欢迎访问 草业科学,今天是2025年4月13日 星期日!

土壤含水量对4种委陵菜属植物生长及生理影响

阎尚博, 钱永强, 张艳, 闫丽, 董丽

阎尚博,钱永强,张艳,闫丽,董丽. 土壤含水量对4种委陵菜属植物生长及生理影响. 草业科学, 2020, 37(1): 98-105. . DOI: 10.11829/j.issn.1001-0629.2019-0512
引用本文: 阎尚博,钱永强,张艳,闫丽,董丽. 土壤含水量对4种委陵菜属植物生长及生理影响. 草业科学, 2020, 37(1): 98-105. . DOI: 10.11829/j.issn.1001-0629.2019-0512
YAN S B, QIAN Y Q, ZHANG Y, YAN L, DONG L. Effects of soil moisture content on morpho-physiological of four . Pratacultural Science, 2020, 37(1): 98-105. . DOI: 10.11829/j.issn.1001-0629.2019-0512
Citation: YAN S B, QIAN Y Q, ZHANG Y, YAN L, DONG L. Effects of soil moisture content on morpho-physiological of four . Pratacultural Science, 2020, 37(1): 98-105. . DOI: 10.11829/j.issn.1001-0629.2019-0512

土壤含水量对4种委陵菜属植物生长及生理影响

基金项目: 中国林科院中央公益性科研院所基本科研业务费重点项目“草地退化过程植被与土壤互作机制研究”(CAFYBB2019ZE001)北京市科技计划项目:北京城市生态廊道植物景观营建技术(D171100007217003)
摘要: 委陵菜属(Potentilla)植物具有较强的抗逆性和观赏价值,是我国华北地区极具发展潜力的乡土植物。本研究以绢毛匍匐委陵菜(P. reptans var. sericophylla)、匍匐委陵菜(P. reptans)、匍枝委陵菜(P. flagellaris)和鹅绒委陵菜(P. anserina)为材料,研究了不同土壤含水量对4种委陵菜生长及生理的影响,为这类植物的可持续发展提供参考。本研究设置田间持水量(FC)为25%、50%和75% 3个水分梯度,在试验第15 天测定其生长及生理指标。4种委陵菜在75% FC和50% FC处理均长势良好。匍枝委陵菜50% FC处理长势最好,75% FC叶片相对含水量降低,过氧化物酶 (POD) 活性增强。25% FC处理下,绢毛匍匐委陵菜长势良好;鹅绒委陵菜总生物量下降,超氧化物歧化酶 (SOD)和类胡萝卜素含量升高;匍匐委陵菜和匍枝委陵菜株高降低,SOD和过氧化氢酶 (CAT)活性均增加。结果表明,绢毛匍匐委陵菜因较强的水分维持能力在各处理下长势良好;水分亏缺下,匍枝委陵菜、鹅绒委陵菜及匍匐委陵菜均通过激活抗氧化防御系统缓解水分胁迫。

 

English

  • 水分胁迫是限制植物生长、生存和性能最重要的环境因素之一[1]。近年来,随着园林绿地面积的不断增加,北京市环境用水量已占城市总用水量的28.60%,仅次于生活用水[2],丰富抗旱观赏植物资源、提高水资源利用效率已成为现代园林绿地建设的重要方向。观赏植物抗逆性评价的重要标准是不丧失其视觉品质,而不同于非观赏植物抗逆性评价要求[3]。因此,在保持植物视觉品质的前提下,了解观赏植物对不同土壤含水量的形态和生理响应是准确筛选适宜园林植物材料的重要基础[4]

    委陵菜属(Potentilla)植物隶属蔷薇科,以多年生宿根草本花卉为主,大部分该属植物具有景观野趣、抗逆性强、管理粗放等特点[5-6],是退化草地或次生演替地的先锋物种之一,在城市园林绿地应用中是不可替代的植物材料[7]。目前,对委陵菜属植物的研究主要集中在化学成分和药理作用[8]以及其对退化生态系统的生态适应性[9],其观赏价值保持及其适应性环境阈值等鲜有报道。基于此,本研究将在保持委陵菜景观视觉质量的前提下[10],研究不同土壤含水量对4种委陵菜生长及生理的影响,揭示不同处理下4种委陵菜属植物生长差异的内在生理机制,为这类植物的可持续发展提供参考。

    本试验以2016年4月 – 10月在北京及周边地区引种的绢毛匍匐委陵菜(P. reptans var. sericophylla)、匍匐委陵菜(P. reptans)、匍枝委陵菜(P. flagellaris)和鹅绒委陵菜(P. anserina)4种委陵菜属植物为研究对象,于2018年5月通过匍匐茎无性扦插繁殖获得生长势一致的扦插苗,扦插基质为草炭∶蛭石 = 1∶1。培养2个月后,挑选长势良好、根系发育状态一致的委陵菜扦插苗定植于塑料盆内(规格:长14 cm,宽12 cm,每盆栽培基质重0.60 kg,栽植3~5株)。栽培基质为复合基质(园土∶草炭∶蛭石= 2∶2∶1),土壤饱和含水量74.16%,田间持水量(field water capacity,FC)33.64%,土壤pH 7.28,有机质含量为2.63%。试验期间,环境温度20~35 ℃,白天光照强度25 000~35 000 lx,空气湿度40%~70%。

    在定植后第20天充分浇水,待土壤水分含量自然降至试验要求时,保留盆内长势良好的植株,每盆3株,并剪除全部新生匍匐茎。试验采用裂区设计,主要因子为4种不同委陵菜属植物,即绢毛匍匐委陵菜、匍匐委陵菜、匍枝委陵菜和鹅绒委陵菜,安排在副区;次要因子为不同土壤含水量,设置土壤含水量为田间持水量的25%、50%和75% 3个处理,即25% FC、50% FC和75% FC (表 1),安排在主区(图1)。采用称重法补水,补充每天失去的水分,确保土壤含水量变化不超过目标水平的2%。主次因子均采用随机区组排列,每个小区6盆植物,共有12个处理组合,每个处理组合设置3个重复。

    表  1  不同土壤水分含量处理
    Table  1.  Soil moisture contents under treatments
    处理
    Treatment
    土壤相对含水量
    Relative soil
    moisture contents/%
    土壤含水量
    Soil moisture
    contents/%
    75% FC 75.00 25.23
    50% FC 50.00 16.82
    25% FC 25.00 8.41
     FC,田间持水量。下同。
     FC, Field water capacity; similarly for the following tables and figures.
    下载: 导出CSV 
    | 显示表格
    图  1  裂区试验设计图
    1,匍枝委陵菜;2,绢毛匍匐委陵菜;3,鹅绒委陵菜;4,匍匐委陵菜。
    Figure  1.  Split plot design
    1, P. flagellaris; 2, P. reptans var. sericophylla; 3, P. anserina; 4, P. reptans.

    培养至第15 天,选取每个处理组合的10株植株,测定其株高、匍匐茎数量;小心将植株根部的泥土洗净后擦干水分,分别测定根系长度和植物单株生物量。

    叶片相对含水量采用Weatherley方法测定[11];类胡萝卜素含量采用95%乙醇直接浸提法测定[12];超氧化物歧化酶(SOD)活性采用氮蓝四唑光还原法测定[13];过氧化氢酶(CAT)活性采用紫外吸收法测定[14];过氧化物酶(POD)活性采用愈创木酚法测定[15]。吸光度采用Biomate 3S紫外分光光度计测定吸光值。生理指标测定均重复3 次。

    数据利用Microsoft Office Excel 2013整理绘制,利用SPSS 20.0统计分析软件对同种植物不同处理间及同一处理不同植物间差异进行单因素方差分析,多重比较采用Duncan检验。

    土壤含水量对匍匐委陵菜属植物的株高生长有显著影响(P < 0.05)。 在25% FC处理下4种委陵菜生长缓慢,其中匍匐委陵菜的株高最低,显著低于其他两种土壤含水量(75% FC和50% FC),分别减少30.34%和34.74%;除鹅绒委陵菜外,50% FC条件下植株株高均表现出快速生长(表2)。

    表  2  不同土壤含水量对委陵菜属植物生长发育的影响
    指标 Index植物种类 Species处理 Treatment
    75% FC50% FC25% FC
    株高
    Height/cm
    匍枝委陵菜 P. flagellaris 12.93 ± 1.91ABab 15.43 ± 1.23Aa 12.53 ± 1.01Ab
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    10.87 ± 1.07BCa 11.93 ± 0.76BCa 10.47 ± 0.85Aa
    鹅绒委陵菜 P. anserina 15.50 ± 2.33Aa 13.80 ± 2.60ABa 12.63 ± 1.45Aa
    匍匐委陵菜 P. reptans 8.90 ± 1.85Cb 9.50 ± 1.47Ca 6.20 ± 0.46Bc
    根长
    Root length/cm
    匍枝委陵菜 P. flagellaris 15.70 ± 2.66Ba 14.73 ± 1.10Ca 11.77 ± 2.01Ca
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    20.27 ± 1.72ABa 17.73 ± 3.59BCa 18.07 ± 1.03BCa
    鹅绒委陵菜 P. anserina 22.03 ± 5.78ABa 23.73 ± 2.63ABa 23.83 ± 3.01ABa
    匍匐委陵菜 P. reptans 23.07 ± 3.34Aa 25.23 ± 4.21Aa 26.87 ± 5.70Aa
    总生物量
    Total biomass/g
    匍枝委陵菜 P. flagellaris 1.78 ± 2.26Ba 1.91 ± 0.22Ba 1.42 ± 0.51Aa
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    2.46 ± 0.92Ba 2.56 ± 0.29Ba 2.16 ± 0.75Aa
    鹅绒委陵菜 P. anserina 5.19 ± 1.55Aa 4.04 ± 0.48Aa 2.13 ± 0.68Ab
    匍匐委陵菜 P. reptans 1.60 ± 0.51Ba 1.66 ± 0.73Ba 1.08 ± 0.18Aa
    匍匐茎数量
    Stolon number
    匍枝委陵菜 P. flagellaris 3.00 ± 2.00ABa 4.00 ± 2.00ABa 1.00 ± 1.00Aa
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    3.00 ± 3.46ABa 2.67 ± 2.09BCa 2.67 ± 1.53Aa
    鹅绒委陵菜 P. anserina 0.00Ba 0.00Ca 0.00Aa
    匍匐委陵菜 P. reptans 5.33 ± 1.53Aab 6.00 ± 1.00Aa 2.67 ± 0.58Ab
     同列同一指标不同大写字母表示相同土壤含水量不同植物间差异显著(P < 0.05),同行同一指标不同小写字母表示相同植物不同土壤含水量处理间差异显著(P < 0.05)。
     Different capital letters within the same column of same index indicated significant differences between the same soil moisture treatments for the different plant species at the 0.05 level, and different lowercase letters within the same row of same index indicated significant differences between the different soil moisture treatments for the same plant at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    不同土壤含水量处理下,4种委陵菜的根长均没有显著差异(P > 0.05)。其中,匍枝委陵菜25% FC 根长最短(11.77 cm);匍匐委陵菜25% FC最长,为26.87 cm (表2)。

    土壤含水量对4种委陵菜总生物量的影响与其对植物株高的影响一致,4种委陵菜25% FC植株总生物量均为最低;除鹅绒委陵菜外,50% FC的植株生物量最高。25% FC对鹅绒委陵菜的生长的抑制显著(P < 0.05),与75% FC相比降低58.96% (表2)。

    匍匐茎生长的差异主要表现在植物种类间。鹅绒委陵菜在试验期间未长出匍匐茎,匍匐委陵菜的平均生长量为每盆4.67,并且在25% FC处理下,相较50% FC显著抑制匍匐茎的生长(P < 0.05),仅为50% FC匍匐茎数量的44.50% (表2)。

    不同土壤水分状况下,4种委陵菜的叶片相对含水量不同(图 2)。首先,在25% FC条件下,相较75%FC和50%FC 4种委陵菜植物的叶片相对含水量有明显的下降趋势。其中,匍枝委陵菜在25% FC条件下叶片含水量与其在50% FC条件下相比下降17.01% (P < 0.05);匍匐委陵菜下降10.73% ( P < 0.05);绢毛匍匐委陵菜和鹅绒委陵菜分别下降6.71%和8.34%,但均无显著差异 ( P > 0.05)。其次,4种委陵菜在75% FC与50% FC条件下均无显著差异(P > 0.05)。

    图  2  不同土壤含水量对委陵菜属植物叶片相对含水量的影响
    PZ,匍枝委陵菜;JM,绢毛匍匐委陵菜;ER,鹅绒委陵菜;PF,匍匐委陵菜。不同大写字母表示相同土壤含水量处理下不同植物种间差异显著(P < 0.05),不同小写字母表示相同植物在不同土壤含水量处理间差异显著(P < 0.05)。图3同。
    Figure  2.  Effects of different soil moisture contents on relative water content of leaves of 4 Potentilla species
    PZ, P. flagellaris; JM, P. reptans var. sericophylla; ER, P. anserina; PF, P. reptans. Different capital letters indicated that there are significant differences between the same soil moisture treatments for the different plant species at the 0.05 level, and different lowercase letters indicated that there are significant differences between the different soil moisture treatments for the same plant at the 0.05 level; similarly for Figure 3.

    叶片相对含水量是反映植物自身水分状态的直接指标。其中,相对含水量下降8%~10%表明植物受到轻度水分胁迫,下降10%~20%植物受到中度水分胁迫。因此,上述结果表明:匍枝委陵菜和匍匐委陵菜在25% FC条件下受到中度水分胁迫;鹅绒委陵菜在25% FC条件下受到轻度水分胁迫;绢毛匍匐委陵菜未受到水分胁迫。

    匍匐委陵菜在25% FC水分条件下(图3),SOD活性显著提高(P < 0.05),与50% FC相比,提高76.41%;鹅绒委陵菜在25% FC轻度水分胁迫下,SOD活性与50% FC相比,提高15.48% ( P > 0.05);匍枝委陵菜和绢毛匍匐委陵菜在各个水分条件下无显著差异(P > 0.05)。

    图  3  不同土壤含水量对委陵菜属植物抗氧化防御系统的影响
    Figure  3.  Effects of different soil moisture contents on antioxidant defense system of 4 Potentilla species

    在不同土壤含水量条件下POD活性差异显著(P < 0.05),除鹅绒委陵菜外,其余委陵菜75%FC含量最高,25% FC含量次之,50% FC含量最少。与50% FC相比,匍枝委陵菜、绢毛匍匐委陵菜和匍匐委陵菜POD活性在75% FC处理下显著升高(P < 0.05),其中,匍枝委陵菜升高219.70%;绢毛匍匐委陵菜和匍匐委陵菜分别升高187.75%和26.48% (图3)。

    除匍枝委陵菜外,不同的土壤含水量对其CAT含量无显著差异(P > 0.05)。而匍枝委陵菜在25% FC水分胁迫下显著升高(P < 0.05),与50% FC相比升高47.94% (图3)。

    在类胡萝卜素含量方面,匍枝委陵菜和绢毛匍匐委陵菜在75% FC 和25% FC处理下与50% FC无显著差异(P > 0.05);鹅绒委陵菜在25% FC水分胁迫下,类胡萝卜素含量显著高于75% FC和50% FC(P < 0.05);匍匐委陵菜在25% FC水分胁迫下,类胡萝卜素含量与鹅绒委陵菜相反,显著低于75% FC和50% FC (P < 0.05) (图3)。

    水是植物维持自身生长和发育的物质基础。土壤水分含量直接影响植物生长速度[16]和营养体繁殖能力。幼苗的高度以及单株生物量作为植物生长状况的基本特征值,其高低能较好地反映植物的物质积累和生长势强弱;根长被用来衡量植物从深层土壤中获取水分的能力[17]。在缺水条件下(25% FC),4种委陵菜幼苗的高度、单株生物量和匍匐茎数量均呈现一定程度的下降,这与Rafi等[18]对蜀葵(Alcea rosea)和马鞭草(Verbena officinalis)水分亏缺的研究一致。水分供应不足导致叶片光合速率下降,进而降低叶片出苗率和生物量同化率[19]。在本研究中,4种委陵菜幼苗的根长在不同土壤水分处理下无显著差异(P > 0.05),Sánchez-Blanco等[20]在黄连木(Pistacia chinensis)和连翘(Forsythia suspensa)的研究中曾有过类似的报道,认为这可能是由于根系的渗透调节较快[21],干旱胁迫对根系生长的影响小于对枝条生长的影响导致[17]

    叶片的致死水势和相对含水量是衡量观赏作物叶片脱水耐性的一个重要指标[22-24]。在不同土壤含水量处理下,4种委陵菜叶片的相对含水量不同。与其他3种委陵菜相比,绢毛匍匐委陵菜相对含水量在不同土壤水分处理下相对稳定,代谢活性良好,SOD、CAT等抗氧化防御物质未被激活。这与Rafi 等[3]发现黑心金光菊(Rudbeckia hirta)和蜀葵叶片相对含水量可以在缺水条件下基本保持不变的结果一致,可以认为该因子是这些物种耐旱性的良好指标。

    氧化应激可能是植物营养生长、繁殖和防御之间的主要调节因子,在植物的生存中具有关键作用[25]。过多的活性氧,对蛋白质、脂类和核酸具有高度反应性和毒性,可导致细胞损伤和死亡[26],而植物进化出的包含酶和非酶体系的抗氧化防御系统,对植物体内的活性氧平衡至关重要[27-28]。在本研究中,匍枝委陵菜在不同土壤含水量处理下CAT的显著增加与早前圆果化香(Platycarya longipestagetes)的研究结果相近[29],这是由于植物在胁迫下对H2O2猝灭的高需求所致。鹅绒委陵菜和匍匐委陵菜在缺水条件下,主要依靠SOD清除超氧阴离子自由基(·O2),这一现象在许多其他植物中也有发现[27, 30-31]。这些结果均表明,抗氧化酶活性的增加是委陵菜在水分亏缺下的重要响应机制。

    类胡萝卜素作为疏水性抗氧化剂,可直接猝灭单线态氧或吸收叶绿素的激发能减少单线态氧的产生,减少细胞膜中的活性氧含量[32]。鹅绒委陵菜在轻度缺水条件下含量增加34.15%,Kadkhodaie等[33]研究发现干旱胁迫下芝麻(Sesamum indicum)的类胡萝卜素含量增加,Jisha和Puthur[34]在绿豆(Vigna radiata)的研究中也有同样的发现。同时,本研究中,匍匐委陵菜叶片的类胡萝卜素含量显著减少,与前人的研究矛盾,但这可能由于应激条件下调节光合和光保护色素系统之间的平衡导致[35]

    本研究中不同土壤含水量条件下,4种委陵菜叶片相对含水量的高低直接反映植物自身水分状态,水分亏缺刺激SOD、POD、CAT活性及类胡萝卜素含量的增加,以缓解水分胁迫的破坏作用。但4种委陵菜在相同土壤含水量条件下,自身水分状态的维持能力不同。绢毛匍匐委陵菜因较强的水分维持能力在不同处理下长势良好。匍枝委陵菜、鹅绒委陵菜及匍匐委陵菜通过激活抗氧化防御系统增强了自身的抗胁迫能力,在25% FC条件下,虽受到一定的生长抑制但维持了正常的植物功能。

    [1]

    FERNANDEZ J A, BALENZATEGUI L, BANON S, FRANCO J A. Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period. Scientia Horticulturae, 2006, 107(3): 277-283. doi: 10.1016/j.scienta.2005.07.008

    [2] 白鹏, 刘昌明. 北京市用水结构演变及归因分析. 南水北调与水利科技, 2018, 16(4): 1-6, 34.

    BAI P, LIU C M. Evolution law and attribution analysis of water utilization structure in Beijing. South-to-North Water Transfers and Water Science & Technology, 2018, 16(4): 1-6, 34.

    [3]

    RAFI Z N, KAZEMI F, TEHRANIFAR A. Morpho-physiological and biochemical responses of four ornamental herbaceous species to water stress. Acta Physiologiae Plantarum, 2019: 41.

    [4]

    ZOLLINGER N, KJELGREN R, CERNY-KOENIG T, KOPP K, KOENIG R. Drought responses of six ornamental herbaceous perennials. Scientia Horticulturae, 2006, 109(3): 267-274. doi: 10.1016/j.scienta.2006.05.006

    [5]

    WHITMAN C M, RUNKLE E S. Flowering of newly introduced herbaceous perennial ornamentals in response to photoperiod and low-temperature treatments. Acta Horticulturae, 2013(1000): 353-360.

    [6] 尤凤丽, 梁彦涛, 曲丽娜, 胡敏, 张国发. 大庆地区委陵菜属植物花粉形态研究. 中国农学通报, 2010, 26(16): 337-340.

    YU F L, LIANG Y T, QU L N, HU M, ZHANG G F. Study on pollen morphology of Potentilla species in Daqing area. Chinese Agricultural Science Bulletin, 2010, 26(16): 337-340.

    [7] 王艳荣, 张玮, 赵利君, 赵利清. 典型草原7种植物的放牧退化敏感度的比较研究. 内蒙古大学学报(自然科学版), 2005, 36(4): 432-436.

    WANG Y R, ZHANG W, ZHAO L J, ZHAO L Q. A comparative study on relative sensibility of 7 species to different grazing degradation in the typical steppe. Journal of Inner Mongolia University (Natural science), 2005, 36(4): 432-436.

    [8] 许雪贇, 秦燕燕, 曹建军. 青藏高原东北部二裂委陵菜叶片生态化学计量随海拔变化的特征. 生态学报, 2019, 39(24): 1-8.

    XU X B, QIN Y Y, CAO J J. Variation characteristics of Potentilla bifurca leaf stochiometry along the elevation gradient on the northeastern Qinghai Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(24): 1-8.

    [9] 王旭峰. 5种根蘖型植物根系构型对草甸草原放牧退化演替的生态适应性研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2013.

    WANG X F. Study of ecological adaptation of root architecture of 5 creeping-Rooted plants to degradation succession in the meadow steppe. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2013.

    [10]

    CAMERON R W F, HARRISON-MURRAY R S, ATKINSON C J, JUDD H L. Regulated deficit irrigation-a means to control growth in woody ornamentals. Journal of Horticultural Science & Biotechnology, 2006, 81(3): 435-443.

    [11]

    WEATHERLEY P E. Studies in the water relations of the cotton plant 1. The field measurement of water deficits in leaves. New Phytologist, 1950, 49(1): 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x

    [12]

    XU L, PAN Y, YU F. Effects of water-stress on growth and physiological changes in Pterocarya stenoptera seedlings. Scientia Horticulturae, 2015, 190: 11-23. doi: 10.1016/j.scienta.2015.03.041

    [13]

    GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 1977, 59(2): 309-314. doi: 10.1104/pp.59.2.309

    [14]

    BISWAS A K, CHOUDHURI M A. Differential behaviour of the flag leaf of intact rice plant during ageing. Biochemie Und Physiologie Der Pflanzen, 1978, 173(3): 220-228. doi: 10.1016/S0015-3796(17)30485-7

    [15]

    KAR R K, CHOUDHURI M A. Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla verticillata. Physiologia Plantarum, 1987, 70(4): 729-734. doi: 10.1111/j.1399-3054.1987.tb04331.x

    [16] 马利民, 唐燕萍, 张明, 滕衍行, 刘东燕, 赵建夫. 三峡库区消落区几种两栖植物的适生性评价. 生态学报, 2009, 29(4): 1885-1892. doi: 10.3321/j.issn:1000-0933.2009.04.031

    MA L M, TANG Y P, ZHANG M, TENG Y Y, LIU D Y, ZHAO J F. Evaluation of adaptability of plants in Water-Fluctuation-Zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2009, 29(4): 1885-1892. doi: 10.3321/j.issn:1000-0933.2009.04.031

    [17]

    FRANCO J A, BANON S, VICENTE M J, MIRALLES J, MARTINEZ-SANCHEZ J J. Root development in horticultural plants grown under abiotic stress conditions: A review. Journal of Horticultural Science & Biotechnology, 2011, 86(6): 543-556.

    [18]

    RAFI Z N, KAZEMI F, TEHRANIFAR A. Effects of various irrigation regimes on water use efficiency and visual quality of some ornamental herbaceous plants in the field. Agricultural Water Management, 2019, 212: 78-87. doi: 10.1016/j.agwat.2018.08.012

    [19]

    NAVARRO A, ÁLVAREZ S, CASTILLO M, BAñóN S, SáNCHEZBLANCO M J. Changes in tissue-water relations photosynthetic activity and growth of plants in response to different conditions of water availability. Journal of Horticultural Science & Biotechnology, 2015, 84(5): 541-547.

    [20]

    SáNCHEZ-BLANCO M J, ÁLVAREZ S, ORTUñO M F, RUIZ-SáNCHEZ M C. Root system response to drought and salinity: Root distribution and water transport. Root Engineering. Berlin Heidelberg: Springer, 2014: 325-352.

    [21]

    SHARP R E, POROYKO V, HEJLEK L G, SPOLLEN W G, SPRINGER G K, BOHNERT H J, NGUYEN H T. Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 2004, 55(407): 2343-2351. doi: 10.1093/jxb/erh276

    [22]

    CHYLINSKI W K, LUKASZEWSKA A J, KUTNIK K. Drought response of two bedding plants. Acta Physiologiae Plantarum, 2007, 29(5): 399-406. doi: 10.1007/s11738-007-0073-y

    [23] 卢少云, 陈斯平, 陈斯曼, 梁潇, 郭振飞. 三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化. 园艺学报, 2003, 30(3): 303-306. doi: 10.3321/j.issn:0513-353X.2003.03.012

    LU S Y, CHEN S P, CHEN S M, LIANG X, GUO Z F. Responses of proline content and activity of antioxidant enzymes in warmseason turfgrasses to soil drought stress. Acta Horticulturae Sinica, 2003, 30(3): 303-306. doi: 10.3321/j.issn:0513-353X.2003.03.012

    [24]

    AUGE R M, STODOLA A J W, MOORE J L, KLINGEMAN W E, DUAN X R. Comparative dehydration tolerance of foliage of several ornamental crops. Scientia Horticulturae, 2003, 98(4): 511-516. doi: 10.1016/S0304-4238(03)00037-2

    [25]

    MORALES M, MUNNE-BOSCH S. Oxidative Stress: A master regulator of plant trade-offs? Trends in Plant Science, 2016, 21(12): 996-999. doi: 10.1016/j.tplants.2016.09.002

    [26]

    GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016

    [27]

    TüRKAN İ, BOR M, ÖZDEMIR F, KOCA H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 2005, 168(1): 223-231. doi: 10.1016/j.plantsci.2004.07.032

    [28]

    DARVIZHEH H, ZAHEDI M, ABBASZADEH B, RAZMJOO J. Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Scientia Horticulturae, 2019, 247: 390-399. doi: 10.1016/j.scienta.2018.12.037

    [29]

    LIU C, LIU Y, GUO K, FAN D, LI G, ZHENG Y, YU L, YANG R. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 2011, 71(2): 174-183. doi: 10.1016/j.envexpbot.2010.11.012

    [30]

    CHEN J W, CAO K F. Changes in activities of antioxidative system and monoterpene and photochemical efficiency during seasonal leaf senescence in Hevea brasiliensis trees. Acta Physiologiae Plantarum, 2008, 30(1): 1-9.

    [31]

    ZHU Z, LIANG Z, HAN R. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. plants. Environmental & Experimental Botany, 2009, 66(2): 326-333.

    [32]

    CHEN X, HAN H, JIANG P, NIE L, BAO H, FAN P, LV S, FENG J, LI Y. Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant & Cell Physiology, 2011, 52(5): 909-921.

    [33]

    KADKHODAIE A, ZAHEDI M, RAZMJOO J, PESSARAKLI M. Changes in some anti-oxidative enzymes and physiological indices among sesame genotypes (Sesamum indicum L.) in response to soil water deficits under field conditions. Acta Physiologiae Plantarum, 2014, 36(3): 641-650. doi: 10.1007/s11738-013-1442-3

    [34]

    JISHA K C, PUTHUR J T. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiology and Molecular Biology of Plants, 2014, 20(3): 303-312. doi: 10.1007/s12298-014-0234-6

    [35]

    SIRCELJ H, TAUSZ M, GRILL D, BATIC F. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 2005, 162(12): 1308-1318. doi: 10.1016/j.jplph.2005.01.018

  • 图  1   裂区试验设计图

    1,匍枝委陵菜;2,绢毛匍匐委陵菜;3,鹅绒委陵菜;4,匍匐委陵菜。

    Figure  1.   Split plot design

    1, P. flagellaris; 2, P. reptans var. sericophylla; 3, P. anserina; 4, P. reptans.

    图  2   不同土壤含水量对委陵菜属植物叶片相对含水量的影响

    PZ,匍枝委陵菜;JM,绢毛匍匐委陵菜;ER,鹅绒委陵菜;PF,匍匐委陵菜。不同大写字母表示相同土壤含水量处理下不同植物种间差异显著(P < 0.05),不同小写字母表示相同植物在不同土壤含水量处理间差异显著(P < 0.05)。图3同。

    Figure  2.   Effects of different soil moisture contents on relative water content of leaves of 4 Potentilla species

    PZ, P. flagellaris; JM, P. reptans var. sericophylla; ER, P. anserina; PF, P. reptans. Different capital letters indicated that there are significant differences between the same soil moisture treatments for the different plant species at the 0.05 level, and different lowercase letters indicated that there are significant differences between the different soil moisture treatments for the same plant at the 0.05 level; similarly for Figure 3.

    图  3   不同土壤含水量对委陵菜属植物抗氧化防御系统的影响

    Figure  3.   Effects of different soil moisture contents on antioxidant defense system of 4 Potentilla species

    表  1   不同土壤水分含量处理

    Table  1   Soil moisture contents under treatments

    处理
    Treatment
    土壤相对含水量
    Relative soil
    moisture contents/%
    土壤含水量
    Soil moisture
    contents/%
    75% FC 75.00 25.23
    50% FC 50.00 16.82
    25% FC 25.00 8.41
     FC,田间持水量。下同。
     FC, Field water capacity; similarly for the following tables and figures.
    下载: 导出CSV

    表  2   不同土壤含水量对委陵菜属植物生长发育的影响

    指标 Index植物种类 Species处理 Treatment
    75% FC50% FC25% FC
    株高
    Height/cm
    匍枝委陵菜 P. flagellaris 12.93 ± 1.91ABab 15.43 ± 1.23Aa 12.53 ± 1.01Ab
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    10.87 ± 1.07BCa 11.93 ± 0.76BCa 10.47 ± 0.85Aa
    鹅绒委陵菜 P. anserina 15.50 ± 2.33Aa 13.80 ± 2.60ABa 12.63 ± 1.45Aa
    匍匐委陵菜 P. reptans 8.90 ± 1.85Cb 9.50 ± 1.47Ca 6.20 ± 0.46Bc
    根长
    Root length/cm
    匍枝委陵菜 P. flagellaris 15.70 ± 2.66Ba 14.73 ± 1.10Ca 11.77 ± 2.01Ca
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    20.27 ± 1.72ABa 17.73 ± 3.59BCa 18.07 ± 1.03BCa
    鹅绒委陵菜 P. anserina 22.03 ± 5.78ABa 23.73 ± 2.63ABa 23.83 ± 3.01ABa
    匍匐委陵菜 P. reptans 23.07 ± 3.34Aa 25.23 ± 4.21Aa 26.87 ± 5.70Aa
    总生物量
    Total biomass/g
    匍枝委陵菜 P. flagellaris 1.78 ± 2.26Ba 1.91 ± 0.22Ba 1.42 ± 0.51Aa
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    2.46 ± 0.92Ba 2.56 ± 0.29Ba 2.16 ± 0.75Aa
    鹅绒委陵菜 P. anserina 5.19 ± 1.55Aa 4.04 ± 0.48Aa 2.13 ± 0.68Ab
    匍匐委陵菜 P. reptans 1.60 ± 0.51Ba 1.66 ± 0.73Ba 1.08 ± 0.18Aa
    匍匐茎数量
    Stolon number
    匍枝委陵菜 P. flagellaris 3.00 ± 2.00ABa 4.00 ± 2.00ABa 1.00 ± 1.00Aa
    绢毛匍匐委陵菜
    P. reptans var. sericophylla
    3.00 ± 3.46ABa 2.67 ± 2.09BCa 2.67 ± 1.53Aa
    鹅绒委陵菜 P. anserina 0.00Ba 0.00Ca 0.00Aa
    匍匐委陵菜 P. reptans 5.33 ± 1.53Aab 6.00 ± 1.00Aa 2.67 ± 0.58Ab
     同列同一指标不同大写字母表示相同土壤含水量不同植物间差异显著(P < 0.05),同行同一指标不同小写字母表示相同植物不同土壤含水量处理间差异显著(P < 0.05)。
     Different capital letters within the same column of same index indicated significant differences between the same soil moisture treatments for the different plant species at the 0.05 level, and different lowercase letters within the same row of same index indicated significant differences between the different soil moisture treatments for the same plant at the 0.05 level.
    下载: 导出CSV
  • [1]

    FERNANDEZ J A, BALENZATEGUI L, BANON S, FRANCO J A. Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period. Scientia Horticulturae, 2006, 107(3): 277-283. doi: 10.1016/j.scienta.2005.07.008

    [2] 白鹏, 刘昌明. 北京市用水结构演变及归因分析. 南水北调与水利科技, 2018, 16(4): 1-6, 34.

    BAI P, LIU C M. Evolution law and attribution analysis of water utilization structure in Beijing. South-to-North Water Transfers and Water Science & Technology, 2018, 16(4): 1-6, 34.

    [3]

    RAFI Z N, KAZEMI F, TEHRANIFAR A. Morpho-physiological and biochemical responses of four ornamental herbaceous species to water stress. Acta Physiologiae Plantarum, 2019: 41.

    [4]

    ZOLLINGER N, KJELGREN R, CERNY-KOENIG T, KOPP K, KOENIG R. Drought responses of six ornamental herbaceous perennials. Scientia Horticulturae, 2006, 109(3): 267-274. doi: 10.1016/j.scienta.2006.05.006

    [5]

    WHITMAN C M, RUNKLE E S. Flowering of newly introduced herbaceous perennial ornamentals in response to photoperiod and low-temperature treatments. Acta Horticulturae, 2013(1000): 353-360.

    [6] 尤凤丽, 梁彦涛, 曲丽娜, 胡敏, 张国发. 大庆地区委陵菜属植物花粉形态研究. 中国农学通报, 2010, 26(16): 337-340.

    YU F L, LIANG Y T, QU L N, HU M, ZHANG G F. Study on pollen morphology of Potentilla species in Daqing area. Chinese Agricultural Science Bulletin, 2010, 26(16): 337-340.

    [7] 王艳荣, 张玮, 赵利君, 赵利清. 典型草原7种植物的放牧退化敏感度的比较研究. 内蒙古大学学报(自然科学版), 2005, 36(4): 432-436.

    WANG Y R, ZHANG W, ZHAO L J, ZHAO L Q. A comparative study on relative sensibility of 7 species to different grazing degradation in the typical steppe. Journal of Inner Mongolia University (Natural science), 2005, 36(4): 432-436.

    [8] 许雪贇, 秦燕燕, 曹建军. 青藏高原东北部二裂委陵菜叶片生态化学计量随海拔变化的特征. 生态学报, 2019, 39(24): 1-8.

    XU X B, QIN Y Y, CAO J J. Variation characteristics of Potentilla bifurca leaf stochiometry along the elevation gradient on the northeastern Qinghai Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(24): 1-8.

    [9] 王旭峰. 5种根蘖型植物根系构型对草甸草原放牧退化演替的生态适应性研究. 呼和浩特: 内蒙古农业大学硕士学位论文, 2013.

    WANG X F. Study of ecological adaptation of root architecture of 5 creeping-Rooted plants to degradation succession in the meadow steppe. Master Thesis. Hohhot: Inner Mongolia Agricultural University, 2013.

    [10]

    CAMERON R W F, HARRISON-MURRAY R S, ATKINSON C J, JUDD H L. Regulated deficit irrigation-a means to control growth in woody ornamentals. Journal of Horticultural Science & Biotechnology, 2006, 81(3): 435-443.

    [11]

    WEATHERLEY P E. Studies in the water relations of the cotton plant 1. The field measurement of water deficits in leaves. New Phytologist, 1950, 49(1): 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x

    [12]

    XU L, PAN Y, YU F. Effects of water-stress on growth and physiological changes in Pterocarya stenoptera seedlings. Scientia Horticulturae, 2015, 190: 11-23. doi: 10.1016/j.scienta.2015.03.041

    [13]

    GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 1977, 59(2): 309-314. doi: 10.1104/pp.59.2.309

    [14]

    BISWAS A K, CHOUDHURI M A. Differential behaviour of the flag leaf of intact rice plant during ageing. Biochemie Und Physiologie Der Pflanzen, 1978, 173(3): 220-228. doi: 10.1016/S0015-3796(17)30485-7

    [15]

    KAR R K, CHOUDHURI M A. Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla verticillata. Physiologia Plantarum, 1987, 70(4): 729-734. doi: 10.1111/j.1399-3054.1987.tb04331.x

    [16] 马利民, 唐燕萍, 张明, 滕衍行, 刘东燕, 赵建夫. 三峡库区消落区几种两栖植物的适生性评价. 生态学报, 2009, 29(4): 1885-1892. doi: 10.3321/j.issn:1000-0933.2009.04.031

    MA L M, TANG Y P, ZHANG M, TENG Y Y, LIU D Y, ZHAO J F. Evaluation of adaptability of plants in Water-Fluctuation-Zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2009, 29(4): 1885-1892. doi: 10.3321/j.issn:1000-0933.2009.04.031

    [17]

    FRANCO J A, BANON S, VICENTE M J, MIRALLES J, MARTINEZ-SANCHEZ J J. Root development in horticultural plants grown under abiotic stress conditions: A review. Journal of Horticultural Science & Biotechnology, 2011, 86(6): 543-556.

    [18]

    RAFI Z N, KAZEMI F, TEHRANIFAR A. Effects of various irrigation regimes on water use efficiency and visual quality of some ornamental herbaceous plants in the field. Agricultural Water Management, 2019, 212: 78-87. doi: 10.1016/j.agwat.2018.08.012

    [19]

    NAVARRO A, ÁLVAREZ S, CASTILLO M, BAñóN S, SáNCHEZBLANCO M J. Changes in tissue-water relations photosynthetic activity and growth of plants in response to different conditions of water availability. Journal of Horticultural Science & Biotechnology, 2015, 84(5): 541-547.

    [20]

    SáNCHEZ-BLANCO M J, ÁLVAREZ S, ORTUñO M F, RUIZ-SáNCHEZ M C. Root system response to drought and salinity: Root distribution and water transport. Root Engineering. Berlin Heidelberg: Springer, 2014: 325-352.

    [21]

    SHARP R E, POROYKO V, HEJLEK L G, SPOLLEN W G, SPRINGER G K, BOHNERT H J, NGUYEN H T. Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 2004, 55(407): 2343-2351. doi: 10.1093/jxb/erh276

    [22]

    CHYLINSKI W K, LUKASZEWSKA A J, KUTNIK K. Drought response of two bedding plants. Acta Physiologiae Plantarum, 2007, 29(5): 399-406. doi: 10.1007/s11738-007-0073-y

    [23] 卢少云, 陈斯平, 陈斯曼, 梁潇, 郭振飞. 三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化. 园艺学报, 2003, 30(3): 303-306. doi: 10.3321/j.issn:0513-353X.2003.03.012

    LU S Y, CHEN S P, CHEN S M, LIANG X, GUO Z F. Responses of proline content and activity of antioxidant enzymes in warmseason turfgrasses to soil drought stress. Acta Horticulturae Sinica, 2003, 30(3): 303-306. doi: 10.3321/j.issn:0513-353X.2003.03.012

    [24]

    AUGE R M, STODOLA A J W, MOORE J L, KLINGEMAN W E, DUAN X R. Comparative dehydration tolerance of foliage of several ornamental crops. Scientia Horticulturae, 2003, 98(4): 511-516. doi: 10.1016/S0304-4238(03)00037-2

    [25]

    MORALES M, MUNNE-BOSCH S. Oxidative Stress: A master regulator of plant trade-offs? Trends in Plant Science, 2016, 21(12): 996-999. doi: 10.1016/j.tplants.2016.09.002

    [26]

    GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016

    [27]

    TüRKAN İ, BOR M, ÖZDEMIR F, KOCA H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 2005, 168(1): 223-231. doi: 10.1016/j.plantsci.2004.07.032

    [28]

    DARVIZHEH H, ZAHEDI M, ABBASZADEH B, RAZMJOO J. Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Scientia Horticulturae, 2019, 247: 390-399. doi: 10.1016/j.scienta.2018.12.037

    [29]

    LIU C, LIU Y, GUO K, FAN D, LI G, ZHENG Y, YU L, YANG R. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 2011, 71(2): 174-183. doi: 10.1016/j.envexpbot.2010.11.012

    [30]

    CHEN J W, CAO K F. Changes in activities of antioxidative system and monoterpene and photochemical efficiency during seasonal leaf senescence in Hevea brasiliensis trees. Acta Physiologiae Plantarum, 2008, 30(1): 1-9.

    [31]

    ZHU Z, LIANG Z, HAN R. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. plants. Environmental & Experimental Botany, 2009, 66(2): 326-333.

    [32]

    CHEN X, HAN H, JIANG P, NIE L, BAO H, FAN P, LV S, FENG J, LI Y. Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant & Cell Physiology, 2011, 52(5): 909-921.

    [33]

    KADKHODAIE A, ZAHEDI M, RAZMJOO J, PESSARAKLI M. Changes in some anti-oxidative enzymes and physiological indices among sesame genotypes (Sesamum indicum L.) in response to soil water deficits under field conditions. Acta Physiologiae Plantarum, 2014, 36(3): 641-650. doi: 10.1007/s11738-013-1442-3

    [34]

    JISHA K C, PUTHUR J T. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiology and Molecular Biology of Plants, 2014, 20(3): 303-312. doi: 10.1007/s12298-014-0234-6

    [35]

    SIRCELJ H, TAUSZ M, GRILL D, BATIC F. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology, 2005, 162(12): 1308-1318. doi: 10.1016/j.jplph.2005.01.018

  • 期刊类型引用(12)

    1. 吕博文,李军乔,闫格,王秀梅,李涛. 蕨麻响应盐碱胁迫的形态及转录组分析. 种子. 2024(01): 14-28 . 百度学术
    2. 赵茜蕾,斗尕杰布,沈羽彤,扎西加措,孙子墨,唐凤霓,廖雅芳,刘坤博,党泽加,斗拉加,孙义. 基于无人机采集样本预测黄河源区小花草玉梅的时空分布. 草业科学. 2024(02): 308-321 . 本站查看
    3. 李霜,黄娟娟,裴向军,周立宏,陈正峰,胡友邦,赵春章. 双聚材料对干旱条件下多年生黑麦草幼苗生长的影响. 草地学报. 2024(03): 793-803 . 百度学术
    4. 石立,张乃畅,耿启明,寇晓梅,曹永翔. 拉林铁路及沿线气候因子对潜在蒸散量的影响. 水利水电技术(中英文). 2024(S2): 304-310 . 百度学术
    5. 张银凤,蔡洪月,彭金根,刘学军,谢利娟,张华,王艳梅. 深圳城市公园不同栽植环境对毛棉杜鹃生长的影响. 南京林业大学学报(自然科学版). 2023(02): 197-204 . 百度学术
    6. 王峥,钱璟,沈思栋,曾思琦,范舒欣,李霞,董丽. 公园绿地微生境对绢毛匍匐委陵菜花期生长发育的影响. 草原与草坪. 2023(02): 42-50 . 百度学术
    7. 揣燕,向春阳,赵秋,田秀平,杜锦. 10个毛苕子品种(品系)叶片的生理指标及生物量比较. 草业科学. 2023(06): 1600-1607 . 本站查看
    8. 张欣雨,朱泽群,袁雅欣,姬文翔,宋岑雨,陆洪伟,赵茜蕾,卞庆瑶,孙子墨,宜树华,孙义. 基于组合物种分布模型的黄河源区鹅绒委陵菜适宜生境及其对气候变化的响应. 草业科学. 2022(02): 254-267 . 本站查看
    9. 张云霞,杨浩哲. 河南省归化植物一新记录种:银背委陵菜(Potentilla argentea L.). 郑州师范教育. 2022(04): 13-16 . 百度学术
    10. 孙芹,徐学欣,邓肖,刘帅,贾靖,孟繁港,郝天佳,赵长星. NaCl胁迫对不同小麦品种幼苗抗氧化特性的影响. 青岛农业大学学报(自然科学版). 2022(04): 235-240+271 . 百度学术
    11. 张桂菊,韩毅. 不同土壤水分条件对鸢尾叶片形态影响的研究. 江西农业学报. 2022(11): 39-44 . 百度学术
    12. 李玲,孙宇婷,任杏,莫丽娜,侯一航,苑泽宁. 不同生长期薰衣草枝叶功能性状及其与环境因子的相关性. 东北林业大学学报. 2021(12): 21-28 . 百度学术

    其他类型引用(8)

图(3)  /  表(2)
计量
  • PDF下载量:  54
  • 文章访问数:  2180
  • HTML全文浏览量:  1136
  • 被引次数: 20
文章相关
  • 通讯作者: 钱永强
  • 收稿日期:  2019-10-10
  • 接受日期:  2019-11-12
  • 网络出版日期:  2019-11-19
  • 发布日期:  2019-12-31

目录

/

返回文章
返回