甘露寡糖添加方式对哺乳期犊牛瘤胃细菌菌群结构的影响
English
-
作为反刍动物的主要消化器官,瘤胃中生存着由细菌、真菌、原虫和古菌组成的多种微生物群,它们在瘤胃中协同作用降解饲料,向宿主提供挥发性脂肪酸(volatile fatty acid, VFA)、蛋白质、矿物质以及维生素等营养物质[1],并调节免疫系统[2]。研究表明,幼龄反刍动物的瘤胃在刚出生时瘤胃内就有微生物存活[3],但犊牛的瘤胃在解剖学和生理学上都发育不全[4-5],且在这个阶段犊牛的饮食主要是牛奶:牛奶通过食管沟绕过瘤胃进入皱胃[4]。从第3周开始,依赖于瘤胃微生物群的建立和活性,犊牛摄取固体食物,从一个功能性的非反刍动物到一个真正的反刍动物。在这一过渡阶段(第3 – 8周),固体摄入量增加,这种增加的底物被微生物降解,导致瘤胃内VFA浓度增加,这些变化促进了犊牛形态和生理的变化 [4-6]。基于犊牛在断奶前瘤胃细菌菌群变化是动态的,并且与断奶过程中的饮食变化有关[7],Dias等[8]研究报道称,早期犊牛胃肠道微生物区系的构建,有利于成年奶牛稳定微生物区系下奶牛的生理健康及生产性能。
功能性寡糖在反刍动物中已有初步研究[9-10],其对胃肠道微生物菌群的影响是通过多条途径实现的:一是作为营养物质被有益菌消化利用,促进有益菌的增殖;二是通过有益微生物的代谢产物或功能性寡糖的分解产物降低整个肠道的pH,抑制有害菌的增殖[11]。饲料中添加的功能性寡糖通过小肠时,与侵入病原微生物的碳水化合物基团相结合,使病原微生物既不能繁殖,又不能附着在犊牛体内,被安全排出体外,而对乳酸菌等有益菌有促进作用[12]。甘露寡糖(mannan oligosaccharides, MOS)是β-葡聚糖,其化学结构主要分为β-1,3葡聚糖和β-1,6葡聚糖,不完全同于淀粉的化学结构和纤维素的β-1,4葡聚糖的化学结构。本研究以哺乳期犊牛为试验对象,探讨甘露寡糖不同添加方式对犊牛瘤胃细菌菌群构建的影响,对提高哺乳期犊牛瘤胃健康及发育具有一定理论与现实意义。
1. 材料与方法
1.1 试验动物及管理
20头试验犊牛在犊牛岛单独饲喂,按其出生体重的10%饲喂初乳,日喂3次,前7 d只饲喂初乳和混合牛奶。采用单因素完全随机区组设计,随机分为4组,CR组为对照组,饮用乳及开食料中均不添加甘露寡糖;ORa组在饮用乳中添加5 g甘露寡糖,开食料中不添加甘露寡糖;ORb组在饮用乳中不添加甘露寡糖,开食料中添加5 g甘露寡糖;ORc组在饮用乳及开食料中各添加2.5 g甘露寡糖。各组犊牛饲喂相同量的牛奶,周龄为1、2、3、4周的犊牛饲喂牛奶量分别为每头每天4、5、6、7 kg。试验从初生到断奶,共56 d,试验期间采食开食料组成及营养水平如表1所列,自由饮水。
表 1 开食料组成和营养水平(风干基础)Table 1. Composition and nutrient levels of starter diet (air-dry basis)原料
Ingredients含量
Content/%营养水平
Nutrient level含量
Content玉米
Corn55.2 总能
Gross energy/
(MJ·kg–1)14.9 豆粕
Soybean meal26.0 粗蛋白质
Crude protein/%18.5 麸皮
Wheat bran13.0 粗脂肪
Ether extract/%2.4 石粉
Linestone2.0 粗纤维
Crude fiber/%9.3 磷酸氢钙
CaHPO41.4 粗灰分
Ash/%7.5 氯化钠
NaCl1.3 钙
Ca/%1.3 预混料
Premix1.1 总磷
Total phosphorus/%0.6 合计
Total100.0 1.2 试验方法
1.2.1 瘤胃菌体样品采集
试验第56天晨饲前,试验犊牛肌肉注射4%戊巴比妥钠溶液(40 mg·kg–1体重),完全麻醉后颈静脉放血法处死,打开胸腔和腹腔,取瘤胃内容物,样品于–80 ℃冷冻保存,待后续分析[13]。
1.2.2 瘤胃菌体DNA提取与扩增
DNA采用试剂盒提取,试剂盒采购于南京建成生物工程研究所,提取步骤参照试剂盒中的说明书操作。从样本中提取基因组DNA后,按指定测序区域,合成带有barcode的特异引物,或合成带有错位碱基的融合引物。将PCR扩增产物切胶回收,用QuantiFluorTM-ST蓝色荧光定量系统(Promega公司)进行检测定量。
1.2.3 16s rDNA测序
将纯化的扩增产物进行等量混合,连接测序接头,构建测序文库,Miseq上机测序。
1.3 数据分析
采用Excel 2010对细菌OTU、多样性指数及门、属水平丰富度进行初步处理,采用SAS 8.2统计软件中的随机区组设计分析对细菌OTU、多样性指数及门、属水平丰富度进行P值、SE的计算。数据由平均值 ± 标准误(Mean ± SE)表示。
2. 结果与分析
2.1 菌群Alpha多样性分析
2.1.1 OTU分析
选用相似水平为97%的OTU样本表制成Venn图(图1),CR组犊牛瘤胃细菌OTU数为412,特有的OTU数为2;ORa组犊牛瘤胃细菌OTU数为401,特有的OTU数为6;ORb组犊牛瘤胃细菌OTU数为396,特有的OTU数为5;ORc组犊牛瘤胃细菌OTU数为436,特有的OTU数为10,4个组犊牛瘤胃细菌共有OTU数为316。其中,ORb组犊牛瘤胃细菌OTUs显著低于ORc (P < 0.05),稍低于CR组和ORa组( P > 0.05)。表明甘露寡糖添加方式会对哺乳期犊牛瘤胃细菌总数会产生一定程度的影响。
图 1 奶牛瘤胃细菌菌群OTU韦恩图CR组为对照组,饮用乳及开食料中均不添加甘露寡糖;ORa组在饮用乳中添加5 g甘露寡糖,开食料中不添加甘露寡糖;ORb组在饮用乳中不添加甘露寡糖,开食料中添加5 g甘露寡糖;ORc组在饮用乳及开食料中各添加2.5 g甘露寡糖;下同。Figure 1. Venn graph of rumen bacterial flora OTUs in dairy cowsThe control group (CR) was fed a basal diet and milk with no MOS added. In ORa group, 5 g MOS was added to the milk rather than the diet. In the ORb group, 5 g MOS was added to the diet rather than the milk. In ORc group, 2.5 g MOS was added to both the milk and diet, respectively; this is applicable for the following tables and figures as well.2.1.2 Alpha多样性指数分析
4个处理组物种覆盖率均为99.7%以上,说明数据可科学充分的反映犊牛瘤胃菌群的实际情况(表2)。同组之间Chaol值、Shannon-Weiner指数无显著差异,表明不同的甘露寡糖添加方式对哺乳期犊牛瘤胃细菌菌群丰富度和多样性未产生显著影响(P > 0.05)。
表 2 样品多样性指数Table 2. Diversity indexes of samples项目 Item 处理组 Treatment CR ORa ORb ORc Chao1指数 Chao 1 index 292.12 ± 34.78a 284.13 ± 28.91a 266.06 ± 31.10a 299.65 ± 14.01a 香农指数 Shannon-Weiner index 4.19 ± 0.28a 4.16 ± 0.55a 3.91 ± 0.59a 4.32 ± 0.50a 覆盖率 Goods_coverage index/% 99.80 ± 0.00a 99.80 ± 0.00a 99.80 ± 0.00a 99.80 ± 0.00a 同行不同小写字母表示甘露寡糖不同添加方式差异显著(P < 0.05),不同大写字母表示甘露寡糖不同添加方式差异极显著( P < 0.01); 表3、表4同。
The data within the same row without letters indicate no significant differences between the different MOS addition ways at the 0.05 level; and different lowercase letters within the same row indicate significant differences between the different MOS addition ways at the 0.05 level; and different capital letters within the same row indicate significant differences between the different MOS addition ways at the 0.01 level; this is applicable for Table 3 and Table 4 as well.2.2 瘤胃细菌菌群结构分析
2.2.1 门水平
哺乳期犊牛瘤胃共涉及15个菌门,其中拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)为主要优势菌门,二者占到总菌群比例的87%以上,哺乳期犊牛瘤胃拟杆菌门组间差异不显著,ORb组犊牛瘤胃厚壁菌门的相对丰度显著低于CR组和ORa组(P < 0.05),稍低于ORc组( P > 0.05),其他组间无显著差异( 表3)。ORb组犊牛瘤胃放线菌门(Actinobacteria)的相对丰度显著低于其他3组(P < 0.05),ORa组与ORc组犊牛瘤胃放线菌门丰度稍低于CR组( P > 0.05)。ORb组犊牛瘤胃变形菌门(Proteobacteria)的相对丰度高达10.915%,极显著高于CR组(0.205%)和ORa组(0.377%) ( P < 0.01),显著高于ORc组(1.653%) ( P < 0.05),CR组、ORa组、ORc组犊牛瘤胃变形菌门丰度组间差异不显著。ORb组和ORc组犊牛瘤胃互养菌门(Synergistetes)的相对丰度都极显著高于CR组( P < 0.01)、显著高于ORa组( P < 0.05),ORb组和ORc组间差异不显著。综合可知,在门水平上,甘露寡糖不同添加方式对哺乳期犊牛瘤胃细菌菌群具有不同的影响,ORb组犊牛瘤胃细菌影响最为明显,ORa组、ORc组犊牛瘤胃细菌影响不明显。与对照组相比,ORb组颗粒料中添加甘露寡糖显著降低了厚壁菌门与放线菌门的丰度,极显著提高了变形菌门丰度,优势菌门增加为3种,分别为拟杆菌门、厚壁菌门与变形菌门。
表 3 甘露寡糖对犊牛瘤胃菌群在门水平相对丰度的影响Table 3. Effects of mannan oligosaccharides on the relative abundance of rumen microflora ofdairy calves at the phylum level% 门 Phylum 处理组 Treatment CR ORa ORb ORc 拟杆菌门 Bacteroidetes 63.477 ± 0.043a 59.236 ± 0.071a 68.383 ± 0.035a 66.222 ± 0.070a 厚壁菌门 Firmicutes 32.720 ± 0.037a 37.737 ± 0.070a 19.519 ± 0.039b 29.465 ± 0.070 放线菌门 Actinobacteria 3.376 ± 0.012a 2.490 ± 0.006a 0.893 ± 0.004b 2.423 ± 0.010a 变形菌门 Proteobacteria 0.205 ± 0.000Bb 0.377 ± 0.001Bb 10.915 ± 0.032Aa 1.653 ± 0.008Ab 纤维杆菌门 Fibrobacteres 0.133 ± 0.001a 0.055 ± 0.000a 0.120 ± 0.000a 0.106 ± 0.000a 互养菌门 Synergistetes 0.023 ± 0.000a 0.035 ± 0.000a 0.096 ± 0.000a 0.067 ± 0.000a 柔膜菌门 Tenericutes 0.020 ± 0.000a 0.014 ± 0.000a 0.003 ± 0.000a 0.007 ± 0.000a 螺旋菌门 Spirochaetae 0.019 ± 0.000a 0.016 ± 0.000a 0.014 ± 0.000 0.036 ± 0.000a 黏胶球形菌门 Lentisphaerae 0.009 ± 0.000a 0.005 ± 0.000a 0.007 ± 0.000a 0.006 ± 0.000a 疣微菌门 Verrucomicrobia 0.005 ± 0.000a 0.000 ± 0.000a 0.011 ± 0.000a 0.004 ± 0.000a 蓝藻细菌 Cyanobacteria 0.005 ± 0.000a 0.033 ± 0.000a 0.037 ± 0.000a 0.011 ± 0.000a 梭杆菌门 Fusobacteria 0.001 ± 0.000a 0.001 ± 0.000a 0.000 ± 0.000a 0.000 ± 0.000a 广古菌门 Euryarchaeota 0.001 ± 0.000a 0.000 ± 0.000a 0.000 ± 0.000a 0.000 ± 0.000a 迷踪菌门 Elusimicrobia 0.000 ± 0.000a 0.000 ± 0.000a 0.002 ± 0.000a 0.000 ± 0.000a 2.2.2 属水平
4个处理组犊牛瘤胃细菌在属水平共涉及134个属,其中优势微生物菌属(至少有1个处理组的相对丰度值大于1%)包含普雷沃氏菌属-7(Prevotella_7)、未识别的属、罗斯氏菌属(Roseburia)、小杆菌属(Dialister)、琥珀酸弧菌科(Succinivibrionaceae)、瘤胃球菌属(Acidaminococcus)、毛螺菌科、普雷沃氏菌属-9等,非优势菌或未被鉴别的序列约占菌群总数的27.5%。其中,ORb组犊牛瘤胃普雷沃氏-7属的相对丰度显著高于ORc组(P < 0.05),同样高于CR组和ORa组,但差异不显著( 表4)。ORb组犊牛瘤胃小杆菌属的相对丰度极显著低于CR组(P <0.01),ORa组和ORc组犊牛瘤胃小杆菌属丰度同样低于CR组,但差异不显著。ORb组犊牛瘤胃氨基酸球菌属的相对丰度显著高于ORa组( P < 0.05),高于CR组、ORc组,但组间差异不显著。ORb组犊牛瘤胃优杆菌属( Eubacterium)的相对丰度显著低于CR组、ORa组(P < 0.05),ORc组犊牛瘤胃优杆菌属与其他组没有显著性差异( P > 0.05)。ORc组犊牛瘤胃脱硫弧菌属( Desulfovibrio)的相对丰度显著高于CR组(P < 0.05),ORa组与ORb组犊牛瘤胃脱硫弧菌属同样高于CR组,但差异不显著。ORb组(10.60%)犊牛瘤胃琥珀酸弧菌科的相对丰度极显著高于CR组(0.01%)、ORa组(0.04%)和ORc组(0.84%) ( P < 0.01),其他3组间差异不显著。结果表明,在属水平上,甘露寡糖不同添加方式导致哺乳期犊牛瘤胃细菌菌群结发生了改变,其中甘露寡糖不同添加方式对犊牛瘤胃小杆菌属和脱硫弧菌属在瘤胃内丰度均产生了影响,但ORa组与ORc组影响不及ORb组;且ORb组犊牛瘤胃功能性菌属普雷沃氏-7属、氨基酸球菌属、优杆菌属和琥珀酸弧菌科-UCG-001属等均发生显著变化。
表 4 甘露寡糖对犊牛瘤胃菌群在属水平相对丰度的影响Table 4. Effects of mannan oligosaccharides on the relative abundance in rumen microflora ofdairy calves at the genus level% 属 Genus 处理组 Treatment CR ORa ORb ORc 普雷沃氏-7属 Prevotella_7 47.97 ± 0.06ab 46.97 ± 0.08ab 59.86 ± 0.04a 44.87 ± 0.06b 罗斯氏菌属 Roseburia 7.07 ± 0.04a 12.25 ± 0.04a 2.22 ± 0.01a 9.00 ± 0.05a 小杆菌属 Dialister 6.62 ± 0.01A 4.67 ± 0.02AB 3.04 ± 0.01B 5.36 ± 0.02AB 瘤胃球菌属 Ruminococcaceae_UCG-014 3.05 ± 0.01a 3.69 ± 0.02a 2.10 ± 0.01a 1.57 ± 0.01a 毛螺菌科 _NK3A20属 Lachnospiraceae_NK3A20_group 2.91 ± 0.00a 2.54 ± 0.00a 2.10 ± 0.01a 1.79 ± 0.01a 普雷沃氏-9属 Prevotella_9 2.71 ± 0.02a 0.36 ± 0.00a 0.23 ± 0.00a 3.56 ± 0.03a 互养球菌属 Syntrophococcus 0.96 ± 0.00a 1.65 ± 0.00a 0.47 ± 0.00a 0.89 ± 0.00a 假丁酸弧菌属 Pseudobutyrivibrio 0.87 ± 0.00a 0.90 ± 0.00a 0.21 ± 0.00a 0.41 ± 0.00a 氨基酸球菌属 Acidaminococcus 0.41 ± 0.00ab 0.19 ± 0.00b 0.73 ± 0.00a 0.59 ± 0.00ab 奇异菌属 Atopobium 0.39 ± 0.00a 0.17 ± 0.00a 0.05 ± 0.00a 0.20 ± 0.00a 普雷沃氏-1属 Prevotella_1 0.37 ± 0.00a 0.33 ± 0.00a 0.22 ± 0.00a 0.24 ± 0.00a 优杆菌属 Eubacterium_coprostanoligenes_group 0.35 ± 0.00a 0.23 ± 0.00a 0.11 ± 0.00b 0.19 ± 0.00ab 毛螺菌属 Lachnospira 0.32 ± 0.00a 0.15 ± 0.00a 0.03 ± 0.00a 0.10 ± 0.00a 梭菌属 Solobacterium 0.30 ± 0.00a 0.13 ± 0.00a 0.04 ± 0.00a 0.10 ± 0.00a 瘤胃球菌属 Ruminococcus_1 0.28 ± 0.00a 0.25 ± 0.00a 0.95 ± 0.00a 0.17 ± 0.00a 瘤胃球菌属 Ruminococcus_gauvreauii_group 0.28 ± 0.00a 0.18 ± 0.00a 0.18 ± 0.00a 0.30 ± 0.00a 瘤胃球菌属 Ruminococcaceae_UCG-002 0.25 ± 0.00a 0.37 ± 0.00a 0.22 ± 0.00a 0.25 ± 0.00a 巨型球菌属 Megasphaera 0.21 ± 0.00a 0.34 ± 0.00a 2.42 ± 0.01a 0.81 ± 0.00a 拟杆菌属 Bacteroides 0.16 ± 0.00a 0.12 ± 0.00a 0.10 ± 0.00a 0.13 ± 0.00a 脱硫弧菌属 Desulfovibrio 0.14 ± 0.00b 0.21 ± 0.00ab 0.21 ± 0.00ab 0.29 ± 0.00a 光冈菌属 Mitsuokella 0.14 ± 0.00a 0.09 ± 0.00a 0.72 ± 0.00a 0.14 ± 0.00a 纤维杆菌属 Fibrobacter 0.13 ± 0.00a 0.06 ± 0.00a 0.12 ± 0.00a 0.11 ± 0.00a 疣微菌科-UCG-004属 Ruminococcaceae_UCG-004 0.10 ± 0.00a 0.11 ± 0.00a 0.02 ± 0.00a 0.07 ± 0.00a 理研菌科_RC9属 Rikenellaceae_RC9_gut_group 0.10 ± 0.00a 0.05 ± 0.00a 0.10 ± 0.00a 0.05 ± 0.00a 新月形单胞菌属 Selenomonas 0.06 ± 0.00B 0.32 ± 0.00A 1.02 ± 0.00A 0.64 ± 0.00A 琥珀酸弧菌科-UCG-001属 Succinivibrionaceae_UCG-001 0.01 ± 0.00B 0.04 ± 0.00B 10.60 ± 0.03A 0.84 ± 0.01B 3. 讨论
3.1 甘露寡糖添加方式对哺乳期犊牛瘤胃菌群多样性的影响
与对照组相比,在开食料中添加5 g甘露寡糖,哺乳期犊牛瘤胃细菌总数降低,但差异不显著,与混合添加组相比,瘤胃细菌总数显著降低。说明甘露寡糖添加方式会对哺乳期犊牛瘤胃细菌总数产生一定程度的影响,但对哺乳期犊牛瘤胃细菌菌群多样性和丰富度未产生显著影响(P > 0.05)。王新峰等 [14]以断奶羔羊为试验对象,日粮中添加低聚异麦芽糖、低聚异麦芽糖与低聚果糖的混合物会导致羔羊瘤胃细菌总数显著降低。黄俊文等[15]以断奶仔猪为试验对象,发现日粮中添加甘露寡糖后仔猪肠道乳酸杆菌和双歧杆菌等有益微生物菌群总数显著提高(P > 0.05)。以乳中或颗粒料中添加功能性低聚糖,对哺乳期犊牛胃肠菌群变化的研究鲜见报道。
3.2 甘露寡糖添加方式对哺乳期犊牛瘤胃菌群结构的影响
3.2.1 门水平
拟杆菌门和厚壁菌门是反刍动物胃肠道最主要的优势菌群,具有消化日粮中蛋白质和碳水化合物等物质、与宿主协同分解多糖等作用,可利用日粮中的多糖以及宿主体内的糖原,提高日粮的利用率,促进营养物质的吸收[16-17]。有研究表明,添加甘露寡糖能够改善奶牛瘤胃中纤维素降解菌的丰度和活性[18-19],调控瘤胃微生物组成。厚壁菌门对日粮中纤维的降解起着非常重要的作用[20],其包含的丁酸弧菌属、假丁酸弧菌属以及瘤胃球菌属等纤维降解菌均具有很强的纤维降解能力[21]。在本研究条件下,与对照组和饮用乳中添加5 g甘露寡糖组相比,开食料中添加5 g甘露寡糖,哺乳期犊牛瘤胃厚壁菌门的丰度显著降低(P < 0.05),与混合添加组比较差异不显著。但优势菌群增加1种,即变形菌门,变形菌门在瘤胃中淀粉、可溶性蛋白降解等过程中发挥重要作用。综上分析,甘露寡糖添加方式对犊牛瘤胃菌群门水平结构存在一定影响,其中开食料中添加方式导致瘤胃细菌门水平优势菌群发生增加,降解淀粉、蛋白等非纤维物质的菌群丰度提高明显。
3.2.2 属水平
普雷沃氏菌属是广泛生存在奶牛瘤胃中的优势菌属菌属[22],具有降解淀粉、蛋白质以及寡糖[23]、半纤维素[24]的能力,同时普雷沃氏菌属还可通过琥珀酸途径可以发酵糖类物质产生丙酸[25-26],在本研究条件下,开食料中添加5 g甘露寡糖犊牛瘤胃内普雷沃氏-7属的相对丰度显著高于混合添加,同样高于对照组和饮用乳中添加5 g甘露寡糖,但差异不显著。表明ORb组甘露寡糖添加方式提高了哺乳期犊牛瘤胃优势菌属普雷沃氏-7属的丰度。琥珀酸弧菌科中存在许多蛋白质降解菌和淀粉降解菌,主要将淀粉水解产物(麦芽糖、糊精、葡萄糖)发酵成琥珀酸、乙酸[27-28],日粮中添加甘露寡糖可促进奶牛瘤胃乙酸型发酵[29]。新月形单胞菌属是反刍动物瘤胃内主要的乳酸分解菌[30]。优杆菌属可紧密的粘附到纤维素表面,具有内切葡聚糖酶和纤维二糖差向异构酶活性,能够分解纤维素并且利用乳糖[31]。在本研究条件下,开食料中添加5 g甘露寡糖,犊牛瘤胃琥珀酸弧菌科-UCG-001属相对丰度比其他组极显著增加,新月形单胞菌属丰度极显著高于对照组,而优杆菌属相对丰度与对照组及混合组相比显著降低。徐晓锋等[32]研究表明饲粮添加甘露寡糖后奶牛瘤胃琥珀酸弧菌科丰度显著增加(P > 0.05)。有研究发现,添加低聚异麦芽糖、低聚异麦芽糖与低聚果糖混合物导致黄色瘤胃球菌、产琥珀酸丝状杆菌两种纤维降解菌丰度显著( P > 0.05)降低 [14],本研究发现开食料添加5 g甘露寡糖的犊牛瘤胃小杆菌属相对丰度极显著低于对照组,小杆菌属在纤维素半纤维素降解过程中发挥一定作用[33]。
4. 结论
本研究条件下,甘露寡糖不同添加方式对哺乳期犊牛瘤胃细菌菌群群多样性并未产生显著影响(P > 0.05),但开食料中添加5 g甘露寡糖对哺乳期犊牛瘤胃细菌菌群结构产生了影响,极显著提高了变形菌门与互养菌门丰度,琥珀酸弧菌属和新月形单胞菌属的丰度极显著增加( P < 0.01),小杆菌属的丰度极显著降低,优杆菌属的丰度显著降低( P < 0.05)。
参考文献
[1] HUNGATE R E. The Rumen and Its microbes. London: Academic Press, 1966: 466-525.
[2] BAUER E, WILLIAMS B A, SMIDT H, VERSTEGEN M W A, MOSENTHIN R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Current Issues in Intestinal Microbiology, 2006, 7(2): 31-35.
[3] RYAN T, GRIEBEL P J. Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 2012, 13(1): 129-141. doi: 10.1017/S1466252312000096
[4] DAVIS C L, DRACKLEY J K. The Development, Nutrition, and Management of the Young Calf. Iowa State: Iowa State Press, 1998.
[5] BALDWIN R L, MCLEOD K R, KLOTZ J L, HEITMANN R N. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. Journal of Dairy Science, 2004, 87(1): 55-65.
[6] WARNER R G, FLATT W P, LOOSLI J K. Ruminant nutrition, dietary factors influencing development of ruminant stomach. Journal of Agricultural and Food Chemistry, 1956, 4(9): 788-792. doi: 10.1021/jf60067a003
[7] DILL-MCFARLAND K A, BREAKER J D, SUEN G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Scientific Reports, 2017, 7: 40864. doi: 10.1038/srep40864
[8] DIAS J, INÁCIO M, SOUZA S M D, MATA CDB, NORONHA MELLINE F, RAFAEL R T, FERNANDA M S, HILÁRIO M C, FARLAND D M K A, SUEN G. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Applied & Environmental Microbiology, 2018, 84(9): e02675.
[9] HEINRICHS A J, JONES C M, HEINRICHS B S. Effects of mannan oligosaccharide or antibiotics in neonatal diets on health and growth of dairy calves. Journal of Dairy Science, 2003, 86(12): 4064-4069. doi: 10.3168/jds.S0022-0302(03)74018-1
[10] SAR C, SANTOSO B, MWENYA B, GAMO Y, KOBAYASHI T, MORIKAWA R, KIMURA K, MIZUKOSHI H, TAKAHASHI J. Manipulation of rumen methanogenesis by the combination of nitrate with β1-4 galacto-oligosaccharides or nisin in sheep. Animal Feed Science & Technology, 2004, 115(1/2): 129-142.
[11] BIELECKA M, BIEDRZYCKA E, MAJKOWSKA A, JUSKIEWICZ J, WROBLEWSKA M. Effect of non-digestible oligosaccharides on gut microecosystem in rats. Food Research International, 2002, 35(2/3): 139-144.
[12] SCHLOSS P D, GEVERS D, WESTCOTT S L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One, 2011, 6(12): e27310. doi: 10.1371/journal.pone.0027310
[13] WU G D, LEWIS J D, HOFFMANN C, CHEN Y, KNIGHT R, BITTINGER K, HWANG J, CHEN J, BERKOWSKY R, NESSEL L, LI H Z, BUSHMAN F D. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiology, 2010, 10(1): 206-219. doi: 10.1186/1471-2180-10-206
[14] 王新峰, 冷青文, 李志远, 刘云芳. 低聚糖对断奶羔羊瘤胃菌群的影响. 动物营养学报, 2010, 22(5): 1396-1401. doi: 10.3969/j.issn.1006-267x.2010.05.040 WANG X F, LENG Q W, LI Z Y, LIU Y F. Effects of oligosaccharides on rumen microflora flora of weanling lambs. Chinese Journal of Animal Nutrition, 2010, 22(5): 1396-1401. doi: 10.3969/j.issn.1006-267x.2010.05.040
[15] 黄俊文, 林映才, 冯定远, 郑春田, 丁发源. 纳豆菌、甘露寡糖对仔猪肠道pH、微生物区系及肠黏膜形态的影响. 畜牧兽医学报, 2005, 36(10): 1021-1027. doi: 10.3321/j.issn:0366-6964.2005.10.008 HUANG J W, LIN Y C, FENG D Y, ZHENG C T, DING F Y. Effect of natto and MOS on intestinal pH, colonic microflora population and intestinal membrane shape of early weaning piglet. Chinese Journal of Animal and Veterinary Sciences, 2005, 36(10): 1021-1027. doi: 10.3321/j.issn:0366-6964.2005.10.008
[16] SPENCE C, WELLS W G, SMITH C J. Characterization of the primary starch utilization operon in the obligate anaerobe bacteroides fragilis: Regulation by carbon source and oxygen. Journal of Bacteriology, 2006, 188(13): 4663-4672. doi: 10.1128/JB.00125-06
[17] TREMAROLI V, BACKHED F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489: 242-249. doi: 10.1038/nature11552
[18] BACKHED F, DING H, WANG T, HOOPER L V, GOU Y K, NAGY A, SEMENKOVICH C F, GORDON J I. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences, 2004, 101(44): 15718-15723. doi: 10.1073/pnas.0407076101
[19] FERNANDO S C, PURVIS H T, NAJAR F Z, SUKHARNIKOV L O, KREHBIEL C R, NAGARAJA T G, ROE B A, DESILVA, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490. doi: 10.1128/AEM.00388-10
[20] BRULC J M, ANTONOPOULOS D A, BERG MILLER M E, WILSON M K, YANNARELL A C, DINSDALE E A, EDWARDS R E, FRANK E D, EMERSON J B, WACKLIN P, COUTINHO P M, HENRISSAT B, NELSON K E, WHITE B A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences, 2009, 106(6): 1948-1953. doi: 10.1073/pnas.0806191105
[21] 高雨飞, 欧阳克蕙, 瞿明仁, 熊小文, 温庆琪, 许兰娇. 利用MiSeq测序技术分析锦江牛瘤胃细菌多样性. 动物营养学报, 2016(1): 244-248. doi: 10.3969/j.issn.1006-267x.2016.01.031 GAO Y F, OUYANG K H, QU M R, XIONG X W, WEN Q, XU L J. Analysis of rumen bacterial diversity in Jinjiang cattle using MiSeq sequencing technology. Chinese Journal of Animal Nutrition, 2016(1): 244-248. doi: 10.3969/j.issn.1006-267x.2016.01.031
[22] BOWEN J M, MCCABE M S, LISTER S J, CORMICAN P, DEWHURST R J. Evaluation of microbial communities associated with the liquid and solid phases of the rumen of cattle offered a diet of perennial ryegrass or white clover. Frontiers in Microbiology, 2018, 9: 2389. doi: 10.3389/fmicb.2018.02389
[23] MCGREGOR N, MORAR M, FENGER T H, STOGIOS P, LENFANT N, YIN V, XU X H, EVDOKIMOVA E, CUI H, HENRISSAT B, SAVCHENKO A, BRUMER H. Structure-function analysis of a mixed-linkage β-glucanase/xyloglucanase from the key ruminal bacteroidetes Prevotella bryantii, B 14. Journal of Biological Chemistry, 2016, 291(3): 1175-97. doi: 10.1074/jbc.M115.691659
[24] PURUSHE J, FOUTS D E, MORRISON M, WHITE B A, MACKIE R ICOUTINHO P M, HENRISSAT B, NELSON K E. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microbial Ecology, 2010, 60(4): 721-729. doi: 10.1007/s00248-010-9692-8
[25] FLINT H J, BAYER E A, RINCON M T, LAMED R, WHITE B A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nature Reviews Microbiology, 2008, 6(2): 121-131. doi: 10.1038/nrmicro1817
[26] NEWBOLD C J, LÓPEZ S, NELSON N, OUDA J O, WALLACE R J, MOSS A R. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. British Journal of Nutrition, 2005, 94(1): 27-35. doi: 10.1079/BJN20051445
[27] 李子健, 李大彪, 高民, 王典, 兰儒冰. 不同生理阶段荷斯坦奶牛瘤胃细菌多样性研究. 动物营养学报, 2018(8): 3017-3025. doi: 10.3969/j.issn.1006-267x.2018.08.018 LI Z J, LI D B, GAO M, WANG D, LAN R B. Rumen bacteria diversity in holstein dairy cows at different physiological phases. Chinese Journal of Animal Nutrition, 2018(8): 3017-3025. doi: 10.3969/j.issn.1006-267x.2018.08.018
[28] BRYANT M P, SMALL N J. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. Journal of Bacteriology, 1956, 72(1): 16-21. doi: 10.1128/JB.72.1.16-21.1956
[29] 郭婷婷, 胡丹丹, 付子琳, 李娜, 徐晓锋. 基于16S rDNA高通量测序分析技术研究甘露寡糖对奶牛瘤胃菌群结构的影响. 动物营养学报, 2018, 30(10): 259-269. GUO T, HU D, FU Z L, LI N, XU X F. Effects of mannan oligosaccharides on rumen microflora structure of dairy cows based on 16S rDNA high-throughput sequencing technology. Chinese Journal of Animal Nutrition, 2018, 30(10): 259-269.
[30] 韩少锋. 罗非鱼腐败过程菌群结构分析及腐败菌的分离、鉴定与调控. 北京: 中国农业科学院博士学位论文, 2010. HAN S F. Analysis of bacterial community structure change in Tilapia during spoilage and Isolation, Identification and control of spoilage organism. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[31] TAGUCHI H, SENOURA T, HAMADA S, MATSUI H, KOBAYASHI Y, WATANABE J, WASAKI J, ITO S. Cloning and sequencing of the gene for cellobiose 2‐epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiology Letters, 2008, 287(1): 34-40. doi: 10.1111/j.1574-6968.2008.01281.x
[32] 徐晓锋, 郭婷婷, 郭成, 吉武龙, 张力莉. 甘露寡糖对高精料诱导的低乳脂奶牛瘤胃细菌菌群调控的研究. 动物营养学报, 2019, 31(11): 5245-5255. XU X F, GUO T T, GUO C, JI W L, ZHANG L L. Regulation of mannan oligosaccharides on rumen bacterial flora induced by high concentrate in low milk fat dairy cows. Chinese Journal of Animal Nutrition, 2019, 31(11): 5245-5255.
[33] 朱文涛, 雒秋江, 附近山, 黄家驷, 黄海滨, 唐志高. 4种日粮条件下30~150日龄羔羊瘤胃液原虫和细菌数量的变化. 中国畜牧兽医, 2005(3): 10-13. doi: 10.3969/j.issn.1671-7236.2005.03.004 ZHU W T, LUO Q J, FU J S, HUANG J S, HUANG H B, TANG Z G. Changes of protozoa and bacteria in rumen juice of 30-150 day-old lambs fed four diets. Chinese Animal Husbandry and Veterinary Medicine, 2005(3): 10-13. doi: 10.3969/j.issn.1671-7236.2005.03.004
-
图 1 奶牛瘤胃细菌菌群OTU韦恩图
CR组为对照组,饮用乳及开食料中均不添加甘露寡糖;ORa组在饮用乳中添加5 g甘露寡糖,开食料中不添加甘露寡糖;ORb组在饮用乳中不添加甘露寡糖,开食料中添加5 g甘露寡糖;ORc组在饮用乳及开食料中各添加2.5 g甘露寡糖;下同。
Figure 1. Venn graph of rumen bacterial flora OTUs in dairy cows
The control group (CR) was fed a basal diet and milk with no MOS added. In ORa group, 5 g MOS was added to the milk rather than the diet. In the ORb group, 5 g MOS was added to the diet rather than the milk. In ORc group, 2.5 g MOS was added to both the milk and diet, respectively; this is applicable for the following tables and figures as well.
表 1 开食料组成和营养水平(风干基础)
Table 1 Composition and nutrient levels of starter diet (air-dry basis)
原料
Ingredients含量
Content/%营养水平
Nutrient level含量
Content玉米
Corn55.2 总能
Gross energy/
(MJ·kg–1)14.9 豆粕
Soybean meal26.0 粗蛋白质
Crude protein/%18.5 麸皮
Wheat bran13.0 粗脂肪
Ether extract/%2.4 石粉
Linestone2.0 粗纤维
Crude fiber/%9.3 磷酸氢钙
CaHPO41.4 粗灰分
Ash/%7.5 氯化钠
NaCl1.3 钙
Ca/%1.3 预混料
Premix1.1 总磷
Total phosphorus/%0.6 合计
Total100.0 表 2 样品多样性指数
Table 2 Diversity indexes of samples
项目 Item 处理组 Treatment CR ORa ORb ORc Chao1指数 Chao 1 index 292.12 ± 34.78a 284.13 ± 28.91a 266.06 ± 31.10a 299.65 ± 14.01a 香农指数 Shannon-Weiner index 4.19 ± 0.28a 4.16 ± 0.55a 3.91 ± 0.59a 4.32 ± 0.50a 覆盖率 Goods_coverage index/% 99.80 ± 0.00a 99.80 ± 0.00a 99.80 ± 0.00a 99.80 ± 0.00a 同行不同小写字母表示甘露寡糖不同添加方式差异显著(P < 0.05),不同大写字母表示甘露寡糖不同添加方式差异极显著( P < 0.01); 表3、表4同。
The data within the same row without letters indicate no significant differences between the different MOS addition ways at the 0.05 level; and different lowercase letters within the same row indicate significant differences between the different MOS addition ways at the 0.05 level; and different capital letters within the same row indicate significant differences between the different MOS addition ways at the 0.01 level; this is applicable for Table 3 and Table 4 as well.表 3 甘露寡糖对犊牛瘤胃菌群在门水平相对丰度的影响
Table 3 Effects of mannan oligosaccharides on the relative abundance of rumen microflora ofdairy calves at the phylum level
% 门 Phylum 处理组 Treatment CR ORa ORb ORc 拟杆菌门 Bacteroidetes 63.477 ± 0.043a 59.236 ± 0.071a 68.383 ± 0.035a 66.222 ± 0.070a 厚壁菌门 Firmicutes 32.720 ± 0.037a 37.737 ± 0.070a 19.519 ± 0.039b 29.465 ± 0.070 放线菌门 Actinobacteria 3.376 ± 0.012a 2.490 ± 0.006a 0.893 ± 0.004b 2.423 ± 0.010a 变形菌门 Proteobacteria 0.205 ± 0.000Bb 0.377 ± 0.001Bb 10.915 ± 0.032Aa 1.653 ± 0.008Ab 纤维杆菌门 Fibrobacteres 0.133 ± 0.001a 0.055 ± 0.000a 0.120 ± 0.000a 0.106 ± 0.000a 互养菌门 Synergistetes 0.023 ± 0.000a 0.035 ± 0.000a 0.096 ± 0.000a 0.067 ± 0.000a 柔膜菌门 Tenericutes 0.020 ± 0.000a 0.014 ± 0.000a 0.003 ± 0.000a 0.007 ± 0.000a 螺旋菌门 Spirochaetae 0.019 ± 0.000a 0.016 ± 0.000a 0.014 ± 0.000 0.036 ± 0.000a 黏胶球形菌门 Lentisphaerae 0.009 ± 0.000a 0.005 ± 0.000a 0.007 ± 0.000a 0.006 ± 0.000a 疣微菌门 Verrucomicrobia 0.005 ± 0.000a 0.000 ± 0.000a 0.011 ± 0.000a 0.004 ± 0.000a 蓝藻细菌 Cyanobacteria 0.005 ± 0.000a 0.033 ± 0.000a 0.037 ± 0.000a 0.011 ± 0.000a 梭杆菌门 Fusobacteria 0.001 ± 0.000a 0.001 ± 0.000a 0.000 ± 0.000a 0.000 ± 0.000a 广古菌门 Euryarchaeota 0.001 ± 0.000a 0.000 ± 0.000a 0.000 ± 0.000a 0.000 ± 0.000a 迷踪菌门 Elusimicrobia 0.000 ± 0.000a 0.000 ± 0.000a 0.002 ± 0.000a 0.000 ± 0.000a 表 4 甘露寡糖对犊牛瘤胃菌群在属水平相对丰度的影响
Table 4 Effects of mannan oligosaccharides on the relative abundance in rumen microflora ofdairy calves at the genus level
% 属 Genus 处理组 Treatment CR ORa ORb ORc 普雷沃氏-7属 Prevotella_7 47.97 ± 0.06ab 46.97 ± 0.08ab 59.86 ± 0.04a 44.87 ± 0.06b 罗斯氏菌属 Roseburia 7.07 ± 0.04a 12.25 ± 0.04a 2.22 ± 0.01a 9.00 ± 0.05a 小杆菌属 Dialister 6.62 ± 0.01A 4.67 ± 0.02AB 3.04 ± 0.01B 5.36 ± 0.02AB 瘤胃球菌属 Ruminococcaceae_UCG-014 3.05 ± 0.01a 3.69 ± 0.02a 2.10 ± 0.01a 1.57 ± 0.01a 毛螺菌科 _NK3A20属 Lachnospiraceae_NK3A20_group 2.91 ± 0.00a 2.54 ± 0.00a 2.10 ± 0.01a 1.79 ± 0.01a 普雷沃氏-9属 Prevotella_9 2.71 ± 0.02a 0.36 ± 0.00a 0.23 ± 0.00a 3.56 ± 0.03a 互养球菌属 Syntrophococcus 0.96 ± 0.00a 1.65 ± 0.00a 0.47 ± 0.00a 0.89 ± 0.00a 假丁酸弧菌属 Pseudobutyrivibrio 0.87 ± 0.00a 0.90 ± 0.00a 0.21 ± 0.00a 0.41 ± 0.00a 氨基酸球菌属 Acidaminococcus 0.41 ± 0.00ab 0.19 ± 0.00b 0.73 ± 0.00a 0.59 ± 0.00ab 奇异菌属 Atopobium 0.39 ± 0.00a 0.17 ± 0.00a 0.05 ± 0.00a 0.20 ± 0.00a 普雷沃氏-1属 Prevotella_1 0.37 ± 0.00a 0.33 ± 0.00a 0.22 ± 0.00a 0.24 ± 0.00a 优杆菌属 Eubacterium_coprostanoligenes_group 0.35 ± 0.00a 0.23 ± 0.00a 0.11 ± 0.00b 0.19 ± 0.00ab 毛螺菌属 Lachnospira 0.32 ± 0.00a 0.15 ± 0.00a 0.03 ± 0.00a 0.10 ± 0.00a 梭菌属 Solobacterium 0.30 ± 0.00a 0.13 ± 0.00a 0.04 ± 0.00a 0.10 ± 0.00a 瘤胃球菌属 Ruminococcus_1 0.28 ± 0.00a 0.25 ± 0.00a 0.95 ± 0.00a 0.17 ± 0.00a 瘤胃球菌属 Ruminococcus_gauvreauii_group 0.28 ± 0.00a 0.18 ± 0.00a 0.18 ± 0.00a 0.30 ± 0.00a 瘤胃球菌属 Ruminococcaceae_UCG-002 0.25 ± 0.00a 0.37 ± 0.00a 0.22 ± 0.00a 0.25 ± 0.00a 巨型球菌属 Megasphaera 0.21 ± 0.00a 0.34 ± 0.00a 2.42 ± 0.01a 0.81 ± 0.00a 拟杆菌属 Bacteroides 0.16 ± 0.00a 0.12 ± 0.00a 0.10 ± 0.00a 0.13 ± 0.00a 脱硫弧菌属 Desulfovibrio 0.14 ± 0.00b 0.21 ± 0.00ab 0.21 ± 0.00ab 0.29 ± 0.00a 光冈菌属 Mitsuokella 0.14 ± 0.00a 0.09 ± 0.00a 0.72 ± 0.00a 0.14 ± 0.00a 纤维杆菌属 Fibrobacter 0.13 ± 0.00a 0.06 ± 0.00a 0.12 ± 0.00a 0.11 ± 0.00a 疣微菌科-UCG-004属 Ruminococcaceae_UCG-004 0.10 ± 0.00a 0.11 ± 0.00a 0.02 ± 0.00a 0.07 ± 0.00a 理研菌科_RC9属 Rikenellaceae_RC9_gut_group 0.10 ± 0.00a 0.05 ± 0.00a 0.10 ± 0.00a 0.05 ± 0.00a 新月形单胞菌属 Selenomonas 0.06 ± 0.00B 0.32 ± 0.00A 1.02 ± 0.00A 0.64 ± 0.00A 琥珀酸弧菌科-UCG-001属 Succinivibrionaceae_UCG-001 0.01 ± 0.00B 0.04 ± 0.00B 10.60 ± 0.03A 0.84 ± 0.01B -
[1] HUNGATE R E. The Rumen and Its microbes. London: Academic Press, 1966: 466-525.
[2] BAUER E, WILLIAMS B A, SMIDT H, VERSTEGEN M W A, MOSENTHIN R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Current Issues in Intestinal Microbiology, 2006, 7(2): 31-35.
[3] RYAN T, GRIEBEL P J. Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 2012, 13(1): 129-141. doi: 10.1017/S1466252312000096
[4] DAVIS C L, DRACKLEY J K. The Development, Nutrition, and Management of the Young Calf. Iowa State: Iowa State Press, 1998.
[5] BALDWIN R L, MCLEOD K R, KLOTZ J L, HEITMANN R N. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. Journal of Dairy Science, 2004, 87(1): 55-65.
[6] WARNER R G, FLATT W P, LOOSLI J K. Ruminant nutrition, dietary factors influencing development of ruminant stomach. Journal of Agricultural and Food Chemistry, 1956, 4(9): 788-792. doi: 10.1021/jf60067a003
[7] DILL-MCFARLAND K A, BREAKER J D, SUEN G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Scientific Reports, 2017, 7: 40864. doi: 10.1038/srep40864
[8] DIAS J, INÁCIO M, SOUZA S M D, MATA CDB, NORONHA MELLINE F, RAFAEL R T, FERNANDA M S, HILÁRIO M C, FARLAND D M K A, SUEN G. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Applied & Environmental Microbiology, 2018, 84(9): e02675.
[9] HEINRICHS A J, JONES C M, HEINRICHS B S. Effects of mannan oligosaccharide or antibiotics in neonatal diets on health and growth of dairy calves. Journal of Dairy Science, 2003, 86(12): 4064-4069. doi: 10.3168/jds.S0022-0302(03)74018-1
[10] SAR C, SANTOSO B, MWENYA B, GAMO Y, KOBAYASHI T, MORIKAWA R, KIMURA K, MIZUKOSHI H, TAKAHASHI J. Manipulation of rumen methanogenesis by the combination of nitrate with β1-4 galacto-oligosaccharides or nisin in sheep. Animal Feed Science & Technology, 2004, 115(1/2): 129-142.
[11] BIELECKA M, BIEDRZYCKA E, MAJKOWSKA A, JUSKIEWICZ J, WROBLEWSKA M. Effect of non-digestible oligosaccharides on gut microecosystem in rats. Food Research International, 2002, 35(2/3): 139-144.
[12] SCHLOSS P D, GEVERS D, WESTCOTT S L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One, 2011, 6(12): e27310. doi: 10.1371/journal.pone.0027310
[13] WU G D, LEWIS J D, HOFFMANN C, CHEN Y, KNIGHT R, BITTINGER K, HWANG J, CHEN J, BERKOWSKY R, NESSEL L, LI H Z, BUSHMAN F D. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiology, 2010, 10(1): 206-219. doi: 10.1186/1471-2180-10-206
[14] 王新峰, 冷青文, 李志远, 刘云芳. 低聚糖对断奶羔羊瘤胃菌群的影响. 动物营养学报, 2010, 22(5): 1396-1401. doi: 10.3969/j.issn.1006-267x.2010.05.040 WANG X F, LENG Q W, LI Z Y, LIU Y F. Effects of oligosaccharides on rumen microflora flora of weanling lambs. Chinese Journal of Animal Nutrition, 2010, 22(5): 1396-1401. doi: 10.3969/j.issn.1006-267x.2010.05.040
[15] 黄俊文, 林映才, 冯定远, 郑春田, 丁发源. 纳豆菌、甘露寡糖对仔猪肠道pH、微生物区系及肠黏膜形态的影响. 畜牧兽医学报, 2005, 36(10): 1021-1027. doi: 10.3321/j.issn:0366-6964.2005.10.008 HUANG J W, LIN Y C, FENG D Y, ZHENG C T, DING F Y. Effect of natto and MOS on intestinal pH, colonic microflora population and intestinal membrane shape of early weaning piglet. Chinese Journal of Animal and Veterinary Sciences, 2005, 36(10): 1021-1027. doi: 10.3321/j.issn:0366-6964.2005.10.008
[16] SPENCE C, WELLS W G, SMITH C J. Characterization of the primary starch utilization operon in the obligate anaerobe bacteroides fragilis: Regulation by carbon source and oxygen. Journal of Bacteriology, 2006, 188(13): 4663-4672. doi: 10.1128/JB.00125-06
[17] TREMAROLI V, BACKHED F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489: 242-249. doi: 10.1038/nature11552
[18] BACKHED F, DING H, WANG T, HOOPER L V, GOU Y K, NAGY A, SEMENKOVICH C F, GORDON J I. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences, 2004, 101(44): 15718-15723. doi: 10.1073/pnas.0407076101
[19] FERNANDO S C, PURVIS H T, NAJAR F Z, SUKHARNIKOV L O, KREHBIEL C R, NAGARAJA T G, ROE B A, DESILVA, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490. doi: 10.1128/AEM.00388-10
[20] BRULC J M, ANTONOPOULOS D A, BERG MILLER M E, WILSON M K, YANNARELL A C, DINSDALE E A, EDWARDS R E, FRANK E D, EMERSON J B, WACKLIN P, COUTINHO P M, HENRISSAT B, NELSON K E, WHITE B A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences, 2009, 106(6): 1948-1953. doi: 10.1073/pnas.0806191105
[21] 高雨飞, 欧阳克蕙, 瞿明仁, 熊小文, 温庆琪, 许兰娇. 利用MiSeq测序技术分析锦江牛瘤胃细菌多样性. 动物营养学报, 2016(1): 244-248. doi: 10.3969/j.issn.1006-267x.2016.01.031 GAO Y F, OUYANG K H, QU M R, XIONG X W, WEN Q, XU L J. Analysis of rumen bacterial diversity in Jinjiang cattle using MiSeq sequencing technology. Chinese Journal of Animal Nutrition, 2016(1): 244-248. doi: 10.3969/j.issn.1006-267x.2016.01.031
[22] BOWEN J M, MCCABE M S, LISTER S J, CORMICAN P, DEWHURST R J. Evaluation of microbial communities associated with the liquid and solid phases of the rumen of cattle offered a diet of perennial ryegrass or white clover. Frontiers in Microbiology, 2018, 9: 2389. doi: 10.3389/fmicb.2018.02389
[23] MCGREGOR N, MORAR M, FENGER T H, STOGIOS P, LENFANT N, YIN V, XU X H, EVDOKIMOVA E, CUI H, HENRISSAT B, SAVCHENKO A, BRUMER H. Structure-function analysis of a mixed-linkage β-glucanase/xyloglucanase from the key ruminal bacteroidetes Prevotella bryantii, B 14. Journal of Biological Chemistry, 2016, 291(3): 1175-97. doi: 10.1074/jbc.M115.691659
[24] PURUSHE J, FOUTS D E, MORRISON M, WHITE B A, MACKIE R ICOUTINHO P M, HENRISSAT B, NELSON K E. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microbial Ecology, 2010, 60(4): 721-729. doi: 10.1007/s00248-010-9692-8
[25] FLINT H J, BAYER E A, RINCON M T, LAMED R, WHITE B A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nature Reviews Microbiology, 2008, 6(2): 121-131. doi: 10.1038/nrmicro1817
[26] NEWBOLD C J, LÓPEZ S, NELSON N, OUDA J O, WALLACE R J, MOSS A R. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. British Journal of Nutrition, 2005, 94(1): 27-35. doi: 10.1079/BJN20051445
[27] 李子健, 李大彪, 高民, 王典, 兰儒冰. 不同生理阶段荷斯坦奶牛瘤胃细菌多样性研究. 动物营养学报, 2018(8): 3017-3025. doi: 10.3969/j.issn.1006-267x.2018.08.018 LI Z J, LI D B, GAO M, WANG D, LAN R B. Rumen bacteria diversity in holstein dairy cows at different physiological phases. Chinese Journal of Animal Nutrition, 2018(8): 3017-3025. doi: 10.3969/j.issn.1006-267x.2018.08.018
[28] BRYANT M P, SMALL N J. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. Journal of Bacteriology, 1956, 72(1): 16-21. doi: 10.1128/JB.72.1.16-21.1956
[29] 郭婷婷, 胡丹丹, 付子琳, 李娜, 徐晓锋. 基于16S rDNA高通量测序分析技术研究甘露寡糖对奶牛瘤胃菌群结构的影响. 动物营养学报, 2018, 30(10): 259-269. GUO T, HU D, FU Z L, LI N, XU X F. Effects of mannan oligosaccharides on rumen microflora structure of dairy cows based on 16S rDNA high-throughput sequencing technology. Chinese Journal of Animal Nutrition, 2018, 30(10): 259-269.
[30] 韩少锋. 罗非鱼腐败过程菌群结构分析及腐败菌的分离、鉴定与调控. 北京: 中国农业科学院博士学位论文, 2010. HAN S F. Analysis of bacterial community structure change in Tilapia during spoilage and Isolation, Identification and control of spoilage organism. PhD Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[31] TAGUCHI H, SENOURA T, HAMADA S, MATSUI H, KOBAYASHI Y, WATANABE J, WASAKI J, ITO S. Cloning and sequencing of the gene for cellobiose 2‐epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiology Letters, 2008, 287(1): 34-40. doi: 10.1111/j.1574-6968.2008.01281.x
[32] 徐晓锋, 郭婷婷, 郭成, 吉武龙, 张力莉. 甘露寡糖对高精料诱导的低乳脂奶牛瘤胃细菌菌群调控的研究. 动物营养学报, 2019, 31(11): 5245-5255. XU X F, GUO T T, GUO C, JI W L, ZHANG L L. Regulation of mannan oligosaccharides on rumen bacterial flora induced by high concentrate in low milk fat dairy cows. Chinese Journal of Animal Nutrition, 2019, 31(11): 5245-5255.
[33] 朱文涛, 雒秋江, 附近山, 黄家驷, 黄海滨, 唐志高. 4种日粮条件下30~150日龄羔羊瘤胃液原虫和细菌数量的变化. 中国畜牧兽医, 2005(3): 10-13. doi: 10.3969/j.issn.1671-7236.2005.03.004 ZHU W T, LUO Q J, FU J S, HUANG J S, HUANG H B, TANG Z G. Changes of protozoa and bacteria in rumen juice of 30-150 day-old lambs fed four diets. Chinese Animal Husbandry and Veterinary Medicine, 2005(3): 10-13. doi: 10.3969/j.issn.1671-7236.2005.03.004