欢迎访问 草业科学,今天是2025年4月13日 星期日!

丹江口水源涵养区退耕还草对土壤微生物和线虫群落的影响

周广帆, 杨殿林, 秦洁, 李青梅, 赵建宁

周广帆,杨殿林,秦洁,李青梅,赵建宁. 丹江口水源涵养区退耕还草对土壤微生物和线虫群落的影响. 草业科学, 2019, 36(11): 2796-2805. . DOI: 10.11829/j.issn.1001-0629.2019-0073
引用本文: 周广帆,杨殿林,秦洁,李青梅,赵建宁. 丹江口水源涵养区退耕还草对土壤微生物和线虫群落的影响. 草业科学, 2019, 36(11): 2796-2805. . DOI: 10.11829/j.issn.1001-0629.2019-0073
ZHOU G F, YANG D L, QIN J, LI Q M, ZHAO J N. Effects of the conversion of cropland to grassland on soil microbial and nematode communities in the Danjiangkou water source conservation area. Pratacultural Science, 2019, 36(11): 2796-2805. . DOI: 10.11829/j.issn.1001-0629.2019-0073
Citation: ZHOU G F, YANG D L, QIN J, LI Q M, ZHAO J N. Effects of the conversion of cropland to grassland on soil microbial and nematode communities in the Danjiangkou water source conservation area. Pratacultural Science, 2019, 36(11): 2796-2805. . DOI: 10.11829/j.issn.1001-0629.2019-0073

丹江口水源涵养区退耕还草对土壤微生物和线虫群落的影响

基金项目: 国家自然科学基金(41877343);中国农业科学院科技创新工程协同创新任务(CAAS-XTCX2016015)
摘要: 研究丹江口水源涵养区退耕还草土壤微生物和线虫群落变化特征及相互作用机制,为全面分析和评估退耕还草土壤生态效应提供基础数据,也为库区生态环境保护和土地可持续利用提供科学的依据。2017年9月,在丹江口水源涵养区上游选取退耕种植3年紫花苜蓿(Medicago sativa)草地作为退耕还草的代表样地,以相邻未退耕的玉米(Zea mays)田为对照,比较分析退耕还草土壤微生物和线虫群落变化及其相互作用。结果表明,退耕还草改变了土壤微生物群落结构和多样性,0 – 10和10 – 20 cm土层中微生物群落磷脂脂肪酸总量分别显著提高了59.13%和62.58% (P < 0.05)。土壤微生物与土壤有机碳、全氮和硝态氮极显著正相关(P < 0.01),与土壤pH和C/N显著负相关(P < 0.05)。土壤微生物和土壤线虫相互作用,土壤革兰氏阴性菌与土壤食细菌线虫显著负相关(P < 0.05),与食真菌线虫显著正相关(P < 0.05),土壤食微线虫结构改变。土壤微生物中革兰氏阴性菌与土壤线虫富集指数和结构指数显著正相关(P < 0.05)。退耕还草土壤微食物网结构发生分异,土壤线虫对土壤微食物网结构稳定性贡献更大。

 

English

  • 图  1   退耕还草土壤微生物PLFAs特征

    MS表示紫花苜蓿田,ZM表示玉米田,下图同。同一土层不同字母表示不同植被类型间差异显著(P < 0.05)。

    Figure  1.   Phospholipid fatty acid (PFLA) characteristics of the soil microbes during the conversion of cropland to grassland

    MS and ZM are alfalfa and maize filed, respectively, similarly for the following figures. Different lowercase letters within the same soil depth indicate significant difference between different vegetations at the 0.05 level.

    图  2   退耕还草土壤微生物和线虫结构的主成分分析

    Figure  2.   Principal component analysis of the soil microorganisms and nematodes in the conversion of cropland to grassland

    图  3   土壤理化因子与土壤生物群的冗余分析

    SC, 土壤含水量; Ammonium-N, NH4+-N; Nitrate-N, NO3--N; TN, 全氮; SOC, 土壤有机碳; AP, 有效磷; C/N, 碳/氮; T, 总PLFAs; A, 放线菌PLFAs; B, 细菌PLFAs; G+, 革兰氏阳性菌PLFAs; G-, 革兰氏阴性菌PLFAs; TB, 总细菌PLFAs; F, 真菌PLFAs; F/B,真菌/细菌; N, 土壤线虫数量; Ba, 食细菌线虫; Fu, 食真菌线虫; Pp, 植物寄生性线虫; Op, 捕/杂食线虫。

    Figure  3.   Redundancy analysis between the soil properties and soil biota

    SC, soil moisture content; Ammonium -N, ammonium nitrogen; Nitrate-N, nitrate nitrogen; TN, total nitrogen; SOC, soil organic carbon; AP, effective phosphorus; C/N, carbon/nitrogen; T, total PLFAs; A, actinomycetes PLFAs; B, bacteria PLFAs; G+, gram-positive bacteria PLFAs; G-, gram-negative bacteria PLFAs; TB, total bacteria PLFAs; F, fungi PLFAs; F/B, fungi/bacteria; N, soil nematode number; Ba, bacterivores; Fu, fungivores; Pp, plant parasites; Op, predators/omnivores.

    表  1   表征微生物类群的磷脂脂肪酸标记物

    Table  1   PLFA biomarkers characteristic of the soil microbial groups

    微生物类型
    Microbial group
    特征磷脂脂肪酸
    Characteristics of phospholipid fatty acids
    放线菌 Actinomycetes 10Me18:0, 10Me19:0
    细菌 Bacteria 11:0, 11:1ω1, 11Me19:0, 11Me20:0, 12:0, 14Me18:0, 15:0, 16:0, 17:0, 17:1ω7c, i17:1ω5c, 18:0, 18:1ω7, 18:1ω8, 18:1ω11, 18:1ω10t, 18:2ω7,10, 19:0, 19:1ω9, 20:5ω3,6,9, 24:3,11,14,17
    革兰氏阳性菌 Gram-positive bacteria i14:0, a15:0, i16:0, a17:0, i17:0, 18:1ω10, i18:0, i19:0
    革兰氏阴性菌 Gram-negative bacteria 16:1ω9c, 16:1ω7c, 18:1ω5c, 18:1ω5t, 18:1ω7c, 18:1ω9t, 19:1ω9c, 20:1ω7c, 20:1ω9c, cy17:0, cy19:0
    真菌 Fungi 16:1ω5, 18:1ω5, 18:1ω9, 18:1ω9c, 18:2ω6,9
    下载: 导出CSV

    表  2   土壤微生物群落与土壤理化因子的相关性

    Table  2   Correlation between the soil microbial community and soil physical and chemical factors

    指标
    Parameter
    土壤含水量
    Soil water content
    pH 有机碳
    Organic carbon
    全氮
    Total N
    铵态氮
    NH4+-N
    硝态氮
    NO3-N
    有效磷
    Available P
    碳/氮
    C/N
    放线菌
    Actinomycetes
    0.391** – 0.616** 0.479** 0.612** 0.040 0.529** – 0.075 – 0.521**
    细菌
    Bacteria
    0.478** – 0.558** 0.452** 0.612** – 0.059 0.484** – 0.043 – 0.594**
    革兰氏阳性菌
    G+ bacteria
    0.334** – 0.418** 0.650** 0.782** 0.164 0.559** – 0.167 – 0.545**
    革兰氏阴性菌
    G bacteria
    0.371** – 0.509** 0.665** 0.738** 0.160 0.454** – 0.127 – 0.436**
    细菌总量
    Total bacteria
    0.435** – 0.537** 0.613** 0.752** 0.073 0.540** – 0.113 – 0.581**
    真菌
    Fungi
    0.194 – 0.161 0.324** 0.366** 0.092 0.233* 0.005 – 0.249*
    总PLFAs
    Total PLFAs
    0.423** – 0.552** 0.624** 0.764** 0.086 0.548** – 0.083 – 0.599**
    真菌/细菌
    F/B
    – 0.251* 0.300* – 0.311** – 0.368** – 0.037 – 0.322** – 0.033 0.231
     **表示极显著相关(P < 0.01),*表示显著相关(P < 0.05)。下同。
     ** indicate extremely significant correlation at the 0.01 level, and * indicate significant correlation at the 0.05 level; similarly for the following tables.
    下载: 导出CSV

    表  3   土壤微生物群落与土壤线虫的相关性

    Table  3   Relationship between the soil microbial community and soil nematodes

    指标
    Parameter
    磷脂脂防酸总量
    Total PLFAs
    放线菌
    Actinomycetes
    细菌
    Bacteria
    真菌
    Fungi
    革兰氏阳性菌
    G+ bacteria
    革兰氏阴性菌
    G bacteria
    细菌总量
    Total bacteria
    线虫数量 N 0.507** 0.509** 0.454** 0.349** 0.473** 0.392** 0.480**
    食细菌线虫 Ba – 0.142 – 0.101 – 0.110 0.063 – 0.158 – 0.245* – 0.171
    食真菌线虫 Fu 0.152 0.113 0.087 0.007 0.207 0.255* 0.180
    植物寄生性线虫 Pp 0.104 0.159 0.230 – 0.034 0.030 0.006 0.117
    捕/杂食线虫 Op – 0.063 – 0.104 – 0.120 – 0.024 – 0.076 – 0.001 – 0.083
    通路指数 NCR – 0.219 – 0.133 – 0.186 – 0.011 – 0.212 – 0.321** – 0.245*
    富集指数 EI 0.167 0.187 0.153 0.105 0.188 0.236* 0.199
    结构指数 SI 0.157 0.142 0.138 0.082 0.066 0.278* 0.158
     N, soil nematode number; Ba, bacterivores; Fu, fungivores; Pp, plant parasites; Op, predators/omnivores; NCR, nematode channel ratio; EI, enrichment index;SI, structure index.
    下载: 导出CSV
  • [1] 李柏桥, 付玉, 李光录, 张腾, 郑腾辉. 退耕年限与方式对土壤团聚体稳定性及有机碳分布的影响. 干旱地区农业研究, 2017, 35(3): 244-250.

    LI B Q, FU Y, LI G L, ZHANG T, ZHANG T H. Effects of age and type of conversion from cropland to forest land andgrassland on stability and organic carbon in soil aggregates. Agricultural Research in the Arid Areas, 2017, 35(3): 244-250.

    [2]

    LANDI S, PAPINI R, D’ERRICO G, BRANDI G, ROCCHINI A, ROVERRSI P F, BAZZOFFI P, MOCALI S. Effect of different set-aside management systems on soil nematode community and soil fertility in north, central and south Italy. Agriculture, Ecosystems and Environment, 2018, 261: 251-260. doi: 10.1016/j.agee.2018.01.003

    [3] 刘晶, 张跃伟, 张巧明, 徐少君. 土地利用方式对豫西黄土丘陵区土壤团聚体微生物生物量及群落组成的影响. 草业科学, 2018, 35(2): 771-780.

    LIU J, ZHANG Y W, ZHANG Q M, XU S J. Effect of different land use types on soil aggregates microbial biomass and community composition in the Loess Hilly region of west Henan. Pratacultural Scicnce, 2018, 35(2): 771-780.

    [4]

    JIANG Y, SUN B, JIN C, WANG F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology & Biochemistry, 2013, 60: 1-9.

    [5] 刘淑娟, 张伟, 王克林, 苏以荣. 桂西北典型喀斯特峰丛洼地退耕还林还草的固碳效益评价. 生态学报, 2016, 36(17): 5528-5536.

    LIU S J, ZHANG W, WANG K L, SU Y R. Evaluation of carbon sequestration after conversion of cropland to forest and grassland projection in karst peak-cluster depression area of northwest Guangxi, China. Acta Ecologica Sinica, 2016, 36(17): 5528-5536.

    [6]

    FRANCINI G, HUI N, JUMPPONEN A, KOTZE D, ROMANTSCHUK M, ALLEN J, SETALA H. Soil biota in boreal urban greenspace: Responses to plant type and age. Soil Biology & Biochemistry, 2018, 118: 145-155.

    [7] 张静, 温仲明, 李鸣雷, 朱朵菊, 陶宇, 曾鸿文. 外来物种刺槐对土壤微生物功能多样性的影响. 生态学报, 2018, 38(14): 4964-4974.

    ZHANG J, WEN Z M, LI M L, ZHU D J, TAO Y, ZENG H W. Effects of the exotic black locust on the functional diversity of soil microorganisms. Acta Ecologica Sinica, 2018, 38(14): 4964-4974.

    [8] 李晶, 刘玉荣, 贺纪正, 郑袁明. 土壤微生物对环境胁迫的响应机制. 环境科学学报, 2013, 33(4): 959-967.

    LI J, LIU Y R, HE J Z, ZHENG Y M. Insights into the responses of soil microbial community to the environmental disturbances. Acta Scientiae Circumstantiae, 2013, 33(4): 959-967.

    [9]

    ZHANG G, ZHENG C, WANG Y, LI Y, XIN Y. Soil organic carbon and microbial community structure exhibit different responses to three land use types in the north China plain. Acta Agriculturae Scandinavica, Section B: Soil & Plant Science, 2015, 65(4): 341-349.

    [10] 张超, 刘国彬, 薛萐, 王国梁. 黄土丘陵区不同植被类型根际微生物群落功能多样性研究. 草地学报, 2015, 23(4): 710-717. doi: 10.11733/j.issn.1007-0435.2015.04.007

    ZHANG C, LIU G B, XUE S, WANG G L. Functional diversity of rhizosphere microbial community of vegetation types in the hilly-gully region of loess plateau. Acta Agrestla Sinica, 2015, 23(4): 710-717. doi: 10.11733/j.issn.1007-0435.2015.04.007

    [11]

    ZHAO J, ZENG Z, HE X, CHEN H, WANG K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology, 2015, 68: 61-68. doi: 10.1016/j.ejsobi.2015.03.008

    [12] 鹿士杨, 彭晚霞, 宋同清, 曾馥平, 杜虎, 王克林. 喀斯特峰丛洼地不同退耕还林还草模式的土壤微生物特性. 生态学报, 2012, 32(8): 2390-2399.

    LU S Y, PENG W X, SONG T Q, ZENG F P, DU H, WANG K L. Soil microbial properties under different grain-for-green patterns in depressions between karsthills. Acta Ecologica Sinica, 2012, 32(8): 2390-2399.

    [13]

    BONGERS T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 1990, 83(1): 14-19. doi: 10.1007/BF00324627

    [14]

    FERRIS H, BONGERS T, GOEDE RGMD. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 2001, 18(1): 13-29. doi: 10.1016/S0929-1393(01)00152-4

    [15]

    SIMONE C, MARCEL C, ALEXANDRAl J W, ANNE E, ANIA V, WOLFGANG W W, NICO E. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations. Oecologia, 2017, 184(3): 715-728. doi: 10.1007/s00442-017-3893-5

    [16]

    PAN F, XU Y, MCLAUGHLIN N B, XUE A G, YU Q, HAN X, LIU W, ZHAN L, ZHAO D, LI C. Response of soil nematode community structure and diversity to long-term land use in the black soil region in China. Ecological Research, 2012, 27(4): 701-714. doi: 10.1007/s11284-012-0944-6

    [17]

    FRANCISCO F N, DAMARIS G V. Soil nematodes associated with different land uses in the Los Tuxtlas Biosphere Reserve, Veracruz, Mexico. Revista Mexicana De Biodiversidad, 2017, 88: 1-10.

    [18]

    ZHONG S, ZENG H, JIN Z. Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biology & Biochemistry, 2017, 107: 234-243.

    [19]

    INGHAM R E, TROFYMOW J A, INGHAM E R, COLEMAN D C. Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological Monographs, 1985, 55(1): 119-140. doi: 10.2307/1942528

    [20]

    SOHLENIUS B. Influence of cropping system and nitrogen input on soil fauna and microorganisms in a swedish arable soil. Biology and Fertility of Soils, 1990, 9(2): 168-173. doi: 10.1007/BF00335802

    [21]

    BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959, 37: 911-917. doi: 10.1139/y59-099

    [22] 姚晓东, 王娓, 曾辉. 磷脂脂肪酸法在土壤微生物群落分析中的应用. 微生物学通报, 2016, 43(9): 2086-2095.

    YAO X D, WANG W, ZENG H. Application of phospholipid fatty acid method in analyzing soil microbial community composition. Microbiology China, 2016, 43(9): 2086-2095.

    [23] 毛小芳, 李辉信, 陈小云, 胡锋. 土壤线虫三种分离方法效率比较. 生态学杂志, 2004, 23(3): 149-151. doi: 10.3321/j.issn:1000-4890.2004.03.033

    MAO X F, LI H X, CHEN X Y, HU F. Extraction efficiency of soil nematodes by different methods. Chinese Journal of Ecology, 2004, 23(3): 149-151. doi: 10.3321/j.issn:1000-4890.2004.03.033

    [24]

    BONGERS T. De nematoden van Nederland. Zeist: Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, 1988.

    [25] 尹文英.中国土壤动物检索图鉴. 北京: 科学出版社, 1998

    YIN W Y. Pictorial Keys to Soil Animals of China. Beijing: Science Press, 1998.

    [26]

    YEATES G W, BONGERS T, GOEDE R G M D, FRECKMAN D W, GEORGIEVA S S. Feeding habits in soil nematode families and genera: An outline for soil ecologists. Journal of Nematology, 1993, 25(3): 315-331.

    [27]

    BONGERS T, BONGERS M. Functional diversity of nematodes. Applied Soil Ecology, 1998, 10(3): 239-251. doi: 10.1016/S0929-1393(98)00123-1

    [28] 鲍士旦.土壤农化分析. 北京: 中国农业出版社, 2005.

    BAO S D. Soil Agrochemical Analysis. Beijng: China Agricultural Press, 2005.

    [29] 宋敏, 邹冬生, 杜虎, 彭晚霞, 曾馥平, 谭秋锦, 范夫静. 不同土地利用方式下喀斯特峰丛洼地土壤微生物群落特征. 应用生态学报, 2013, 24(9): 2471-2478.

    SONG M, ZOU D S, DU H, PENG W X, ZENG F P, TAN Q J, FAN F J. Characteristics of soil microbial populations in depressions between karst hills under different land use patterns. Chinese Journal of Applied Ecology, 2013, 24(9): 2471-2478.

    [30]

    YUAN Y, DAI X, XU M, WANG H, FU X, YANG F. Responses of microbial community structure to land-use conversion and fertilization in southern china. European Journal of Soil Biology, 2015, 70: 1-6.

    [31]

    MOON J B, WARDROP D H, BRUNS M A V, MILLER R M, NAITHANI K J. Land-use and land-cover effects on soil microbial community abundance and composition in headwater riparian wetlands. Soil Biology & Biochemistry, 2016, 97: 215-233.

    [32] 李飞, 刘振恒, 贾甜华, 李珊珊, 白彦福, 郭灿灿, 王惟惟, 孔猛, 张涛, IQBAL A, 周华坤, 贾宇, 尚占环. 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响. 生态学报, 2018, 38(17): 6006-6015.

    LI F, LIU Z H,, JIA T H, LI S S, BAI Y F, GUO C C, WANG W W, KONG M, ZHANG T, IQBALl A, ZHOU H K JIA Y, SHANG G H. Functional diversity of soil microbial community carbon metabolism with the degradation and restoration of alpine wetland and meadows. Acta Ecologica Sinica, 2018, 38(17): 6006-6015.

    [33] 时鹏, 王淑平, 贾书刚, 高强, 孙晓强. 三种种植方式对土壤微生物群落组成的影响. 植物生态学报, 2011, 35(9): 965-972.

    SHI P, WANG S P, JIA S G, GAO Q, SUN X Q. Effects of three planting patterns on soil microbial community composition. Chinese Journal of Plant Ecology, 2011, 35(9): 965-972.

    [34] 张超. 黄土丘陵区根际微生物对退耕地植被恢复的响应. 杨凌: 中国科学院大学博士学位论文, 2013.

    ZHANG C. Rhizosphere microbial response to the revegetation of abandoned Cropland in the Hilly Loess Region. PhD Thesis. Yangling: The University of Chinese Academy of Sciences, 2013.

    [35]

    AISLABIE J, DESLIPPE J R, DYMOND J R. Soil microbes and their contribution to soil services.// Landcare Research, Ecosystem Services in New Zealand: Conditions and Trends. Lincoln: Manaaki Whenua Press, 2013: 143-161.

    [36]

    NIELSEN U N, OSLER G H R, CAMPBELL C D, BURSLEM D F R P, VANDER W R. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography, 2010, 37(7): 1317-1328. doi: 10.1111/j.1365-2699.2010.02281.x

    [37]

    SHEN C, XIONG J, ZHANG H, FENG Y, LIN X, LI X, LIANG W, CHU H. Soil pH drives the spatial distribution of bacterial communities along elevation on changbai mountain. Soil Biology & Biochemistry, 2013, 57: 204-211.

    [38]

    DJUKIC I, ZEHETNER F, MENTLERR A, GERZABEK M H. Microbial community composition and activity in different alpine vegetation zones. Soil Biology & Biochemistry, 2010, 42(2): 155-161.

    [39]

    LAGERLOF J, ADOLFSSON L, BORJESSON G, EHLERS K, VINYOLES G P, SUNDH I. Land-use intensification and agroforestry in the Kenyan Highland: Impacts on soil microbial community composition and functional capacity. Applied Soil Ecology, 2014, 82: 93-99. doi: 10.1016/j.apsoil.2014.05.015

    [40]

    FU S, FERRRIS H, BROWN D, PLANT R. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology & Biochemis-try, 2005, 37(11): 1979-1987.

    [41]

    TRAP J, BONKOWSKI M, PLASSARD C, VILLENAVE C, BLANCHART E. Ecological importance of soil bacterivores for ecosystem functions. Plant & Soil, 2016, 398(1): 1-24.

    [42]

    JIANG Y, LIU M, ZHANG J, CHEN Y, CHEN X, CHEN L, LI H, ZHANG X, SUN B. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. The Isme Journal, 2017, 11: 2705-2717. doi: 10.1038/ismej.2017.120

    [43]

    BONGERS T, FERRIS H. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 1999, 14(6): 224-228.

    [44]

    SOHLENIUS B. Influence of cropping system and nitrogen input on soil fauna and microorganisms in a swedish arable soil. Biology & Fertility of Soils, 1990, 9(2): 168-173.

    [45] 杜晓芳, 李英滨, 刘芳, 宿晓琳, 李琪. 土壤微食物网结构与生态功能. 应用生态学报, 2018, 29(2): 403-411.

    DU X F, LI Y B, LIU F, SU X L, LI Q. Structure and ecological functions of soil micro-food web. Chinese Journal of Applied Ecology, 2018, 29(2): 403-411.

    [46] 高明, 周保同, 魏朝富, 谢德体, 张磊. 不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究. 应用生态学报, 2004, 185(7): 1177-1181.

    GAO M, ZHOU B T, WEI C F, XIE D T, ZHANG L. Effect of tillage system on soil animal, microorganism and enzyme activity in paddy field. Chinese Journal of Applied Ecology, 2004, 185(7): 1177-1181.

    [47]

    MAAROUFI N I, PALMQVIST K, BACH L H, BOKHORST S, LIESS A, GUNDALE M J, KARDOL P, NORDIN A, MEUNIER C L. Nutrient optimization of tree growth alters structure and function of boreal soil food webs. Forest Ecology and Management, 2018, 428: 46-56. doi: 10.1016/j.foreco.2018.06.034

    [48]

    PAPATHEODOROU E M, KORDATOS H, KOUSERAS T. Differential responses of structural and functional aspects of soil microbes and nematodes to abiotic and biotic modifications of the soil environment. Applied Soil Ecology, 2012, 61: 26-33. doi: 10.1016/j.apsoil.2012.04.002

    [49] 王阳, 王雪峰, 张伟东. 土壤线虫群落对森林凋落物分解主场效应的作用. 生态学报, 2018, 38(21): 7840-7849.

    WANG Y, WANG X F, ZHANG W D. Effect of soil nematode communities on the home-field advantage of forest litter decomposition. Acta Ecologica Sinica, 2018, 38(21): 7840-7849.

    [50]

    JIANG Y, QIAN H, WANG X, CHEN L, LIU M, LI H, SUN B. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biology & Biochemistry, 2018, 119: 22-31.

图(3)  /  表(3)
计量
  • PDF下载量:  19
  • 文章访问数:  1166
  • HTML全文浏览量:  173
  • 被引次数: 0
文章相关
  • 通讯作者: 杨殿林
  • 收稿日期:  2019-01-27
  • 接受日期:  2019-05-04
  • 网络出版日期:  2019-11-07
  • 发布日期:  2019-10-31

目录

    /

    返回文章
    返回