退化梯度上滇西北高山草甸植物群落的补偿生长能力
English
-
参考文献
[1] BELSKY A J. Does herbivory benefit plants? A review of the evidence. American Naturalist, 1986, 127(6): 870-892. doi: 10.1086/284531
[2] NIU K C, ZHANG S T, ZHAO B B, DU G Z. Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow. Plant and Soil, 2010, 330(1/2): 215-223.
[3] ELLISON L. Influence of grazing on plant succession of Rangelands. Botanical Review, 1960, 26(1): 1-78. doi: 10.1007/BF02860480
[4] MCNAUGHTON S J. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. American Naturalist, 1979, 113(5): 691-703. doi: 10.1086/283426
[5] DYER M I, DEANGELIS D L, POST W M. A model of herbivore feedback on plant productivity. Mathematical Biosciences, 1986, 79(2): 171-184. doi: 10.1016/0025-5564(86)90146-X
[6] BRISKE D D. Developmental morphology and physiology of grasses. // HEITSCHMIDT R K, STUTH J W. (eds) Grazing Management: An Ecological Perspective. Portland: Timber Press, 1991: 85-108.
[7] 周晓松, 朱志红, 李英年, 袁芙蓉, 樊瑞俭. 刈割、施肥和浇水处理下高寒矮嵩草草甸补偿机制. 兰州大学学报(自然科学版), 2011, 47(3): 50-57. ZHOU X S, ZHU Z H, LI Y N, YUAN F R, FAN R J. Community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow. Journal of Lanzhou University (Natural Sciences), 2011, 47(3): 50-57.
[8] 许曼丽, 朱志红, 李英年, 周晓松, 李晓刚. 高寒矮嵩草草甸4种主要植物补偿生长变化与耐牧性比较研究. 中国农学通报, 2012, 28(20): 7-16. XU M L, ZHU Z H, LI Y N, ZHOU X S, LI X G. Compensatory growth and grazing-tolerance of 4 major plant species in alpine Kobresia humilis meadow. Chinese Agriculture Science Bulletin, 2012, 28(20): 7-16.
[9] ZONG N, SHI P L. Nitrogen addition stimulated compensatory growth responses to clipping defoliation in a Northern Tibetan alpine meadow. Grassland Science, 2019, 65(1): 60-68.
[10] 张宪洲, 杨永平, 朴世龙, 包维楷, 汪诗平, 王根绪, 孙航, 罗天祥, 张扬建, 石培礼, 梁尔源, 沈妙根, 王景升, 高清竹, 张镱锂, 欧阳华. 青藏高原生态变化. 科学通报, 2015, 60(32): 3048-3056. doi: 10.1360/N972014-01339 ZHANG X Z, YANG Y P, PIAO S L, BAO W K, WANG S P, WANG X G, SUN H, LUO T X, ZHANG Y J, SHI P L, LIANG E Y, SHEN M G, WANG J S, GAO Q Z, ZHANG Y L, OUYANG H. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3048-3056. doi: 10.1360/N972014-01339
[11] 尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展: 兼论三江源生态恢复问题. 草地学报, 2018, 26(1): 1-21. SHANG Z H, DONG Q M, SHI J J, ZHOU H K, DONG S K, SHAO X Q, LI S X, WANG Y L, MA Y T, DING L M, CAO G M, LONG R J. Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau: Concurrently discuss of ecological restoration in Sangjiangyuan Region. Acta Agrestia Sinica, 2018, 26(1): 1-21.
[12] TANG L, DONG S K, SHERMAN R, LIU S L, LIU Q R, WANG X X, SU X K, ZHANG Y, LI Y Y, WU Y, ZHAO H D, ZHAO C, WU X Y. Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau. The Rangeland Journal, 2015, 37(1): 107-115. doi: 10.1071/RJ14077
[13] WANG X X, DONG S K, YANG B, LI Y Y, SU X K. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 2017, 186(10): 6903-6917.
[14] 周华坤, 赵新全, 周立, 刘伟, 李英年, 唐艳鸿. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. ZHOU H K, ZHAO X Q, ZHOU L, LIU W, LI Y N, TANG Y H. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40.
[15] LIU S B, SCHLEUSS P, KUZYAKOV Y. Carbon and nitrogen loss from soil depend on degradation of Tibetan Kobresia pastures. Land Degradation & Development, 2017, 28: 1253-1262.
[16] WANG X X, DONG S K, GAO Q Z, ZHOU H K, LIU S L, SU X K, LI Y Y. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biology & Biochemistry, 2014, 76: 140-142.
[17] ZHANG Y, DONG S K, GAO Q Z, LIU S L, GANJURJAV H, WANG X X, SU X K, WU X Y. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Scientific Reports, 2017, 7: 43077. doi: 10.1038/srep43077
[18] 张燕妮. 滇西北优先保护植物群落类型的初步研究. 昆明: 云南大学硕士学位论文, 2013. ZHANG Y N. Preliminary evaluation of the priority of plant communities for conservation in northwest Yunnan. Master Thesis. Kunming: Yunnan University, 2013.
[19] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8. ZHANG Y I, LI B Y, ZHENG D. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 2002, 21(1): 1-8.
[20] 薛达元, 武建勇. 长江中上游生物多样性与保护研究: 以滇西北为例. 环境保护, 2016, 44(15): 31-35. XUE D Y, WU J Y. Biodiversity and conservation in the upper and middle reaches of the Yangtze River: A report from the northwest of Yunnan Province. Environmental Protection, 2016, 44(15): 31-35.
[21] MYERS N, MITTERMEIER R A, MITTERMEIER C G, FONSECA G A B DA, KENT J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858. doi: 10.1038/35002501
[22] 尹海燕, 初晓辉, 单贵莲, 谢勇, 梅文君, 陈功, 袁福锦. 不同大狼毒覆盖度退化亚高山草甸群落结构及物种多样性研究. 云南农业大学学报(自然科学版), 2019, 34(3): 473-478. YIN H Y, CHU X H, SHAN G L, XIE Y, MEI W J, CHEN G, YUAN F J. Study on the community structure and species diversity of degraded subalpine meadow with different coverages of Euphorbia jolkinii. Journal of Yunnan Agricultural University (Natural Science Edition), 2019, 34(3): 473-478.
[23] 刘钟龄. 中国草地资源现状与区域分析. 北京: 科学出版社, 2017. LIU Z L. Current Situation and Regional Analysis of Grassland Resources in China. Beijing: Science Press, 2017.
[24] 任健, 墨继光, 张树斌. 草地共管在滇西北退化草地治理中的实践. 云南农业大学学报(社会科学), 2010, 4(4): 19-23. REN J, MO J G, ZHANG S B. Practices of co-management on degraded sub-alpine rangeland in northwest of Yunnan Province. Journal of Yunnan Agricultural University (Social Science Edition), 2010, 4(4): 19-23.
[25] 单贵莲, 初晓辉, 陈功, 谢勇, 袁福锦, 尹海燕. 滇西北亚高山草甸土壤养分及酶活性对放牧和封育的响应. 中国草地学报, 2018, 40(4): 82-87. SHAN G L, CHU X H, CHEN G, XIE Y, YUAN F J, YIN H Y. The response of soil nutrients and enzyme activities to grazing and fencing in sub-alpine meadow of northwest Yunnan. Grassland of China, 2018, 40(4): 82-87.
[26] 吕曾哲舟, 黄晓霞, 王琇瑜, 和克俭, 丁佼, 孙晓能. 玉龙雪山牦牛坪高山草甸的干扰格局分析. 自然资源学报, 2019, 34(6): 1223-1231. LYU Z Z Z, HUANG X X, WANG X Y, HE K J, DING J, SUN X N. Disturbance pattern of alpine meadow in Yak Meadow Park, Jade Dragon Mountain. Journal of Natural Resources, 2019, 34(6): 1223-1231.
[27] LEHNERT L W, WESCHE K, TRACHTE K, REUDENBACH C, BENDIX J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Scientific Reports, 2016, 6(1): 24367. doi: 10.1038/srep24367
[28] 张勇. 旅游踩踏对香格里拉高寒草甸植物群落的短期影响. 昆明: 云南大学硕士学位论文, 2013 ZHANG Y. Short-term impacts of tourism trampling on Shangri-La alpine meadow vegetation. Master Thesis. Kunming: Yunnan University, 2013.
[29] 黄晓霞, 张勇, 和克俭, 丁佼, 赵文娟. 高寒草甸对旅游踩踏的抗干扰响应能力. 草业学报, 2014, 23(2): 333-339. HUANG X X, ZHANG Y, HE K J, DING J, ZHAO W J. Tolerance of alpine meadows to human trampling. Acta Prataculturae Sinica, 2014, 23(2): 333-339.
[30] 刘振亚, 张晓宁, 李丽萍, 王行, 张贇, 孙梅, 肖德荣. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响. 生态学报, 2017, 37(23): 7821-7832. LIU Z Y, ZHANG X N, LI L P, WANG H, ZHANG Y, SUN M, XIAO D R. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan. Acta Ecologica Sinica, 2017, 37(23): 7821-7832.
[31] 王君, 沙丽清, 李检舟, 冯志立. 云南香格里拉地区亚高山草甸不同放牧管理方式下的碳排放. 生态学报, 2008, 28(8): 3574-3583. doi: 10.1016/S1872-2032(08)60074-8 WANG J, SHA L Q, LI J Z, FENG Z L. CO2 efflux in subalpine meadows under different grazing management in Shangri-La, Yunnan. Acta Ecologica Sinica, 2008, 28(8): 3574-3583. doi: 10.1016/S1872-2032(08)60074-8
[32] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000. BAO S D. Soil Agrochemical Analysis. Third Edition. Beijing: China Agricultural Press, 2000.
[33] 董世魁, 温璐, 李媛媛, 王学霞. 青藏高原退化高寒草地生态恢复的植物 – 土壤界面过程. 北京: 科学出版社, 2015. DONG S K, WEN L, LI Y Y, WANG X X. Soil Interface Process – Plant Alpine Grassland Ecological Restoration of Degraded Qinghai-Tibet Plateau. Beijing: Science Press, 2015.
[34] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. doi: 10.1016/j.jaridenv.2009.06.014
[35] 周宇庭, 付刚, 沈振西, 张宪洲, 武建双, 李云龙, 杨鹏万. 藏北典型高寒草甸地上生物量的遥感估算模型. 草业学报, 2013, 22(1): 123-132. ZHOU Y T, FU G, SHEN Z X, ZHANG X Z, WU J S, LI Y L, YANG P W. Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date. Acta Ecologica Sinica, 2013, 22(1): 123-132.
[36] 王福山, 何永涛, 石培礼, 牛犇, 张宪洲, 徐兴良. 狼毒对西藏高原高寒草甸退化的指示作用. 应用与环境生物学报, 2016, 22(4): 567-572. WANG F S, HE Y T, SHI P L, NIU B, ZHANG X Z, XU X L. Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau. Chinese Journal of Applied & Environmental Biology, 2016, 22(4): 567-572.
[37] 马玉寿, 朗白宁, 王启基. “黑土型”退化草地研究工作的回顾与展望. 草业科学, 1999, 16(2): 5-9. MA Y S, LANG B N, WANG Q J. Review and prospect of the study on ‘black soil type’ deteriorated grassland. Pratacultural Science, 1999, 16(2): 5-9.
[38] 蔡晓布, 张永青, 邵伟. 不同退化程度高寒草原土壤肥力变化特征. 生态学报, 2008, 28(3): 1110-1118. CAI X B, ZHANG Y Q, SHAO W. Characteristics of soil fertility in alpine steppes at different degradation grades. Acta Ecologica Sinica, 2008, 28(3): 1110-1118.
[39] 王学霞, 董世魁, 李媛媛, 李小艳, 温璐, 吴娱. 三江源区草地退化与人工恢复对土壤理化性状的影响. 水土保持学报, 2012, 26(4): 113-122. WANG X X, DONG S K, LI Y Y, LI X Y, WEN L, WU Y. Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-river Headwater. Journal of Soil and Water Conservation, 2012, 26(4): 113-122.
[40] FAY P A, PROBER S M, HARPOLE W S, KNOPS J M H, BAKKER J D, BORER E T, LIND E M, MACDOUGALL A S, SEABLOOM E W, WRAGG P D, ADLLER P B, BLUMENTHAL D M, BUCKLEY Y M, CHU C J, CLELAND E E, COLLINS S L, DAVIES K F, DU G Z, FENG X H, FIRN J, GRUNER D S, HAGENAH N, HAUTIER Y, HECKMAN R W, JIN V L, KIRKMAN K P, KLEIN J, LADWIG L M, LI Q, MCCULLEY R L, MELBOURNE B A, MITCHELL C E, MOORE J L, MORGAN J W, RISCH A C, SCHUTZ M, STEVENS C J, WEDIN D A, YANG L H. Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1(7): 15080. doi: 10.1038/nplants.2015.80
[41] 益西措姆, 许岳飞, 付娟娟, 巴桑吉巴, 尼布, 呼天明, 苗彦军. 放牧强度对西藏高寒草甸植被群落和土壤理化性质的影响. 西北农林科技大学学报(自然科学版), 2019, 42(6): 27-33. Yiximucuo, XU Y F, FU J J, Basangjiba, Nibu, HU T M, MIAO Y J. Effects of grazing intensity on vegetation community and soil physicochemical properties of alpine meadow in Tibet. Journal of Northwest A&F University (Natural Science Edition), 2019, 42(6): 27-33.
[42] 赵新全. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009. ZHAO X Q. Alpine Meadow Ecosystems and Global Changes. Beijing: Science Press, 2009.
[43] 王向涛. 放牧强度对高寒草甸植被和土壤理化性质的影响. 兰州: 兰州大学硕士学位论文, 2010. WANG X T. Effect of different grazing intensities on vegetation and soil physical and chemical character in alpine meadow. Master Thesis. Lanzhou: Lanzhou University, 2010.
[44] 赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳. 植物功能性状对放牧干扰的响应. 生态学杂志, 2016, 35(7): 1916-1926. ZHAO N, ZHAO X Q, ZHAO L, XU S X, ZOU X Y. Progress in researches of response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 2016, 35(7): 1916-1926.
[45] 温璐, 董世魁, 朱磊, 施建军, 刘德梅, 王彦龙, 马玉寿. 环境因子和干扰强度对高寒草甸植物多样性空间分异的影响. 生态学报, 2001, 31(7): 1844-1854. WEN L, DONG S K, ZHU L, SHI J J, LIU D M, WANG Y L, MA Y T. The effect of natural factors and disturbance intensity on spacial heterogeneity of plant diversity in alpine meadow. Acta Ecologica Sinica, 2001, 31(7): 1844-1854.
[46] WANG H, DU G, REN J. The impacts of population density and fertilization on compensatory responses of Elymus nutans to mowing. Acta Phytoecologica Sinica, 2003, 27(4): 477-483.
[47] 王丽华, 刘尉, 王金牛, 干友民, 吴彦. 不同刈割强度下草地群落、层片及物种的补偿性生长. 草业学报, 2015, 24(6): 35-42. WANG L H, LIU W, WANG J N, GAN Y M, WU Y. The compensatory growth of plant community, synusia and species under different clipping intensity. Acta Prataculturae Sinica, 2015, 24(6): 35-42.
[48] 牛钰杰, 杨思维, 王贵珍, 刘丽, 杜国祯, 花立民. 放牧强度对高寒草甸土壤理化性状和植物功能群的影响. 生态学报, 2018, 38(14): 5006-5016. NIU Y J, YANG S W, WANG G Z, LIU L, DU G Z, HUA L M. Effects of grazing disturbance on soil properties and plant functional groups and their relationships in an alpine meadow on the Tibetan Plateau. Acta Ecologica Sinica, 2018, 38(14): 5006-5016.
-
图 2 退化梯度上土壤理化性质变化特征
HD:重度退化;MD:中度退化;CK:对照。不同小写字母表示处理间差异显著;下图同。
Figure 2. Soil physical and chemical properties among different degradation levels
HD, heavy degradation; MD, medium degradation; CK, the control plots. Different lowercase letters indicate significant difference at the 0.05 level; this is applicable for the following figures as well.
图 4 草甸植物群落补偿生长能力与土壤理化性质的关系
a图为不同功能群植物的补偿生长强度与土壤理化性质之间的关系;b图为调查样方在土壤理化性质上的排序。 BD:土壤容重;APS:土壤平均径;Moisture:土壤含水率;SOC:土壤有机碳;TN:全氮;NO3-N:硝态氮;NH4-N:氨态氮;AP:速效磷。
Figure 4. Relationship between compensatory growth strength and soil physicochemical properties
(a) relationship between compensatory growth strength of different functional groups and soil physicochemical properties; (b) the distribution of sampling quadrats among soil physicochemical properties. BD, soil bulk density; APS, average particle size; Moisture, soil moisture content; SOC, soil organic carbon; TN, total nitrogen; NO3-N, nitrate nitrogen; NH4-N, ammonia nitrogen; AP, available phosphorus.
表 1 退化梯度上刈割样方和对照样方草甸植物群落概况
Table 1 General information on the communities between mowing and control treatments along the degradation gradient
退化梯度
Degradation level样地
Plot总盖度
Total cover/%平均高度
Average height/cm物种丰富度
Species richness重度退化
Heavy degradationM 64.33 ± 5.00c 5.92 ± 0.64c 15.11 ± 0.48b CK 51.44 ± 9.55c 5.66 ± 0.37c 13.78 ± 1.28b 中度退化
Medium degradationM 79.56 ± 1.09b 8.44 ± 0.25b 17.56 ± 0.29a CK 76.22 ± 0.95b 8.39 ± 0.05b 17.44 ± 0.48a 对照
ControlM 90.89 ± 1.13a 12.03 ± 0.69a 18.44 ± 0.78a CK 88.56 ± 0.59a 11.07 ± 1.17a 18.11 ± 0.87a M代表刈割样方,CK代表对照样方;下同。同列不同小写字母表示相同指标不同处理间差异显著(P < 0.05)。
M represents mowing quadrats, CK represents control quadrats; this is applicable for the following tables. Different lowercase letters within the same column indicate significant differences between different treatments at the 0.05 level.表 2 刈割前退化梯度上草甸植物群落特征
Table 2 Characteristics of plant communities at different degradation levels before the mowing experiment
群落指标
Indices of plant community重度退化
Heavy degradation (HD)中度退化
Medium degradation (MD)对照
Control (CK)总盖度 Total cover/% 57.89 ± 7.28c 77.89 ± 0.97b 89.73 ± 0.86a 平均高度 Average height/cm 5.79 ± 0.51c 8.42 ± 0.15b 11.55 ± 0.93a 物种丰富度 Species richness 14.45 ± 0.88b 17.50 ± 0.39a 18.28 ± 0.83a 地上生物量 Aboveground biomass/(g·m–2) 117.32 ± 12.84c 163.14 ± 9.46b 236.93 ± 22.93a 同行不同小写字母表示相同指标不同处理间差异显著(P < 0.05)。
Different lowercase letters within the same row indicate significant difference between different treatments at the 0.05 level. -
[1] BELSKY A J. Does herbivory benefit plants? A review of the evidence. American Naturalist, 1986, 127(6): 870-892. doi: 10.1086/284531
[2] NIU K C, ZHANG S T, ZHAO B B, DU G Z. Linking grazing response of species abundance to functional traits in the Tibetan alpine meadow. Plant and Soil, 2010, 330(1/2): 215-223.
[3] ELLISON L. Influence of grazing on plant succession of Rangelands. Botanical Review, 1960, 26(1): 1-78. doi: 10.1007/BF02860480
[4] MCNAUGHTON S J. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti. American Naturalist, 1979, 113(5): 691-703. doi: 10.1086/283426
[5] DYER M I, DEANGELIS D L, POST W M. A model of herbivore feedback on plant productivity. Mathematical Biosciences, 1986, 79(2): 171-184. doi: 10.1016/0025-5564(86)90146-X
[6] BRISKE D D. Developmental morphology and physiology of grasses. // HEITSCHMIDT R K, STUTH J W. (eds) Grazing Management: An Ecological Perspective. Portland: Timber Press, 1991: 85-108.
[7] 周晓松, 朱志红, 李英年, 袁芙蓉, 樊瑞俭. 刈割、施肥和浇水处理下高寒矮嵩草草甸补偿机制. 兰州大学学报(自然科学版), 2011, 47(3): 50-57. ZHOU X S, ZHU Z H, LI Y N, YUAN F R, FAN R J. Community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow. Journal of Lanzhou University (Natural Sciences), 2011, 47(3): 50-57.
[8] 许曼丽, 朱志红, 李英年, 周晓松, 李晓刚. 高寒矮嵩草草甸4种主要植物补偿生长变化与耐牧性比较研究. 中国农学通报, 2012, 28(20): 7-16. XU M L, ZHU Z H, LI Y N, ZHOU X S, LI X G. Compensatory growth and grazing-tolerance of 4 major plant species in alpine Kobresia humilis meadow. Chinese Agriculture Science Bulletin, 2012, 28(20): 7-16.
[9] ZONG N, SHI P L. Nitrogen addition stimulated compensatory growth responses to clipping defoliation in a Northern Tibetan alpine meadow. Grassland Science, 2019, 65(1): 60-68.
[10] 张宪洲, 杨永平, 朴世龙, 包维楷, 汪诗平, 王根绪, 孙航, 罗天祥, 张扬建, 石培礼, 梁尔源, 沈妙根, 王景升, 高清竹, 张镱锂, 欧阳华. 青藏高原生态变化. 科学通报, 2015, 60(32): 3048-3056. doi: 10.1360/N972014-01339 ZHANG X Z, YANG Y P, PIAO S L, BAO W K, WANG S P, WANG X G, SUN H, LUO T X, ZHANG Y J, SHI P L, LIANG E Y, SHEN M G, WANG J S, GAO Q Z, ZHANG Y L, OUYANG H. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3048-3056. doi: 10.1360/N972014-01339
[11] 尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展: 兼论三江源生态恢复问题. 草地学报, 2018, 26(1): 1-21. SHANG Z H, DONG Q M, SHI J J, ZHOU H K, DONG S K, SHAO X Q, LI S X, WANG Y L, MA Y T, DING L M, CAO G M, LONG R J. Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau: Concurrently discuss of ecological restoration in Sangjiangyuan Region. Acta Agrestia Sinica, 2018, 26(1): 1-21.
[12] TANG L, DONG S K, SHERMAN R, LIU S L, LIU Q R, WANG X X, SU X K, ZHANG Y, LI Y Y, WU Y, ZHAO H D, ZHAO C, WU X Y. Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau. The Rangeland Journal, 2015, 37(1): 107-115. doi: 10.1071/RJ14077
[13] WANG X X, DONG S K, YANG B, LI Y Y, SU X K. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 2017, 186(10): 6903-6917.
[14] 周华坤, 赵新全, 周立, 刘伟, 李英年, 唐艳鸿. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. ZHOU H K, ZHAO X Q, ZHOU L, LIU W, LI Y N, TANG Y H. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40.
[15] LIU S B, SCHLEUSS P, KUZYAKOV Y. Carbon and nitrogen loss from soil depend on degradation of Tibetan Kobresia pastures. Land Degradation & Development, 2017, 28: 1253-1262.
[16] WANG X X, DONG S K, GAO Q Z, ZHOU H K, LIU S L, SU X K, LI Y Y. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biology & Biochemistry, 2014, 76: 140-142.
[17] ZHANG Y, DONG S K, GAO Q Z, LIU S L, GANJURJAV H, WANG X X, SU X K, WU X Y. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Scientific Reports, 2017, 7: 43077. doi: 10.1038/srep43077
[18] 张燕妮. 滇西北优先保护植物群落类型的初步研究. 昆明: 云南大学硕士学位论文, 2013. ZHANG Y N. Preliminary evaluation of the priority of plant communities for conservation in northwest Yunnan. Master Thesis. Kunming: Yunnan University, 2013.
[19] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8. ZHANG Y I, LI B Y, ZHENG D. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 2002, 21(1): 1-8.
[20] 薛达元, 武建勇. 长江中上游生物多样性与保护研究: 以滇西北为例. 环境保护, 2016, 44(15): 31-35. XUE D Y, WU J Y. Biodiversity and conservation in the upper and middle reaches of the Yangtze River: A report from the northwest of Yunnan Province. Environmental Protection, 2016, 44(15): 31-35.
[21] MYERS N, MITTERMEIER R A, MITTERMEIER C G, FONSECA G A B DA, KENT J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858. doi: 10.1038/35002501
[22] 尹海燕, 初晓辉, 单贵莲, 谢勇, 梅文君, 陈功, 袁福锦. 不同大狼毒覆盖度退化亚高山草甸群落结构及物种多样性研究. 云南农业大学学报(自然科学版), 2019, 34(3): 473-478. YIN H Y, CHU X H, SHAN G L, XIE Y, MEI W J, CHEN G, YUAN F J. Study on the community structure and species diversity of degraded subalpine meadow with different coverages of Euphorbia jolkinii. Journal of Yunnan Agricultural University (Natural Science Edition), 2019, 34(3): 473-478.
[23] 刘钟龄. 中国草地资源现状与区域分析. 北京: 科学出版社, 2017. LIU Z L. Current Situation and Regional Analysis of Grassland Resources in China. Beijing: Science Press, 2017.
[24] 任健, 墨继光, 张树斌. 草地共管在滇西北退化草地治理中的实践. 云南农业大学学报(社会科学), 2010, 4(4): 19-23. REN J, MO J G, ZHANG S B. Practices of co-management on degraded sub-alpine rangeland in northwest of Yunnan Province. Journal of Yunnan Agricultural University (Social Science Edition), 2010, 4(4): 19-23.
[25] 单贵莲, 初晓辉, 陈功, 谢勇, 袁福锦, 尹海燕. 滇西北亚高山草甸土壤养分及酶活性对放牧和封育的响应. 中国草地学报, 2018, 40(4): 82-87. SHAN G L, CHU X H, CHEN G, XIE Y, YUAN F J, YIN H Y. The response of soil nutrients and enzyme activities to grazing and fencing in sub-alpine meadow of northwest Yunnan. Grassland of China, 2018, 40(4): 82-87.
[26] 吕曾哲舟, 黄晓霞, 王琇瑜, 和克俭, 丁佼, 孙晓能. 玉龙雪山牦牛坪高山草甸的干扰格局分析. 自然资源学报, 2019, 34(6): 1223-1231. LYU Z Z Z, HUANG X X, WANG X Y, HE K J, DING J, SUN X N. Disturbance pattern of alpine meadow in Yak Meadow Park, Jade Dragon Mountain. Journal of Natural Resources, 2019, 34(6): 1223-1231.
[27] LEHNERT L W, WESCHE K, TRACHTE K, REUDENBACH C, BENDIX J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Scientific Reports, 2016, 6(1): 24367. doi: 10.1038/srep24367
[28] 张勇. 旅游踩踏对香格里拉高寒草甸植物群落的短期影响. 昆明: 云南大学硕士学位论文, 2013 ZHANG Y. Short-term impacts of tourism trampling on Shangri-La alpine meadow vegetation. Master Thesis. Kunming: Yunnan University, 2013.
[29] 黄晓霞, 张勇, 和克俭, 丁佼, 赵文娟. 高寒草甸对旅游踩踏的抗干扰响应能力. 草业学报, 2014, 23(2): 333-339. HUANG X X, ZHANG Y, HE K J, DING J, ZHAO W J. Tolerance of alpine meadows to human trampling. Acta Prataculturae Sinica, 2014, 23(2): 333-339.
[30] 刘振亚, 张晓宁, 李丽萍, 王行, 张贇, 孙梅, 肖德荣. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响. 生态学报, 2017, 37(23): 7821-7832. LIU Z Y, ZHANG X N, LI L P, WANG H, ZHANG Y, SUN M, XIAO D R. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan. Acta Ecologica Sinica, 2017, 37(23): 7821-7832.
[31] 王君, 沙丽清, 李检舟, 冯志立. 云南香格里拉地区亚高山草甸不同放牧管理方式下的碳排放. 生态学报, 2008, 28(8): 3574-3583. doi: 10.1016/S1872-2032(08)60074-8 WANG J, SHA L Q, LI J Z, FENG Z L. CO2 efflux in subalpine meadows under different grazing management in Shangri-La, Yunnan. Acta Ecologica Sinica, 2008, 28(8): 3574-3583. doi: 10.1016/S1872-2032(08)60074-8
[32] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000. BAO S D. Soil Agrochemical Analysis. Third Edition. Beijing: China Agricultural Press, 2000.
[33] 董世魁, 温璐, 李媛媛, 王学霞. 青藏高原退化高寒草地生态恢复的植物 – 土壤界面过程. 北京: 科学出版社, 2015. DONG S K, WEN L, LI Y Y, WANG X X. Soil Interface Process – Plant Alpine Grassland Ecological Restoration of Degraded Qinghai-Tibet Plateau. Beijing: Science Press, 2015.
[34] HARRIS R B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. doi: 10.1016/j.jaridenv.2009.06.014
[35] 周宇庭, 付刚, 沈振西, 张宪洲, 武建双, 李云龙, 杨鹏万. 藏北典型高寒草甸地上生物量的遥感估算模型. 草业学报, 2013, 22(1): 123-132. ZHOU Y T, FU G, SHEN Z X, ZHANG X Z, WU J S, LI Y L, YANG P W. Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date. Acta Ecologica Sinica, 2013, 22(1): 123-132.
[36] 王福山, 何永涛, 石培礼, 牛犇, 张宪洲, 徐兴良. 狼毒对西藏高原高寒草甸退化的指示作用. 应用与环境生物学报, 2016, 22(4): 567-572. WANG F S, HE Y T, SHI P L, NIU B, ZHANG X Z, XU X L. Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau. Chinese Journal of Applied & Environmental Biology, 2016, 22(4): 567-572.
[37] 马玉寿, 朗白宁, 王启基. “黑土型”退化草地研究工作的回顾与展望. 草业科学, 1999, 16(2): 5-9. MA Y S, LANG B N, WANG Q J. Review and prospect of the study on ‘black soil type’ deteriorated grassland. Pratacultural Science, 1999, 16(2): 5-9.
[38] 蔡晓布, 张永青, 邵伟. 不同退化程度高寒草原土壤肥力变化特征. 生态学报, 2008, 28(3): 1110-1118. CAI X B, ZHANG Y Q, SHAO W. Characteristics of soil fertility in alpine steppes at different degradation grades. Acta Ecologica Sinica, 2008, 28(3): 1110-1118.
[39] 王学霞, 董世魁, 李媛媛, 李小艳, 温璐, 吴娱. 三江源区草地退化与人工恢复对土壤理化性状的影响. 水土保持学报, 2012, 26(4): 113-122. WANG X X, DONG S K, LI Y Y, LI X Y, WEN L, WU Y. Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-river Headwater. Journal of Soil and Water Conservation, 2012, 26(4): 113-122.
[40] FAY P A, PROBER S M, HARPOLE W S, KNOPS J M H, BAKKER J D, BORER E T, LIND E M, MACDOUGALL A S, SEABLOOM E W, WRAGG P D, ADLLER P B, BLUMENTHAL D M, BUCKLEY Y M, CHU C J, CLELAND E E, COLLINS S L, DAVIES K F, DU G Z, FENG X H, FIRN J, GRUNER D S, HAGENAH N, HAUTIER Y, HECKMAN R W, JIN V L, KIRKMAN K P, KLEIN J, LADWIG L M, LI Q, MCCULLEY R L, MELBOURNE B A, MITCHELL C E, MOORE J L, MORGAN J W, RISCH A C, SCHUTZ M, STEVENS C J, WEDIN D A, YANG L H. Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1(7): 15080. doi: 10.1038/nplants.2015.80
[41] 益西措姆, 许岳飞, 付娟娟, 巴桑吉巴, 尼布, 呼天明, 苗彦军. 放牧强度对西藏高寒草甸植被群落和土壤理化性质的影响. 西北农林科技大学学报(自然科学版), 2019, 42(6): 27-33. Yiximucuo, XU Y F, FU J J, Basangjiba, Nibu, HU T M, MIAO Y J. Effects of grazing intensity on vegetation community and soil physicochemical properties of alpine meadow in Tibet. Journal of Northwest A&F University (Natural Science Edition), 2019, 42(6): 27-33.
[42] 赵新全. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009. ZHAO X Q. Alpine Meadow Ecosystems and Global Changes. Beijing: Science Press, 2009.
[43] 王向涛. 放牧强度对高寒草甸植被和土壤理化性质的影响. 兰州: 兰州大学硕士学位论文, 2010. WANG X T. Effect of different grazing intensities on vegetation and soil physical and chemical character in alpine meadow. Master Thesis. Lanzhou: Lanzhou University, 2010.
[44] 赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳. 植物功能性状对放牧干扰的响应. 生态学杂志, 2016, 35(7): 1916-1926. ZHAO N, ZHAO X Q, ZHAO L, XU S X, ZOU X Y. Progress in researches of response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 2016, 35(7): 1916-1926.
[45] 温璐, 董世魁, 朱磊, 施建军, 刘德梅, 王彦龙, 马玉寿. 环境因子和干扰强度对高寒草甸植物多样性空间分异的影响. 生态学报, 2001, 31(7): 1844-1854. WEN L, DONG S K, ZHU L, SHI J J, LIU D M, WANG Y L, MA Y T. The effect of natural factors and disturbance intensity on spacial heterogeneity of plant diversity in alpine meadow. Acta Ecologica Sinica, 2001, 31(7): 1844-1854.
[46] WANG H, DU G, REN J. The impacts of population density and fertilization on compensatory responses of Elymus nutans to mowing. Acta Phytoecologica Sinica, 2003, 27(4): 477-483.
[47] 王丽华, 刘尉, 王金牛, 干友民, 吴彦. 不同刈割强度下草地群落、层片及物种的补偿性生长. 草业学报, 2015, 24(6): 35-42. WANG L H, LIU W, WANG J N, GAN Y M, WU Y. The compensatory growth of plant community, synusia and species under different clipping intensity. Acta Prataculturae Sinica, 2015, 24(6): 35-42.
[48] 牛钰杰, 杨思维, 王贵珍, 刘丽, 杜国祯, 花立民. 放牧强度对高寒草甸土壤理化性状和植物功能群的影响. 生态学报, 2018, 38(14): 5006-5016. NIU Y J, YANG S W, WANG G Z, LIU L, DU G Z, HUA L M. Effects of grazing disturbance on soil properties and plant functional groups and their relationships in an alpine meadow on the Tibetan Plateau. Acta Ecologica Sinica, 2018, 38(14): 5006-5016.