叶重比及株高质量比解释亚高寒草甸禾本科对氮素添加的积极响应
English
-
参考文献
[1] AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: A reevaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67.
[2] NEMANI R R, KEELING C D, HASHIMOTO H. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(6): 1560-1563.
[3] LIU X, ZHANG Y, HAN W, TANG A, SHEN J, CUI Z, VITOUSEK P, ERISMAN J W, GOULDING K, CHRISTIE P, FANGMEIER A, ZHANG F. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-463. doi: 10.1038/nature11917
[4] VITOUSEK P M, NAYLOR R, CREWS T, DAVID M B, DRINKWATER L E, HOLLAND E, JOHNES P J, KATZENBERGER J, MARTINELLI L A, MATSON P A, NZIGUHEBA G, OJIMA D, PALM C A, ROBERTSON G P, SANCHEZ P A, TOWNSEND A R, ZHANG F S. Nutrient imbalances: Pollution remains response. Science, 2009, 326(19): 665-666.
[5] 姚凡云, 朱彪, 杜恩在. 15N自然丰度法在陆地生态系统氮循环研究中的应用. 植物生态学报, 2012, 36(4): 346-352. YAO F Y, ZHU B, DU E. Use of 15N natural abundance in nitrogen cycling of terrestrial ecosystems. Chinese Journal of Plant Ecology, 2012, 36(4): 346-352.
[6] 张仁懿, 史小明, 李文金, 郭睿, 王刚. 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 2015, 32(10): 1539-1547. doi: 10.11829/j.issn.1001-0629.2015-0205 ZHANG R Y, SHI X M, LI W J, GUO R, WANF G. Response of species homeostasis and biomass on a sub-alpine grassland. Pratacultural Science, 2015, 32(10): 1539-1547. doi: 10.11829/j.issn.1001-0629.2015-0205
[7] REN Z, LI Q, CHU C, ZHAO L, ZHANG J, AI D, YANG Y, WANG G. Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 2010, 3(1): 25-31. doi: 10.1093/jpe/rtp034
[8] SEMMARTIN M, OYARZABAL M, LORETI J, OESTERHELD M. Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecology, 2007, 32(4): 416-428. doi: 10.1111/j.1442-9993.2007.01706.x
[9] WILSON S D, TILMAN D. Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology, 2002, 83(2): 492-504. doi: 10.1890/0012-9658(2002)083[0492:QVIOFS]2.0.CO;2
[10] BAI Y, WU J, CLARK C, NAEEM S, PAN Q, HUANG J H, ZHANG L, HAN X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. doi: 10.1111/j.1365-2486.2009.01950.x
[11] GÜSEWELL S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x
[12] 杨晓霞, 任飞, 周华坤, 贺金生. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166. YANG X X, REN F, ZHOU H K, HE J S. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(2): 159-166.
[13] DICKSON T L, MITTELBACH G G, REYNOLDS H L, GROSS K L. Height and clonality traits determine plant community responses to fertilization. Ecology, 2014, 95(9): 2443-2452. doi: 10.1890/13-1875.1
[14] 辛小娟, 王刚, 杨莹博, 任正炜. 氮、磷添加对亚高山草甸地上/地下生物量分配的影响. 生态科学, 2014, 33(3): 452-458. XIN X J, WANG G, YANG Y B, REN Z W. Effects of N, P addition on above/below ground biomass allocation in a subalpine meadow. Ecological Science, 2014, 33(3): 452-458.
[15] SPEHN E M, JOSHI J, SCHMID B, DIEMER M, KÖRNER C. Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Functional Ecology, 2000, 14(3): 326-337. doi: 10.1046/j.1365-2435.2000.00437.x
[16] 张仁懿, 徐当会, 杨智永, 杨莹博, 王刚. 植物N: P化学计量特征对亚高寒草甸限制类型的指示作用研究. 中国草地学报, 2014, 36(3): 79-83. ZHANG R Y, XU D H, YANG Z Y, YANG Y B, WANG G. The indicative function of N:P stoichiometry characteristics on the nutrient limitation on the sub-alpine grassland. Chinese Journal of Grassland, 2014, 36(3): 79-83.
[17] HAUTIER Y, NIKLAUS P A, HECTOR A. Competition for light causes plant biodiversity loss after eutrophication. Science, 2009, 324(1): 636-638.
[18] 韩潼, 牛得草, 张永超, 江世高, 傅华. 施肥对玛曲县高寒草甸植物多样性及生产力的影响. 草业科学, 2011, 28(6): 926-930. HAN T, NIU D C, ZHANG Y C, JIANG S G, FU H. Effects of fertilization on characteristics of Maqu alpine meadow communities and production. Pratacultural Science, 2011, 28(6): 926-930.
[19] 张杰琦, 李奇, 任正炜, 杨雪, 王刚. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 34(10): 1125-1131. ZHANG J Q, LI Q, REN Z W, YANG X, WANG G. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 23(1): 33-38.
[20] LI W, WEN S J, HU W, DU G Z. Root-shoot competition interactions cause diversity loss after fertilization: A field experiment in an alpine meadow on the Tibetan Plateau. Journal of Plant Ecology, 2011, 4(3): 138-146.
[21] LIIRA J, ZOBEL K, MÄGI R, MOLENBERGHS G. Vertical structure of herbaceous canopies: The importance of plant growth-form and species-specific traits. Plant Ecology, 2002, 163(1): 123-134.
[22] 张仁懿, 史小明, 李文金, 王刚, 郭睿. 氮、磷添加对亚高寒草甸地上生物量的影响. 生态科学, 2016, 35(5): 15-20. ZHANG R Y, SHI X M, LI W J, WANG G, GUO R. Effects of nitrogen and phosphorus addition on the plant aboveground biomass on a sub-alpine meadow. Ecological Science, 2016, 35(5): 15-20.
[23] ZHANG R Y, SHI X M, LI W J, XU D H, WANG G. Responses of plant functional groups to natural nitrogen fertility on an alpine grassland in the Qinghai-Tibet plateau. Russian Journal of Ecology, 2016, 47(6): 532-539.
[24] GOMMERS C M M, VISSER E J W, ONGE K R S, VOESENEK L A C J, PIERIK R. Shade tolerance: When growing tall is not an option. Trends in Plant Science, 2013, 18(2): 65-71. doi: 10.1016/j.tplants.2012.09.008
[25] DONG S K, LONG R J, HU Z Z, KANG M Y, PU X P. Productivity and nutritive value of some cultivated perennial grasses and mixtures in the alpine region of the Tibetan Plateau. Grass and Forage Science, 2003, 58: 302-308. doi: 10.1046/j.1365-2494.2003.00382.x
[26] NIU K, LUO Y, PHILIPPE C, DU G. The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 2008, 9(5): 485-493. doi: 10.1016/j.baae.2007.06.015
[27] 都耀庭, 张东杰. 禁牧封育措施改良高寒地区退化草地的效果. 草业科学, 2007, 24(7): 22-24. doi: 10.3969/j.issn.1001-0629.2007.07.005 DU Y T, ZHANG D J. Study on the spatial herterogeneity and distribution patterns of wild licorice in Ningxia. Pratacultural Science, 2007, 24(7): 22-24. doi: 10.3969/j.issn.1001-0629.2007.07.005
[28] 牛钰杰, 杨思维, 王贵珍, 刘丽, 花立民. 放牧干扰下高寒草甸植物功能群组成的时空变化:以甘肃省天祝县为例. 草原与草坪, 2017, 37(3): 29-35. doi: 10.3969/j.issn.1009-5500.2017.03.005 NIU Y J, YANG S W, WANG G Z, LIU L, HUA L M. Study on spatial-temporal change of plant functional group in alpine meadow under grazing:A case study in Tianzhu County, China. Grassland and Turf, 2017, 37(3): 29-35. doi: 10.3969/j.issn.1009-5500.2017.03.005
[29] OLOFSSON J. Influence of herbivory and abiotic factors on the distribution of tall forbs along a productivity gradient: A transplantation experiment. OIKOS, 2001, 94: 351-357. doi: 10.1034/j.1600-0706.2001.940216.x
[30] MÜLLER J, HEINZE J, JOSHI J, BOCH S, KLAUS V H, FISCHER M, PRATI D. Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands. Journal of Plant Ecology, 2014, 7(6): 509-517. doi: 10.1093/jpe/rtt062
[31] WANG X T, NIELSEN U N, YANG X L, ZHANG L M, ZHOU X H, DU G Z, LI G X, CHEN S. Grazing induces direct and indirect shrub effects on soil nematode communities. Soil Biology and Biochemistry, 2018, 121: 193-201. doi: 10.1016/j.soilbio.2018.03.007
-
表 1 各功能群植物的地上生物量、盖度、平均高度以及植株数(n = 10)
Table 1 Aboveground biomass, coverage, average height and number from functional groups (n = 10)
功能群
Functional group地上生物
Aboveground biomass/(g·m–2)盖度
Coverage/%高度
Height/cm株数
Plant number/(plant·m–2)对照 CK 氮添加 + N 对照 CK 氮添加 + N 对照 CK 氮添加 + N 对照 CK 氮添加 + N 杂类草
Forb99.73 ± 17.49 123.59 ± 19.08*** 54.67 ± 3.53 55.12 ± 5.23 8.10 ± 2.49 11.61 ± 1.75 501.60 ± 5.00 392.40 ± 3.48*** 禾本科
Gramineae131.76 ± 18.52 235.44 ± 27.41*** 26.86 ± 2.15 36.10 ± 4.59*** 46.81 ± 4.63 53.83 ± 5.42 71.20 ± 9.28 87.20 ± 10.84 莎草科
Sedge10.48 ± 1.47 32.75 ± 3.81*** 2.32 ± 1.32 1.68 ± 0.92 8.47 ± 5.58 12.41 ± 6.90 19.60 ± 11.16 12.40 ± 13.80 豆科
Legume0.66 ± 0.48 0.83 ± 0.77 1.35 ± 0.69 0.57 ± 0.47 3.94 ± 1.32 6.50 ± 2.12 16.80 ± 2.64 2.04 ± 4.24*** 蕨类
Fern3.81 ± 0.83 2.98 ± 0.83 2.29 ± 1.49 1.05 ± 1.26 11.33 ± 3.85 12.25 ± 4.60 5.20 ± 7.72 2.40 ± 9.20 合计
Total246.44 ± 25.66 395.59 ± 41.76*** 87.49 ± 1.31 94.52 ± 1.53** 13.38 ± 3.84 18.02 ± 1.66** 614.40 ± 7.68 496.44 ± 3.32*** *,**,***分别表示对照与处理间差异显著(P < 0.05,P < 0.01,P < 0.001)。
*,**,*** indicate significant differences between control and treatment at 0.05, 0.01, and 0.001 levels, respectively.表 2 代表物种叶重比、株高质量比、株高叶重比和叶绿素含量
Table 2 Leaf mass fraction, height/mass ratio, height/leaf mass ratio and chlorophyll of selected species
类群
Functional group叶重比*
Leaf mass fraction/%株高质量比* Height to
mass ratio/(cm·g–1)株高叶重比* Height to
leaf mass ratio/(cm·g–1)叶绿素 Chlorophyll/SPAD 对照 CK 氮添加 + N 杂类草 Forb (n = 8) 66.12 ± 3.08 7.20 ± 1.41 10.80 ± 2.67 36.34 ± 2.33 46.83 ± 2.40 禾本科 Gramineae (n = 4) 77.86 ± 1.32 34.32 ± 2.79 39.66 ± 10.25 29.25 ± 0.38 48.03 ± 1.83 平均 Total (n = 12) 70.39 ± 2.64 17.07 ± 5.34 21.29 ± 5.78 35.09 ± 8.36 47.04 ± 8.19 *代表该指标在功能群间差异显著(P < 0.05)
* represents significan differences among functional groups at the 0.05 level.表 3 代表物种叶重比、株高质量比、株高叶重比与地上生物量、高度、盖度的相关系数
Table 3 Correlation coefficients between leaf mass fraction, height/mass ratio, height/leaf mass ratio and aboveground biomass, plant height and coverage for selected species
类别
Item指标
Parameter地上生物量
Aboveground biomass高度
Height盖度
Coverage对照 CK 氮添加 + N 对照 CK 氮添加 + N 对照 CK 氮添加 + N 杂类草 Forb 叶重比 Leaf mass fraction 0.30 0.55 0.17 –0.06 0.32 0.65 株高质量比 Height to mass ratio 0.00 –0.10 –0.31 –0.13 0.27 0.20 株高叶重比 Height to leaf mass ratio 0.01 –0.10 –0.28 –0.09 0.25 0.08 禾本科 Gramineae 叶重比 Leaf mass fraction –0.20 –0.26 –0.28 –0.33 –0.05 –0.11 株高质量比 Height to mass ratio –0.44 –0.42 –0.22 –0.28 –0.35 –0.39 株高叶重比 Height to leaf mass ratio –0.45 –0.42 –0.21 –0.27 –0.37 –0.41 所有代表种 Total 叶比例 Leaf mass fraction 0.42 0.73* 0.63* 0.59* 0.41 0.72* 比重高 Height to mass ratio 0.01 0.20 0.69* 0.64* 0.03 0.23 比叶重高 Height to leaf mass ratio 0.12 0.18 0.67* 0.63* 0.10 0.18 *代表相关分析显著相关(P < 0.05)。
* represents significant correlation (P < 0.05). -
[1] AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: A reevaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67.
[2] NEMANI R R, KEELING C D, HASHIMOTO H. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(6): 1560-1563.
[3] LIU X, ZHANG Y, HAN W, TANG A, SHEN J, CUI Z, VITOUSEK P, ERISMAN J W, GOULDING K, CHRISTIE P, FANGMEIER A, ZHANG F. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-463. doi: 10.1038/nature11917
[4] VITOUSEK P M, NAYLOR R, CREWS T, DAVID M B, DRINKWATER L E, HOLLAND E, JOHNES P J, KATZENBERGER J, MARTINELLI L A, MATSON P A, NZIGUHEBA G, OJIMA D, PALM C A, ROBERTSON G P, SANCHEZ P A, TOWNSEND A R, ZHANG F S. Nutrient imbalances: Pollution remains response. Science, 2009, 326(19): 665-666.
[5] 姚凡云, 朱彪, 杜恩在. 15N自然丰度法在陆地生态系统氮循环研究中的应用. 植物生态学报, 2012, 36(4): 346-352. YAO F Y, ZHU B, DU E. Use of 15N natural abundance in nitrogen cycling of terrestrial ecosystems. Chinese Journal of Plant Ecology, 2012, 36(4): 346-352.
[6] 张仁懿, 史小明, 李文金, 郭睿, 王刚. 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 2015, 32(10): 1539-1547. doi: 10.11829/j.issn.1001-0629.2015-0205 ZHANG R Y, SHI X M, LI W J, GUO R, WANF G. Response of species homeostasis and biomass on a sub-alpine grassland. Pratacultural Science, 2015, 32(10): 1539-1547. doi: 10.11829/j.issn.1001-0629.2015-0205
[7] REN Z, LI Q, CHU C, ZHAO L, ZHANG J, AI D, YANG Y, WANG G. Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 2010, 3(1): 25-31. doi: 10.1093/jpe/rtp034
[8] SEMMARTIN M, OYARZABAL M, LORETI J, OESTERHELD M. Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecology, 2007, 32(4): 416-428. doi: 10.1111/j.1442-9993.2007.01706.x
[9] WILSON S D, TILMAN D. Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology, 2002, 83(2): 492-504. doi: 10.1890/0012-9658(2002)083[0492:QVIOFS]2.0.CO;2
[10] BAI Y, WU J, CLARK C, NAEEM S, PAN Q, HUANG J H, ZHANG L, HAN X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. doi: 10.1111/j.1365-2486.2009.01950.x
[11] GÜSEWELL S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164(2): 243-266. doi: 10.1111/j.1469-8137.2004.01192.x
[12] 杨晓霞, 任飞, 周华坤, 贺金生. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166. YANG X X, REN F, ZHOU H K, HE J S. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(2): 159-166.
[13] DICKSON T L, MITTELBACH G G, REYNOLDS H L, GROSS K L. Height and clonality traits determine plant community responses to fertilization. Ecology, 2014, 95(9): 2443-2452. doi: 10.1890/13-1875.1
[14] 辛小娟, 王刚, 杨莹博, 任正炜. 氮、磷添加对亚高山草甸地上/地下生物量分配的影响. 生态科学, 2014, 33(3): 452-458. XIN X J, WANG G, YANG Y B, REN Z W. Effects of N, P addition on above/below ground biomass allocation in a subalpine meadow. Ecological Science, 2014, 33(3): 452-458.
[15] SPEHN E M, JOSHI J, SCHMID B, DIEMER M, KÖRNER C. Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Functional Ecology, 2000, 14(3): 326-337. doi: 10.1046/j.1365-2435.2000.00437.x
[16] 张仁懿, 徐当会, 杨智永, 杨莹博, 王刚. 植物N: P化学计量特征对亚高寒草甸限制类型的指示作用研究. 中国草地学报, 2014, 36(3): 79-83. ZHANG R Y, XU D H, YANG Z Y, YANG Y B, WANG G. The indicative function of N:P stoichiometry characteristics on the nutrient limitation on the sub-alpine grassland. Chinese Journal of Grassland, 2014, 36(3): 79-83.
[17] HAUTIER Y, NIKLAUS P A, HECTOR A. Competition for light causes plant biodiversity loss after eutrophication. Science, 2009, 324(1): 636-638.
[18] 韩潼, 牛得草, 张永超, 江世高, 傅华. 施肥对玛曲县高寒草甸植物多样性及生产力的影响. 草业科学, 2011, 28(6): 926-930. HAN T, NIU D C, ZHANG Y C, JIANG S G, FU H. Effects of fertilization on characteristics of Maqu alpine meadow communities and production. Pratacultural Science, 2011, 28(6): 926-930.
[19] 张杰琦, 李奇, 任正炜, 杨雪, 王刚. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 34(10): 1125-1131. ZHANG J Q, LI Q, REN Z W, YANG X, WANG G. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 23(1): 33-38.
[20] LI W, WEN S J, HU W, DU G Z. Root-shoot competition interactions cause diversity loss after fertilization: A field experiment in an alpine meadow on the Tibetan Plateau. Journal of Plant Ecology, 2011, 4(3): 138-146.
[21] LIIRA J, ZOBEL K, MÄGI R, MOLENBERGHS G. Vertical structure of herbaceous canopies: The importance of plant growth-form and species-specific traits. Plant Ecology, 2002, 163(1): 123-134.
[22] 张仁懿, 史小明, 李文金, 王刚, 郭睿. 氮、磷添加对亚高寒草甸地上生物量的影响. 生态科学, 2016, 35(5): 15-20. ZHANG R Y, SHI X M, LI W J, WANG G, GUO R. Effects of nitrogen and phosphorus addition on the plant aboveground biomass on a sub-alpine meadow. Ecological Science, 2016, 35(5): 15-20.
[23] ZHANG R Y, SHI X M, LI W J, XU D H, WANG G. Responses of plant functional groups to natural nitrogen fertility on an alpine grassland in the Qinghai-Tibet plateau. Russian Journal of Ecology, 2016, 47(6): 532-539.
[24] GOMMERS C M M, VISSER E J W, ONGE K R S, VOESENEK L A C J, PIERIK R. Shade tolerance: When growing tall is not an option. Trends in Plant Science, 2013, 18(2): 65-71. doi: 10.1016/j.tplants.2012.09.008
[25] DONG S K, LONG R J, HU Z Z, KANG M Y, PU X P. Productivity and nutritive value of some cultivated perennial grasses and mixtures in the alpine region of the Tibetan Plateau. Grass and Forage Science, 2003, 58: 302-308. doi: 10.1046/j.1365-2494.2003.00382.x
[26] NIU K, LUO Y, PHILIPPE C, DU G. The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology, 2008, 9(5): 485-493. doi: 10.1016/j.baae.2007.06.015
[27] 都耀庭, 张东杰. 禁牧封育措施改良高寒地区退化草地的效果. 草业科学, 2007, 24(7): 22-24. doi: 10.3969/j.issn.1001-0629.2007.07.005 DU Y T, ZHANG D J. Study on the spatial herterogeneity and distribution patterns of wild licorice in Ningxia. Pratacultural Science, 2007, 24(7): 22-24. doi: 10.3969/j.issn.1001-0629.2007.07.005
[28] 牛钰杰, 杨思维, 王贵珍, 刘丽, 花立民. 放牧干扰下高寒草甸植物功能群组成的时空变化:以甘肃省天祝县为例. 草原与草坪, 2017, 37(3): 29-35. doi: 10.3969/j.issn.1009-5500.2017.03.005 NIU Y J, YANG S W, WANG G Z, LIU L, HUA L M. Study on spatial-temporal change of plant functional group in alpine meadow under grazing:A case study in Tianzhu County, China. Grassland and Turf, 2017, 37(3): 29-35. doi: 10.3969/j.issn.1009-5500.2017.03.005
[29] OLOFSSON J. Influence of herbivory and abiotic factors on the distribution of tall forbs along a productivity gradient: A transplantation experiment. OIKOS, 2001, 94: 351-357. doi: 10.1034/j.1600-0706.2001.940216.x
[30] MÜLLER J, HEINZE J, JOSHI J, BOCH S, KLAUS V H, FISCHER M, PRATI D. Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands. Journal of Plant Ecology, 2014, 7(6): 509-517. doi: 10.1093/jpe/rtt062
[31] WANG X T, NIELSEN U N, YANG X L, ZHANG L M, ZHOU X H, DU G Z, LI G X, CHEN S. Grazing induces direct and indirect shrub effects on soil nematode communities. Soil Biology and Biochemistry, 2018, 121: 193-201. doi: 10.1016/j.soilbio.2018.03.007