素-7-O-β-D-葡糖苷酸 Luteolin-7-O-β-D-glucuronide 1720000 9290000 9670000 1010000 *
    木犀草素-7-O-β-D-芸香苷 Luteolin-7-O-β-D-rutinoside 11000000 10700000 10200000 11700000 *
    高车前素 Hispidulin 3910000 5990000 6930000 6310000 *
    泽兰黄酮 Nepetin 70 400 127 000 161 000 110 000 *
    异泽兰黄素 Eupatilin 21 300 1 140 796 40 200 *
    木犀草素-6,8-二-C-葡萄糖苷 Luteolin-6,8-di-C-glucoside 1810 000 1900 000 1690000 1590000 *
    木犀草素7-O-β-D-葡萄糖基-6-C-α-L-阿拉伯糖
    Luteolin 7-O-β-D-glucosyl-6-C-α-L-arabinose
    2480000 2550000 2240000 2520000 *
    木犀草素-6-C-5-葡萄糖醛酸甲酰亚胺
    Luteolin-6-C-5-glucuronylxyloside
    6380000 8920000 9120000 7640000 *
    木犀草素-6-C-2-葡萄糖醛酸葡糖苷
    Luteolin-6-C-2-glucuronylglucoside
    116 000 90 700 92 400 224 000 *
    芹菜素 Apigenin 578 000 556 000 794 000 345 000 *
    香叶木素-7-O-半乳糖苷 Diosmetin-7-O-galactoside 19800000 27200000 22100000 35400000 *
    芹菜素-7-O-(6'-O-乙酰基)-β-D-葡萄糖苷
    Apigenin-7-O-(6'-O-acetyl)-β-D-glucoside
    99 200 53 600 50 600 91 000 *
    芹菜素-7-O-(6-O-丙二酰葡萄糖苷)
    Apigenin-7-O-(6-O-malonyl glucoside)
    191 000 176 000 145 000 215 000 *
    木犀草素-7-O-(6'-O-丙二酰)-β-D-葡萄糖苷
    Luteolin-7-O-(6'-O-malonyl)-β-D-glucoside
    314 000 704 000 528 000 448 000 *
    芹菜素-葡萄糖苷-葡萄糖苷 Apigenin-glucoside-glucoside 9 000 5 390 10 400 11 900 *
    木犀草素-7-O-芸香糖苷 Luteolin-7-O-rutinoside 2 450 101 000 72 500 7780000 *
    木犀草素-7,3'-二-O-β-D-葡萄糖苷
    Luteolin-7,3'-Di-O-β-D-glucoside
    62 000 101 000 81 000 68 000 *
    黄芩素 Wogonin 803 000 656 000 641 000 1670000 *
    芹菜素-7,4'-二甲醚 Apigenin-7,4'-dimethylether 63 800 16 600 27 700 65 600 *
    槲皮素-O-芸香苷-己糖 Quercetin-O-rutinoside-hexose 16 200 20 900 16 000 16 300 *
    异鼠李素-3-O-芸香苷 Isorhamnetin-3-O-rutinoside 608 000 623 000 607 000 934 000 *
    山奈酚-3-O-葡萄糖苷-7-O-鼠李糖苷
    Kaempferol-3-O-glucoside-7-O-rhamnoside
    25 100 104 000 85 000 7330000 *
    槲皮素3-O-鼠李糖基半乳糖苷
    Quercetin 3-O-rhanosylgalactoside
    3 430 11 500 10 100 482 000 *
    槲皮素 Quercitrin 31 100 4 300 7 420 39 500 *
    芦丁 Rutin 2580000 2330000 2340000 3130000 *
    金丝桃甙 Hyperin 2250000 1080000 936 000 2310000 *
    异鼠李素 Isorhamnetin 193 000 49 900 49 800 393 000 *
    山奈酚7-O-葡糖苷 Kaempferol 7-O-glucosdie 2260000 1290000 1520000 1990 000 *
    异槲皮素 Isoquercitrin 305 000 221 000 260 000 468 000 *
    绣线菊苷 Spiraeoside 767 000 471 000 565 000 654 000 *
    三叶草素 Trifolin 36000000 31200000 28100000 22100000 *
    3,7-二氧甲基槲皮素 3,7-Di-O-methylquercetin 551 000 71 100 64 700 1210000 *
    鼠李素(7-邻甲基槲皮素) Rhamnetin (7-O-methxyl quercetin) 192 000 37 400 77 800 174 000 *
    棉籽苷 Gossypitrin 1010000 716 000 889 000 1050000 *
    黄芪甲素 Astragalin 2610000 1950 000 2380000 2580000 *
    柽柳黄素 Tamarixetin 426 000 78 700 107 000 739 000 *
    槲皮素-3-O-α-L-阿拉伯吡喃糖苷(愈创木苷)
    Quercetin-3-O-α-L-arabinopyranoside (guaijaverin)
    68 700 11 000 15 800 89 100 *
    山奈酚3-O-芸香苷(烟酰胺)
    Kaempferol 3-O-rutinoside (nicotiflorin)
    5 490 482 000 390 000 28800000 *
    山奈酚-3-O-刺槐二糖苷(鼠李糖甙)
    Kaempferol 3-O-robinobioside (biorobin)
    5 920 444 000 435 000 28700000 *
    槲皮黄酮 Quercetin 249 000 387 000 297 000 263 000 *
    3-羟基黄酮3-Hydroxyflavone 56 800 38 200 41 200 56 500 *
    生物槲皮素 Bioquercetin 2610000 2660000 3210000 4250000 *
    山奈酚-3,7-O-α-L-鼠李糖苷 Kaempferol-3,7-O-α-L-rhamnoside 31 800 10 500 8 970 21 000 *
    山奈酚3-O-β-(2''-O-乙酰基-β- D-葡萄糖醛酸盐)
    Kaempferol 3-O-β- (2''-O-acetyl-β-D-glucuronide)
    873 000 1450000 1500000 2810000 *
    3,5,6,7,8,3',4'-七甲氧基黄酮
    3,5,6,7,8,3′,4′-Heptamethoxyflavone
    1 050 5 730 1 990 2 330 *
    槲皮素-7-O-(6'-O-丙二酰)-β-D--葡萄糖苷
    Quercetin-7-O-(6'-O-malonyl)-β-D-glucoside
    3 520 11 300 7 830 7 870 *
    槲皮素3,7-双-O-β-D-葡萄糖苷
    Quercetin 3,7-bis-O-β-D-glucoside
    2960000 1790000 2220000 2160000 *
    6-羟基羰基丙烯-7-O-葡萄糖苷
    6-Hydroxykaempferol-7-O-glucoside
    86 000 13 600 14 000 227 000 *
    6-羟基卡伯醇-3,6-O-二葡萄糖苷
    6-Hydroxykaempferol-3,6-O-diglucoside
    7 330 7 560 7 070 9 430 *
    6-羟基卡伯醇-7,6-O-二葡萄糖苷
    6-Hydroxykaempferol-7,6-O-diglucoside
    3260000 1980 000 2620000 2340000 *
    牡荆素 Vitexin 1610000 1460000 1580000 1050000 *
    荭草素 Orientin 470 000 981 000 905 000 306 000 *
    异牡荆素 Isovitexin 1570000 1260000 1510000 1000000 *
    异荭草素 Homoorientin 23000000 32100000 33700000 16500000 *
    夏佛塔苷 Schaftoside 3060000 2630000 2460000 3110000 *
    C-己糖基木犀草素 O-己糖基-O-戊糖苷
    C-Hexosyl-luteolin O-hexosyl-O-pentoside
    9 870 17 200 14 100 7 610 *
    8-C-己基橙皮素 O-己糖苷 8-C-Hexosyl-hesperetin O-hexoside 1360000 813 000 942 000 985 000 *
    C-己糖基木犀草素 O-己糖苷 C-Hexosyl-luteolin O-hexoside 1780000 1950 000 1650000 1550000 *
    6-C-己糖基木犀草素 O-己糖苷 6-C-Hexosyl-luteolin O-hexoside 438 000 459 000 436 000 391 000 *
    C-己基木犀草素 C-戊糖苷 C-Hexosyl-luteolin C-pentoside 24600000 22400000 20000000 24100000 *
    6-C-己糖基木犀草素 O-戊糖苷 6-C-Hexosyl luteolin O-pentoside 16200000 15700000 13700000 17500000 *
    8-C-己糖基芹菜素 O-己糖基-O-己糖苷
    8-C-Hexosyl-apigenin O-hexosyl-O-hexoside
    25 600 43 300 34 300 47 600 *
    8-C-己糖基木犀草素 O-戊糖苷 8-C-Hexosyl-luteolin O-pentoside 6460000 5990000 5230000 6570000 *
    C-己糖基芹菜素 O-戊糖苷 C-Hexosyl-apigenin O-pentoside 4940000 3800000 3990000 5000000 *
    异牡荆素7-O-葡萄糖苷(皂甙) Isovitexin 7-O-glucoside (saponarin) 585 000 499 000 599 000 660 000 *
    牡荆素2'''-O-β-L-鼠李糖苷 Vitexin 2''-O-β-L-rhamnoside 69 400 83 300 70 200 104 000 *
    金雀异黄素8-C-葡萄糖苷 Genistein 8-C-glucoside 736 000 1390000 1510000 548 000 *
    牡荆素-2-O-D-吡喃葡萄糖苷 Vitexin-2-O-D-glucopyranoside 27900000 24900000 24600000 32500000 *
    芹菜素-6-C-β-D-木糖苷-8-C-β-阿拉伯糖苷
    Apigenin-6-C-β-D-xyloside-8-C-β-darabinoside
    9160000 7350000 8030000 9490000 *
    橙皮素 C-丙二酰己糖苷 Hesperetin C-malonylhexoside 7140000 5180000 5350000 7890000 *
    (-)-表棓儿茶素 (-)-Epigallocatechin 19100000 12300000 21700000 23200000 *
    (+)-表没食子儿茶素 (+)-Gallocatechin 66800000 47700000 65600000 87900000 *
    儿茶素 Catechin 686 000 293 000 500 000 1350000 *
    原儿茶酸 Protocatechuic acid 4860000 4200000 2750000 6350000 *
    (-)-儿茶素没食子酸盐 (-)-Catechin gallate 194 000 576 000 514 000 461 000 *
    4-甲基儿茶酚 4-Methylcatechol 36 600 34 600 20 800 70 200 *
    (-)-表儿茶素没食子酸盐 (-)-Epicatechin gallate 200 000 630 000 584 000 476 000 *
    表儿茶素 L-Epicatechin 101 000 255 000 178 000 283 000 *
    原儿茶醛 Protocatechuic aldehyde 32 400 37 800 31 100 39 200 *
    2'-羟基异黄酮 2'-Hydroxygenistein 1260000 1390000 1660000 960 000 *
    二氢异黄酮 Cajanol 8530000 693 000 1860 000 9810000 *
    香豌豆甙元 Orobol 758 000 844 000 1040000 586 000 *
    染料木黄酮 Genistein 27 700 29 600 40 100 18 800 *
    黄豆黄素 Glycitin 41 500 70 300 33 800 105 000 *
    金雀异黄素7-葡萄糖苷(金雀异黄素) Genistein 7-glucoside (genistin) 160 000 436 000 468 000 120 000 *
    大豆黄素 Glycitein 80 100 108 000 99 500 98 900 *
    三羟基异黄酮 Demethyltexasin 13 100 45 800 57 500 9 350 *
    黄豆苷元 Daidzein 53 500 114 000 130 000 36 200 *
    大豆苷元7-O-葡萄糖苷(大豆苷元) Daidzein 7-O-glucoside (daidzin) 893 000 560 000 659 000 1130000 *
    鹰嘴豆芽素 Abiochanin A 553 000 457 000 463 000 1170000 *
    印度黄檀苷 Sissotrin 928 000 381 000 357 000 988 000 *
    芒柄花素7-O-葡萄糖苷(刺芒柄花苷) Formononetin 7-O-glucoside (ononin) 173 000 102 000 82 800 111 000 *
    丙二酸 Malonyldaidzin 17 200 53 500 52 100 40 200 *
    丙二酸甘氨酸 Malonylglycitin 45 400 116 000 89 300 77 300 *
    3'-甲氧基大豆苷3'-Methoxydaidzin 328 000 124 000 188 000 271 000 *
    大豆苷元-4'-葡萄糖苷 Daidzein-4'-glucoside 144 000 46 000 78 000 118 000 *
    下载: 导出CSV

    表  7   4份木豆种质茋类化合物分析

    Table  7   Analysis of stilbene compounds in 4 Cajanus cajan accessions

    编号
    Code
    木豆素
    ALongistylin A
    木豆素
    CLongistylin C
    白藜芦醇
    Resveratrol
    2,3,5,4'-四羟基-二苯乙烯-2-O-D-葡萄吡喃糖苷
    2,3,5,4'-Tetrahydroxy-stilbene-2-O-D-glucopyranoside
    3-QZ 4.790 000 5150 000 12 800 6840 000
    4-HK 3390 000 3340 000 10 900 8050 000
    5-DH3 2340 000 2640 000 6 530 6720 000
    6-DZ 4580 000 6230 000 7 310 4580 000
    F * * * *
    下载: 导出CSV
  • [1] 郑桌杰. 中国食用豆类学. 北京: 中国农业出版社, 1997.

    ZHENG Z J. Chinese Edible Beans. Beijing: China Agricultural Press, 1997.

    [2] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 2004.

    Editorial Committee of Chinese Journal of Plant of Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 2004.

    [3] 姚娜, 易显凤, 丘金花, 庞天德, 赖志强, 韦锦益. 四种南方豆科灌木饲料在华南地区的比较试验. 草业科学, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379

    YAO N, YI X F, QIU J H, PANG T D, LAI Z Q, WEI J Y. Comparison of four fodder species of leguminous shrubs in southern China. Pratacultural Science, 2017, 34(4): 772-776. doi: 10.11829/j.issn.1001-0629.2016-0379

    [4] 蓝芙宁, 蒋忠诚, 谢运球, 张敏. 岩溶峰丛山地几种植物营养价值及饲喂效果研究. 草业科学, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017

    LAN F N, JAING Z C, XIE Y Q, ZHANG M. Studies on the nutrition value and feeding effect of several forage cultivars in karst mountainous region. Pratacultural Science, 2008, 25(11): 84-87. doi: 10.3969/j.issn.1001-0629.2008.11.017

    [5] 李正红, 周朝鸿, 谷勇, 张建云. 中国木豆研究利用现状及开发前景. 林业科学研究, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014

    LI Z H, ZHOU C H, GU Y, ZHANG J Y. The present status of study and utilization of pigeonpea in China and its prospects. Forest Research, 2001, 4(6): 674. doi: 10.3321/j.issn:1001-1498.2001.06.014

    [6] 付玉杰, 祖元刚, 吴楠, 孔羽, 刘威, 华欣. 木豆叶中木豆茋酸及球松素在制备抗疱疹病毒药物中的应用: 中国, CN200910071471.0. 2009-03-03.

    FU Y J, ZU Y G, WU N, KONG Y, LIU W, HUA X. The application of oleosolic acid and coccinin in pigeon pea leaves in the preparation of anti-herpes virus drugs: China, CN200910071471. 0. 2009-03-03.

    [7]

    LI X L, ZHAO B X, HUANG X J, ZHANG D M, YE W C. (+)- and (-)-cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan. Organic Letters, 2014, 16(1): 224. doi: 10.1021/ol403211a

    [8]

    WU G Y, ZHANG X, GUO X Y, HUO L Q, LIU H X, SHAN X L, QIU S X, HU Y J, TAN H B. Prenylated stilbenes and flavonoids from the leaves of Cajanus cajan. Chinese Journal of Natural Medicines, 2019, 17(5): 381-386. doi: 10.1016/S1875-5364(19)30044-5

    [9] 蔡佳仲, 戴湾, 张嫩玲. 木豆化学成分和药理活性研究进展. 天然产物研究与开发, 2020, 32(3): 515-524, 506.

    CAI J Z, DAI W, ZHANG N L. Advance on chemical constituents and pharmacological activities of Cajanus cajan (L.) Millsp. Natural Product Research and Development, 2020, 32(3): 515-524, 506.

    [10]

    LIU S, LUO Z H, JI G M, GUO W, CAI J Z, FU L C, ZHOU J, HU Y J, SHEN X L. Cajanolactone A from Cajanus cajan promoted osteoblast differentiation in human bone marrow mesenchymal stem cells via stimulating Wnt/LRP5/β-catenin signaling. Molecules, 2019, 24(2): 271. doi: 10.3390/molecules24020271

    [11] 刘少军, 陈小俊, 冯丽敏, 赵瑞芝. 通络生骨胶囊对大鼠应力缺失性骨质疏松的防治作用. 中国实验方剂学杂志, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053

    LIU S J, CHEN X J, FENG L M, ZHAO R Z. Effect of tongluo shenggu capsules on osteoporosis induced by stress absence. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(6): 170-173. doi: 10.3969/j.issn.1005-9903.2011.03.053

    [12]

    CHANG H Y, WU J R, GAO W Y, LIN H R, CHEN P Y, CHEN C I, WU M J, YEN J H, WENG C F. The cholesterol-modulating effect of methanol extract of pigeon pea [Cajanus cajan (L.) Millsp. ] leaves on regulating LDLR and PCSK9 expression in HepG2 cells. Molecules, 2019, 24(2): 493. doi: 10.3390/molecules24030493

    [13]

    YANG R Y, WANG L, XIE J, LI X, LIU S, QIU S X, HU Y J, SHEN X L. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. International Journal of Molecular Medicine, 2018, 42(5): 2329.

    [14]

    LIU Y M, SHEN S N, LI Z Y, JIANG Y M, SI J Y, CHANG Q, LIU X M, PAN R L. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis. Neurochemistry International, 2014, 78: 43. doi: 10.1016/j.neuint.2014.08.007

    [15]

    JIANG B P, LIU Y M, LE L, LI Z Y, SI J Y, LIU X M, CHANG Q, PAN R L. Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway. Cellular Physiology and Biochemistry, 2014, 34(3): 1015-1026. doi: 10.1159/000366317

    [16] 姜保平, 刘亚旻, 李宗阳, 宋波, 潘瑞乐. 木豆叶醇提物对皮质酮诱导的PC12细胞损伤的保护作用. 天然产物研究与开发, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027

    JIANG B P, LIU Y M, LI Z Y, SONG B, PAN R L. Protective effect of alcohol extract of Cajanus cajan on corticosterone-induced lesion in cultured PC12 cells. Natural Product Research and Development, 2012, 24(9): 1270. doi: 10.3969/j.issn.1001-6880.2012.09.027

    [17] 孙琳, 马艳苗, 严维花, 张娜, 柴智. 木豆叶对心肌缺血-再灌注损伤大鼠心功能的影响及其作用机制初探. 中药材, 2017, 40(4): 916.

    SUN L, MA Y M, YAN W H, ZHANG N, CHAI Z. Effects and mechanism of Cajanus cajan leaves on functional influence of rat hearts induced by ischemia-reperfusion. Journal of Chinese Medicinal Materials, 2017, 40(4): 916.

    [18] 孙琳, 张涛, 柴智. 木豆叶提取物对心肌缺血再灌注损伤大鼠的保护作用. 中草药, 2015, 46(22): 3382.

    SUN L, ZHANG T, CHAI Z. Protection of extract from pigeonpea leaves on myocardial ischemia reperfusion injury in rats. Chinese Traditional and Herbal Drugs, 2015, 46(22): 3382.

    [19]

    ZHANG N L, SHE X C, JIANG X F, CAI J Z, SHEN X L, HU Y J, QIU S X. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan. Journal of Natural Medicines, 2018, 72(1): 304. doi: 10.1007/s11418-017-1138-x

    [20]

    ZHANG N L, ZHU Y H, HUANG R M, FU M Q, SU Z W, CAI J Z, HU Y J, QIU S X. Two new stilbenoids from Cajanus cajan. Zeitschrift Für Naturforschung B, 2012, 67(12): 1314-1318. doi: 10.5560/znb.2012-0184

    [21]

    DEODIKER G B, THAKER C V. Cyto-taxonomic evidence for the affinity between Cajanus indicus Spreng. and certain erect species of Atylosia W. & A. Proceedings of the Indian Academy of Sciences-Section A, 1956, 43(1): 37-45.

    [22] 毕玉芬, 姜华, 许岳飞. 干热河谷草地灌草组合模式的研究. 草业科学, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017

    BI Y F, JIANG H, XU Y F. Study on shrub-grass combined mode in the hot-arid valley grassland. Pratacultural Science, 2009, 26(9): 95-98. doi: 10.3969/j.issn.1001-0629.2009.09.017

    [23]

    PUNDIR R P S, SINGH R B. Biosystematic relationships among Cajanus, Atylosia and Rhynehosia species and evolution of pigeonpea [Cajanus cajan (L.) Millsp]. Theoretical and Applied Genetics, 1985, 69(5/6): 531-534.

    [24] 吴涛, 姚红艳, 莫本田, 龙忠富, 罗充. 8种豆科灌木栽培种丛枝菌根真菌种类及分布. 草业科学, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345

    WU T, YAO H Y, MO B T, LONG Z F, LUO C. The category and distribution of arbuscular mycorrhizal fungi from the rhizosphere of eight cultivat leguminous shrubs. Pratacultural Science, 2016, 33(2): 210-218. doi: 10.11829/j.issn.1001-0629.2015-0345

    [25] 冼芸轩. 用发根农杆菌介导转化的方法探究木豆耐铝基因的特性. 南宁: 广西大学硕士学位论文, 2017.

    XIAN Y X. Agrobacterium rhizogenes-mediated transformation for cha racterizing al tolerance genes. Master Thesis. Nanning: Guangxi University, 2017.

    [26] 韩蓉蓉, 文亦芾, 史亮涛. 牧草磷素营养及其耐低磷特性. 草业科学, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671

    HAN R R, WEN Y P, SHI L T. Advances in grass phosphorus nutrition and tolerance to low phosphorus. Pratacultural Science, 2014, 31(8): 1549-1555. doi: 10.11829/j.issn.1001-0629.2013-0671

    [27] 闫龙. 木豆种质资源遗传多样性分析. 北京: 中国农业科学院硕士学位论文, 2005.

    YAN L. Assessment of genetic diversity of pigeonpea [Cajanus cajan (L.) Millspaugh] germplasm resources. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2005.

    [28]

    THOMBER B B, AHER R P, DAHAT D V. Genetic diversity in pigeonpea. Indian Journal of Agricultural Research, 2000, 34(2): 126 .

    [29]

    SAMAL K M, SENAPATI N, PATNAIK H E. Genetic divergence in mutant lines of pigeon pea. Legume Research, 2001, 24(3): 186.

    [30]

    SIVARAMAKRISHNAN S, SEETHA K, NAGESHWAR R A, SINGH L. RFLP analysis of cytoplasmic male-sterile lines of pigeonpea[Cajanus cajan (L.) Millsp. ] developed by interspecific crosses. Euphytica, 1997, 93(3): 307-312. doi: 10.1023/A:1002958623171

    [31]

    SOUFHMANIEN J, MANJAVA J G, KRISHNA T G, PAWAR S E. Random amplified polymorphic DNA analyses of cytoplasmic male sterile and male fertile Pigeonpea. International Journal of Dairy Technology, 2003, 129(3): 293.

    [32]

    BUMS M J, EDWARDS K J, NEWBURY H J. Development of simple sequence repeat (SSR) markers for assessment of gene now and genetic diversity in pigeonpea. Molecular Ecology Resources, 200l, l(4): 283-285.

    [33] 蒋慧萍. 不同木豆品种亲缘关系及生理生化指标的研究. 南宁: 广西大学硕士学位论文, 2002.

    JIANG H P. Study on genetic relationship and physiological and biochemical parameters in different pigeonpea varieties. Master Thesis. Nanning: Guangxi University, 2002.

    [34] 闫龙, 关建平, 宗绪晓. 木豆种质资源AFLP标记遗传多样性分析. 作物学报, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015

    YAN L, GUAN J P, ZONG X X. Genetic diversity analysis of pigeonpea germplasm resources by AFLP. Acta Agronomica Sinica, 2007, 33(5): 790. doi: 10.3321/j.issn:0496-3490.2007.05.015

    [35]

    SHARMA H C, SHARMA K K, SEETHARAMA N, ORTIZ R. Prospects for using transgenetic resistance to insects in crop improvement. Electronic Journal Biotechology, 2000, 3(2): 21-22.

    [36]

    YARSHNEY R K, CHEN W B, LI Y P, BHARTI A K, SAXENA R K, SCHLUETER J A, DONOGHUE M T A, AZAM S, FAN G Y, WHALEY A M, FARMER A D, SHERIDAN J, LWATA A, TUTEJA R, PENMETSA R V, WU W, UPADHYAYA H D, YANG S P, SHAH T, SAXENA K B, MICHAEL T, MCCOMBIE W R, YANG B C, ZHANG G Y, YANG H M, WANG J, SPILLANE C, COOK D R, MAY G D, XU X, JACKSON S A. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30(1): 83. doi: 10.1038/nbt.2022

    [37] 李鳌, 孙宏伟, 崔彦. 代谢组学应用与研究进展. 医学研究杂志, 2020, 49(1): 168.

    LI A, SUN H W, CUI Y. Application and research progress of metabolomics. Journal of Medical Research, 2020, 49(1): 168.

    [38] 高燕. 不同大豆中异黄酮含量的差异性分析. 化学工程与装备, 2019(5): 9-11.

    GAO Y. Difference analysis of isoflavone content in different soybeans. Chemical Engineering and Equipment, 2019(5): 9-11.

    [39]

    CHEN J, WANF J L, CHEN W, SUN W Q, PENG M, YUAN Z Y, SHEN S Q, XIE K, JIN C, SUN Y Y, LIU X Q, FERNIE A R, YU S B, LUO J. Metabolome analysis of multi-connected biparental chromosome segment substitution line population. Plant Physiology, 2018, 178(2): 612. doi: 10.1104/pp.18.00490

    [40]

    ZHU G T, WANG S C, HUANG Z J, ZHANG S Z, LIAO Q G, ZHANG C, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, KNAAP E, ZHANG Z G, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249. doi: 10.1016/j.cell.2017.12.019

    [41] 国家药典委员会. 中国药典. 北京: 中国医药科技出版社, 2015.

    National Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing: China Medical Science and Technology Press, 2015.

    [42] 廖丽. 夏枯草种质资源与药材质量评价研究. 南京: 南京农业大学博士学位论文, 2009.

    LIAO L. Study on germplasm resouces of Prunella vulgaris and its quality evaluation. PhD Thesis. Nanjing: Nanjing Agricultural University, 2009.

    [43]

    CHEN W, GONG L, GUO Z L, WANG W S, ZHANG H Y, LIU X Q, YU S B, XIONG L Z, LUO J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 2013, 6(6): 1769. doi: 10.1093/mp/sst080

    [44]

    FRAGA C G, CLOWERS B, MOORE R J, ZINK E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry, 2010, 82(10): 4165. doi: 10.1021/ac1003568

    [45] 康智明, 徐晓俞, 郑开斌, 俞秀红, 李爱萍. 木豆种质资源形态与农艺性状的多样性分析. 热带亚热带植物学报, 2017, 25(1): 51. doi: 10.11926/jtsb.3633

    KANG Z M, XU X Y, ZHENG K B, YU X H, LI A P. Diversity analysis of morphological and agronomic traits in Cajanus cajan. Journal of Tropical and Subtropical Botany, 2017, 25(1): 51. doi: 10.11926/jtsb.3633

    [46] 高桂娟, 李志丹. 45份木豆种质资源物候期及形态多样性分析. 生态科学, 2017, 36(2): 100.

    GAO G J, LI Z D. Study on morphological features diversity and phonological period of pigeonpea germplasm materials. Ecological Science, 2017, 36(2): 100.

    [47] 郑菲艳, 鞠玉栋, 邱珊莲, 吴维坚, 张树河, 郑开斌. 木豆种质不同部位总黄酮含量研究. 福建农业学报, 2016, 31(7): 733.

    ZHENG F Y, JU Y D, QIU S L, WU W J, ZHANG S H, ZHENG K B. Study on total flavonoid content in different parts from different kinds of pigeonpea. Fujian Journal of Agricultural Sciences, 2016, 31(7): 733.

    [48] 徐晓俞, 李爱萍, 吴思逢, 李程勋, 黄旭旻, 郑开斌. 木豆不同品种和叶龄对叶片氨基酸形成的影响和聚类分析. 热带亚热带植物学报, 2018, 26(6): 617. doi: 10.11926/jtsb.3895

    XU X Y, LI A P, WU S F, LI C X, HUANG X M, ZHENG K B. Effects of different germplasms and leaf ages on amino acid formation in pigeonpea leaves and cluster analysis. Journal of Tropical and Subtropical Botany, 2018, 26(6): 617. doi: 10.11926/jtsb.3895

    [49] 元唯安, 杜炯, 闻辉, 刘又文, 沈霖, 韩永台, 杨凤云, 葛京华, 谷福顺, 张建新, 宁亚功, 陈卫衡, 姜益常, 张杰, 余桦, 董晓俊, 于浩, 詹红生. 通络生骨胶囊治疗股骨头坏死(筋脉瘀滞证)的多中心随机、双盲、双模拟、阳性药对照临床研究. 上海中医药杂志, 2019, 53(8): 53-59.

    YUAN W A, DU J, WEN H, LIU Y W, SHEN L, HAN Y T, YANG F Y, GE J H, GU F S, ZHANG J X, NING Y G, CHEN W H, JIANG Y C, ZHANG J, YU H, DONG X J, YU H, ZHAN H S. A multi-center, randomized, double-blind, double-dummy, positive-controlled clinical study on Tongluo Shenggu Capsule in treatment of osteonecrosis of femoral head (syndrome of stagnation of sinews and vessels). China Academic Journal Electronic Publishing House, 2019, 53(8): 53-59.

  • 期刊类型引用(1)

    1. 余正勇,肖钊富,宋志高. 中国草原旅游网络关注度时空差异及其影响因素研究. 草原与草坪. 2024(06): 79-87 . 百度学术

    其他类型引用(0)

图(2)  /  表(7)
计量
  • PDF下载量:  29
  • 文章访问数:  1613
  • HTML全文浏览量:  701
  • 被引次数: 1
文章相关
  • 通讯作者: 丁西朋
  • 收稿日期:  2020-05-12
  • 接受日期:  2020-08-15
  • 网络出版日期:  2020-11-29
  • 发布日期:  2020-11-14

目录

/

返回文章
返回