齐墩果酸对豌豆蚜生长发育及繁殖的影响
English
-
甜高粱(Sorghum dochna)作为普通高粱的变种,因其抗逆、耐旱、适应能力强,且植株高大、茎秆富含糖分,是我国重要的能源作物和优质饲料作物,其茎秆的糖分主要由蔗糖、果糖、葡萄糖组成[1-2]。根据品种的不同,一般占可溶性总糖的95%以上。甜高粱茎秆含糖量是衡量其利用价值的重要标准。而准确测定甜高粱茎秆的可溶性糖含量,是甜高粱茎秆可溶性糖QTL定位的基础和甜高粱茎秆糖分相关基因的克隆并进行功能验证的前提。
育种者习惯用汁液锤度(Brix)和出汁量来估算可溶性糖产量[3]。但通过锤度法衡量茎秆可溶性总糖含量时,除了没有统一的估算方法外,还存在无法分析糖组分的缺点。目前,在对可溶性糖进行分析时分别采用了不同的测定方法,方法各有优缺点。孟利等[4]在分析甜高粱茎秆可溶性糖组分时,分别运用了蒽酮比色法、3,5-二硝基水杨酸法和离子色谱法测定了茎秆可溶性总糖含量、还原糖含量和可溶性糖的种类,均取得了较好的结果。赵大云等[5]在研究苜蓿多糖的测定方法中,对蒽酮硫酸法和苯酚硫酸法进行了对比,结果显示,蒽酮硫酸法的稳定性和重现性则均优于苯酚硫酸法,而且苯酚硫酸法在测定过程中存在反应液体容易飞溅等试验安全性问题[6];宋占午等[7] 对3,5-二硝基水杨酸法和蒽酮硫酸法进行了对比,结果显示,3,5-二硝基水杨酸法的灵敏度要低于蒽酮比色法,而且3,5-二硝基水杨酸法的反应试剂需要在室温下保存7~10 d后才可使用,存在配制麻烦、耗时的缺点[8];在使用斐林试剂比色法的显色试剂次甲基蓝与空气接触容易发生氧化,易对显色结果造成影响[9] ;在使用高效液相色谱法测定甜高粱茎秆中的可溶性糖含量存在仪器昂贵,维护复杂[10]等缺点。综上所述,蒽酮比色法操作简便、反应快速等优缺点[11],但对糖组分含量的测定存在问题还需改进 [12-14]。因此本研究在蒽酮比色法基础上通过优化反应条件和样品处理方法,对测定总糖、蔗糖、果糖的条件进行探究,为甜高粱茎秆可溶性糖含量测定寻找最便捷有效方法。
1. 材料与方法
1.1 试验试验材料
‘忻粱52’与‘W452’重组自交系群体F8代255个于2019年4月30日于天津静海区良种场种植,行长2.5 m,行间距0.5 m,株距0.2 m进行,田间管理同常规大田生产。于蜡熟期收获去掉叶、叶鞘和穗柄,留下茎秆部分用榨汁机对其进行2次榨汁,测定锤度后收集至5 mL离心管作为待测样本。
1.2 溶液配制
1) 85%硫酸:取780 mL浓硫酸(98%),缓慢加入水中,定容至1 L。
2) 0.1%蒽酮溶液:取0.1 g蒽酮溶于100 mL85%的硫酸中(现配现用)。
3)葡萄糖、果糖、蔗糖标准糖液:准确称取1 g葡萄糖、果糖、蔗糖分别溶于1 000 mL容量瓶中并用蒸馏水稀释至刻度线,摇匀后置于冰箱中冷藏备用,浓度为1 000 g·L−1。
1.3 标准曲线的绘制
分别配制0、10、20、40、60、80、100 mg·L−1葡萄糖、果糖、蔗糖溶液,各自吸取1 mL到7个比色管中,然后加入蒽酮试剂4 mL,然后将系列标准溶液在100 ℃水浴10 min的条件进行反应,在620 nm的波长下测定吸光值,并另取一组果糖的一系列标准糖溶液以50 ℃水浴3 min的条件进行反应,在620 nm的波长下测定吸光值,并与100 ℃水浴后的果糖标液进行对比,若两者显色的吸光值一致,则可以直接采用50 ℃水浴3 min这组标液所绘制的标准曲线,否则应对结果计算进行矫正,并以含糖量为横坐标,吸光值为纵坐标,并通过Excel软件绘制标准曲线(图1)。
1.4 材料处理
1)去蛋白:吸取甜高粱汁液置于2 mL离心管中,12 000 r·min−1离心1 min,吸取上清液置于2 mL离心管中,放入水浴锅中100 ℃水浴10 min,再置于冰上冷却5 min,112 000 r·min−1离心1 min,吸取上清液置于2 mL离心管中后。
2)去色素:向2 mL离心管中加入一小勺活性炭粉末(加入的量可以视颜色的深浅而定),震荡后65 ℃水浴加热10 min,12 000 r·min−1离心1 min,吸取上清液2 mL离心管中,低温保存,作为待测样品。
3)确定稀释倍数:选择5组锤度从小到大的样品,分别吸取1、2、4、6、8、10 μL原液,加入蒸馏水配至1 mL,用传统蒽酮比色法进行测定,选出最合适的反应体系。
1.5 测定方法的优化
1.5.1 可溶性总糖显色条件的优化
1)筛选合适的反应温度
向试管中加入1 mL标准葡萄糖溶液,然后加入蒽酮试剂4 mL,分别于50、60、70、80、90、100 ℃下水浴10 min,冷却后于620 nm波长下测定吸光值,分析温度对吸光值的影响。
2)筛选合适的反应时间
向试管中加入1 mL标准葡萄糖溶液,然后加入蒽酮试剂4 mL,于100 ℃分别水浴0、1、4、7、10、13、16 min,冷却后于620 nm波长下测定吸光值,分析时间对吸光值的影响。
1.5.2 蔗糖处理条件的优化
1)筛选合适稀碱浓度
以加入KOH的浓度为变量,向含有1 mL蔗糖、果糖、葡萄糖标准溶液的试管中分别加入浓度为1、2、3、4、5 mol·L−1的KOH溶液1 mL,再加入3 mL蒸馏水,放入水浴锅中加热10 min,去除果糖和葡萄糖,定容至10 mL,然后取1 mL样品加入比色管中,再加入蒽酮试剂4 mL,然后加入沸水浴中加热10 min,冷却后于620 nm波长下测定吸光值,选出KOH最佳的处理的浓度。
2)筛选合适的稀碱处理时长
以加热时间为变量,向含有1 mL蔗糖、果糖、葡萄糖标准溶液的试管中分别加入浓度为1 mol·L−1的KOH溶液1 mL,放入水浴锅中分别加热0、2、4、6、8、10、12 min,去除果糖和葡萄糖,定容至10 mL,然后取1 mL样品加入比色管中,再加入蒽酮试剂4 mL,然后放入沸水浴中加热10 min,冷却后于620 nm波长下测定吸光值,选出最佳的处理时长。
1.5.3 果糖显色条件的优化
1)筛选合适的显色时长
以反应时间为变量,分别向试管中加入1 mL标准葡萄糖、果糖、蔗糖溶液,并加入4 mL蒽酮试剂后,放入50 ℃水浴锅中分别处理0、1、2、3、4、5、6、7、8、9、10 min后,冷却后于620 nm波长下测定吸光值,选出最佳的显色时长。
2)筛选合适显色温度
以反应温度为变量,分别向试管中加入1 mL标准葡萄糖、果糖、蔗糖溶液,并加入4 mL蒽酮试剂,分别放入35、50、65、80、100 ℃水浴锅中加热,分别加热5 min后冷却,于620 nm波长下测定吸光值,选出最佳显色温度。
1.6 葡萄糖的含量换算公式
将处理好的汁液按照最佳的试验条件进行测定。依次测出样品的总糖、蔗糖、果糖的吸光值,再通过公式估算出葡萄糖的含量。计算公式如下:
$ 可溶性糖含量\left({\rm{mg}}\cdot {{\rm{L}}}^{-1}\right)=\frac{G\times {V}_{S}\times D}{{V}_{t}\times {10}^{3}} \text{;} $
(1) $蔗糖含量\left({\rm{mg}}\cdot {{\rm{L}}}^{-1}\right)=\frac{S\times {V}_{S}\times D}{{V}_{t}\times {10}^{3}} \text{;} $
(2) $ 果糖含量\left({\rm{mg}}\cdot {{\rm{L}}}^{-1}\right)=\frac{F\times {V}_{S}\times D}{{V}_{t}\times {10}^{3}} \text{;} $
(3) $ 葡萄糖含量\left({\rm{mg}}\cdot {{\rm{L}}}^{-1}\right)=\frac{\left(G-S-F\right)\times {V}_{S}\times D}{{V}_{t}\times {10}^{3}} 。 $
(4) 式中:G为在标准曲线上查出的总糖的含量(mg);S为在标准曲线上查出的蔗糖的含量(mg);F为在标准曲线上查出的果糖的含量(m);Vs为提取液的总体积(m);D为稀释倍数;Vt为反应体系的总体积。
1.7 数据分析
采用SPSS 17.0软件对所测数据统计分析,显著性差异分析采用 t 检验,差异显著设置为 P < 0.05,差异极显著设置为 P < 0.01。分别对锤度和可溶性糖总量、可溶性糖、蔗糖、葡萄糖、果糖进行相关性分析,采用Excel 2020制图。
2. 结果与分析
2.1 甜高粱茎秆汁液样品的前处理
2.1.1 去除茎秆汁液中的蛋白质
为了降低甜高粱汁液样品中蛋白质对显色反应的影响,通过煮沸处理达到去除蛋白的目的。通过蛋白质与考马斯亮蓝显色反应在分光光度计595 nm波长下吸光值建立蛋白的标准曲线,得到回归方程为y = 0.5986x + 0.0023,回归系数为R2 = 0.99。然后通过回归方程计算部分样品处理前后的蛋白含量(图2),可以看出,经煮沸法处理后样品的蛋白质含量明显下降。
2.1.2 样品的脱色处理
为了降低色素对显色结果的影响,通过往样品中加入活性炭粉末的方式来去除色素。随机挑选10个颜色深浅不一的样品进行处理,样品经处理后最终效果(图3)表明,浑浊有色液体变得澄清透明,脱色效果明显。
2.1.3 样品的稀释处理
随机挑选5组糖锤度差异较大的样品分别稀释不同倍数后测定吸光值,所有测定均重复 3次。当稀释倍数为500~1 000倍时,各个锤度的样品测得的吸光值都在标准曲线的线性范围内,但考虑到加入样品的浓度太小,会导致误差加大,本试验选择将处理后的样品稀释500倍后用于蒽酮比色法的测定(表1)。
表 1 不同样品的稀释后的吸光值Table 1. Dilution results of different samples (Abs)样品锤度
Sample brix稀释倍数 Dilution ratio 1000 500 250 166 125 100 4.8 0.086 ± 0.002 0.161 ± 0.002 0.320 ± 0.004 0.478 ± 0.001 0.624 ± 0.001 0.781 ± 0.003 7.6 0.182 ± 0.003 0.355 ± 0.003 0.717 ± 0.003 1.059 ± 0.004 1.237 ± 0.012 1.439 ± 0.004 9.7 0.321 ± 0.002 0.638 ± 0.002 1.038 ± 0.031 1.131 ± 0.003 — — 12.7 0.395 ± 0.002 0.790 ± 0.001 1.239 ± 0.003 1.258 ± 0.023 — — 16.2 0.495 ± 0.002 0.991 ± 0.001 1.289 ± 0.011 1.319 ± 0.007 — — 0 < abs < 1时在标准曲线线性范围内。
The linear range of the standard curve for 0 < abs < 1.2.2 可溶性糖蒽酮比色法测定条件优化
2.2.1 可溶性总糖显色条件的优化
通过改变反应温度和反应时间得到可溶性总糖吸光值变化趋势曲线(图4),控制反应时间为10 min,改变处理温度,样品所测得的吸光值随反应温度的升高而升高,在100 ℃水浴条件下吸光值达到最大,因此试验中选择的反应温度为100 ℃。控制反应温度为100 ℃,改变处理时间,当加热时间达到7 min时,吸光值达到最大值,显色反应完全,因此本试验选择100 ℃水浴7 min为可溶性总糖测定的最佳反应条件。
2.2.2 蔗糖含量测定的条件优化
通过改变KOH处理样品的浓度,可溶性糖吸光值变化趋势不同(图5),当加入浓度为1 mol·L−1的KOH溶液1 mL后,样品中葡萄糖和果糖的吸光值已经基本上接近于0,而蔗糖吸光值不受影响,因此1 mol·L−1的KOH溶液加入可以有效去除汁液中葡萄糖和果糖,减少葡萄糖和果糖对蔗糖含糖测定的影响。通过加入1 mol·L−1的KOH溶液1 mL后进行不同时长处理,测得可溶性糖吸光值变化趋势(图5),当反应时长达到8 min时,葡萄糖和果糖溶液的吸光值已接近于0,而对蔗糖的吸光值没有影响,说明此时KOH溶液已经完全去除汁液中葡萄糖和果糖,因此后续蔗糖含量测定选择将反应时长控制在8 min。
2.2.3 果糖含量测定的条件优化
在果糖测定中,为了获得最佳的测定温度,采用不同温度处理来测定果糖吸光值的变化趋势(图6)。由图可以看出,当反应温度在35 ℃时,果糖达到最大吸光值,而葡萄糖和蔗糖的吸光值接近于0,因此,可以确定在测定样品中果糖含量时,温度应控制在35 ℃左右。控制反应温度为35 ℃时,对不同处理时长对果糖吸光值影响进行研究,当处理时长为3 min时,果糖溶液的吸光值达到最大值,因此本研究在测定果糖含量时应选择处理时长为3 min。
2.3 可溶性糖含量测定
2.3.1 精密度试验
取同一样品平均分装成15份,以试验所得出的最佳条件分别测定可溶性总糖、蔗糖、果糖含量(表2),可溶性总糖、蔗糖、果糖测定方法相对标准偏差为0.96%、1.88%、2.63%,说明该方法具有较好的精密度。
2.3.2 重复性试验
选取9份已知含量的样品溶液,分为3组,分别加入葡萄糖、蔗糖、果糖对照样品10 μg,以试验所得出的方法进行测定吸光度,求出回收率,结果表明该方法稳定可靠(表3)。
表 3 回收率试验结果Table 3. Recovery test results标准品
Standard
markers样品编号
Number of
samples样品糖含量
Sample sugar
content/(μg·mL−1)加入量
Add quantity/μg实测糖含量
Measured sugar
content/(μg·mL−1)回收率
Recovery
rate/%平均回收率
Average recovery
rate/%相对标准偏差
Relative standard
deviation/%葡萄糖
Glucose1 101.59 10.00 113.17 101.42 2 104.53 10.00 111.34 97.22 99.21 2.13 3 103.35 10.00 112.22 99.00 蔗糖
Sucrose4 125.90 10.00 132.11 97.21 5 108.78 10.00 116.12 97.76 98.46 1.74 6 108.73 10.00 119.21 100.41 果糖
Fructose7 101.82 10.00 109.32 97.76 8 106.37 10.00 114.21 98.14 98.08 0.30 9 102.66 10.00 110.78 98.33 2.3.3 甜高粱群体茎秆汁液中可溶性总糖、果糖、蔗糖、葡萄糖含量的测定
在获得可溶性总糖、果糖、蔗糖、葡萄糖以上测定参数后,本试验对甜高粱群体后代282个样品的含糖量进行测定,将所测得的结果由Excel软件整理后导入SPSS工具进行作图(图7),可溶性糖、蔗糖、果糖、葡萄糖的变化趋势相同,可溶性糖含量较高的样品,蔗糖、果糖、葡萄糖的含量都相应较高,同时也可以看出汁液锤度和可溶性总糖含量之间存在相关性。通过使用SPSS工具对可溶性总糖与所有性状进行相关分析,相关系数分别为0.700、0.860、0.499,且呈极显著正相关(P < 0.01);蔗糖和果糖之间极显著正相关(P < 0.01),相关系数为0.956,但和葡萄糖间都存在显著负相关关系(P < 0.01),相关系数为-0.459,果糖与葡萄糖之间相关不明显(P > 0.05)。同时对可溶性总糖含量与锤度之间进行相关性分析,锤度和可溶性糖总量之间的相关系数值为0.885,并且呈现出极显著正相关关系(P < 0.01)。通过线性回归分析,锤度和可溶性糖总量之间呈线性回归,回归方程为:锤度 = 37.082 × 可溶性糖总量 + 3.990,在测定甜高粱汁液锤度后,利用该公式可以估算出可溶性糖总量。
表 2 精密度试验结果Table 2. Precision experimental results指标
Item样品号 Sample number 平均值
Average相对标准偏差
Relative standard deviation/%1 2 3 4 5 可溶性糖 Soluble sugar/% 17.22 17.61 17.54 17.68 17.47 17.48 0.96 蔗糖 Sucrose/% 6.34 6.72 6.88 6.34 6.14 6.32 1.88 果糖 Fructose/% 9.64 9.05 9.16 9.30 9.53 9.34 2.63 3. 讨论与结论
在果糖比色条件的优化过程中,甜高粱汁液样品在35 ℃的温度下反应3 min时所测得的结果并不理想,反应时试管中往往会产生黄绿色和白色絮状物,无法测定吸光值,通过延长反应时间和震荡无法消除这种絮状物,但可以通过提高反应温度来消除,推测该种絮状物可能是甜高粱汁液中某种糖的组分与硫酸发生不完全显色反应的结果。当反应温度提高至50 ℃,该种现象发生较少,且该条件下,葡萄糖和蔗糖对果糖的吸光值影响较小,可以忽略不计,可以选择50 ℃反应3 min作为果糖测定的反应条件。有学者研究发现,在室温时加入蒽酮试剂易使葡萄糖与之发生显色反应,而在冰水条件下加入蒽酮试剂可以降低葡萄糖与试剂发生显色反应的影响,能减少试验误差[15]。本研究采用文献[15]中的条件后,测得葡萄糖的吸光值减小,能降低葡萄糖对果糖测定的影响。硫酸的浓度和用量也会对显色结果产生影响[16],选用85%的硫酸能使得果糖充分脱水,效果最好,与本研究选用的条件相同。
本研究在可溶性糖和所有性状之间极显著正相关,且相关系数蔗糖、果糖、葡萄糖逐一增大,蔗糖和果糖之间极显著正相关,但与葡萄糖间存在显著负相关关系。毛鑫等[17]研究结果与本研究相反,甜高粱茎秆汁液中果糖含量与葡萄糖含量显著正相关,果糖与蔗糖则无显著相关性,葡萄糖与蔗糖间正相关,推测可能是由品种间的差异和环境因素引起的。有研究表明[2],在盐碱胁迫下,甜高粱茎秆汁液的组分将会受到影响,各种糖分之间的相关性系数将会降低。Guden[18]在甜高粱基因型对相关性状的影响中研究发现,果糖和葡萄糖浓度(r = 0.856**)极显著正相关。刘海波等[19]发现,总糖、蔗糖、果糖和葡萄糖含量会随盐胁迫程度加重呈先增加后降低的趋势,且盐胁迫会提高蔗糖的相对含量,但对葡萄糖和果糖的相对含量无影响。而本研究的甜高粱材料种植于天津静海,土壤的类型为盐化潮土,土壤含盐量较高,这可以解释为何本研究所得的结果会与其他学者的研究结果存在差异。
本研究通过对传统蒽酮比色法测糖的条件进行优化,寻找出了便捷有效的测定方法,解决了传统的蒽酮比色法无法测定果糖、蔗糖含量的问题,同时与传统的蒽酮比色法一样,具有较好的精密度和稳定性。而硫酸苯酚法[20-21]和3,5-二硝基水杨酸法[22-23]目前多用于多糖和可溶性总糖的测定,在果糖、蔗糖上的测定还尚无报道,相比之下,改良之后的蒽酮比色法更适用于甜高粱茎秆糖含量的测定。
参考文献
[1] 匡海学.中药化学.北京:中国中医药出版社, 2003:226-259. KUANG H X. Traditional Chinese Medicine Chemistry. Beijing: Chinese Traditional Medicine Press, 2003:226-259.
[2] 孙彦, 龙瑞才, 张铁军, 杨青川, 周禾. 紫花苜蓿皂苷研究进展. 草业学报, 2013, 22(3): 274-283. SUN Y, LONG R C, ZHANG T J, YANG Q C, ZHOU H. Research progress on saponins of alfalfa. Journal of Grass Industry, 2013, 22(3): 274-283.
[3] 彭少麟, 南蓬, 钟扬. 植物中的萜类化合物及其在生态系统中的作用. 生态学杂志, 2002(3): 33-38. doi: 10.3321/j.issn:1000-4890.2002.03.009 PENG S L, NAN P, ZHONG Y. Indole compounds in higher plants and their roles in ecosystems. Journal of Ecology, 2002(3): 33-38. doi: 10.3321/j.issn:1000-4890.2002.03.009
[4] 景沛, 鲁庭延, 熊丹, 李劲薇, 刘易陇, 钟志容. 齐墩果酸片的处方优化设计. 泸州医学院学报, 2014, 37(3): 235-238. doi: 10.3969/j.issn.1000-2669.2014.03.001 JIANG P, LU T Y, XIONG D, LI J W, LIU Y L, ZHONG Z R. Prescription optimization design of oleanolic acid tablets. Journal of Luzhou Medical College, 2014, 37(3): 235-238. doi: 10.3969/j.issn.1000-2669.2014.03.001
[5] 张亮.新疆紫花苜蓿皂苷的提取、分离及纯化工艺研究.乌鲁木齐: 新疆大学硕士学位论文, 2009. ZHANG L. Study on the saponins of extraction, separation and purification of Xinjiang alfalfa. Master Thesis. Urumqi: Xinjiang University, 2009.
[6] 付佳, 王洋, 阎秀峰. 萜类化合物的生理生态功能及经济价值. 东北林业大学学报, 2003, 31(6): 59-62. doi: 10.3969/j.issn.1000-5382.2003.06.021 FU J, WANG Y, PEI X F. Economic of physiological and ecological functions value of terpenoids. Journal of Northeast Forestry University, 2003, 31(6): 59-62. doi: 10.3969/j.issn.1000-5382.2003.06.021
[7] 徐正浩, 崔绍荣, 何勇, 李迪, 赵明, 张旭, 余柳青. 植物次生代谢物质和害虫防治. 植物保护, 2004, 30(4): 8-11. doi: 10.3969/j.issn.0529-1542.2004.04.002 XU Z H, CUI S R, HE Y, LI D, ZHAO M, ZHANG X, YU L Q. Plant secondary metabolites and pest control. Plant Protection, 2004, 30(4): 8-11. doi: 10.3969/j.issn.0529-1542.2004.04.002
[8] GOVINDACHARI T R, SURESH G. Antifungal activity of some B, D-secolimoniods from two Meliaceous plants. Journal of Chemical Ecology, 1999, 25(4): 923-933. doi: 10.1023/A:1020809204288
[9] 谷文祥, 段舜山, 骆世明. 萜类化合物的生态特性及其对植物的化感作用. 华南农业大学学报, 1998, 19(4): 111-115. GU W X, DUAN Y S, LUO S M. The ecological characteristics of indole compounds and their allelopathic effects on plants. Journal of South China Agricultural University, 1998, 19(4): 111-115.
[10] 董红霞, 王敬淑, 刘光华, 凌冰. 植物次生化合物在害虫防治中的作用. 仲恺农业技术学院学报, 2005, 18(2): 65-71. doi: 10.3969/j.issn.1674-5663.2005.02.014 DONG H X, WANG J S, LIU G H, LING B. The roles of secondary metabolites in insect pest control. Journal of Zhongkai University of Agriculture and Technolog, 2005, 18(2): 65-71. doi: 10.3969/j.issn.1674-5663.2005.02.014
[11] 吕宁, 刘长仲. 不同抗生素对豌豆蚜生物学特性的影响. 中国生态农业学报, 2014, 22(2): 208-216. LYU N, LIU C Z. Effect of different antibiotics on the biological characteristics of pea aphid. Chinese Journal of Eco-Agriculture, 2014, 22(2): 208-216.
[12] 朱玉永. 豌豆蚜与寄主互作关系的研究. 石河子: 石河子大学硕士学位论文, 2014. ZHU Y Y. Study on the interaction between aphids and their host. Master Thesis. Shihezi: Shihezi University, 2014.
[13] 武德功, 杜军利, 贺春贵. 4个苜蓿品种对两种体色豌豆蚜的抗生性. 植物保护, 2015, 41: 49-54, 62. doi: 10.3969/j.issn.0529-1542.2015.06.008 WU D G, DU J L, HE C G. Antibiosis of four alfalfa cultivars against two color morphs of Acyrthosiphon pisum. Plant Protection, 2015, 41: 49-54, 62. doi: 10.3969/j.issn.0529-1542.2015.06.008
[14] 武德功, 王森山, 刘长仲, 胡桂馨, 杜军利, 贺春贵. 豌豆蚜刺吸胁迫对不同苜蓿品种体内单宁含量及生理活性的影响. 草地学报, 2011, 19: 351-355. doi: 10.11733/j.issn.1007-0435.2011.02.029 WU D G, WANG S S, LIU C Z, HU G X, DU J L, HE C G. Effects of herbivore stress by Acyrthosiphon pisum on the contents of Tannin and physiological activity in different alfalfa cultivars. Acta Agrestia Sinica, 2011, 19: 351-355. doi: 10.11733/j.issn.1007-0435.2011.02.029
[15] 孙玺文. 光照与温度交互作用对两种色型豌豆蚜种群的影响.兰州: 甘肃农业大学硕士学位论文, 2017. SUN X W. Effects of photo period and temperature interaction on population of two colour morphs of Acyrthosiphon pisum. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.
[16] BRAENDLE C, WEISSER W W. Variation in escape behavior of red and green clones of the pea aphid. Journal of Insect Behavior, 2001, 14(4): 497-509. doi: 10.1023/A:1011124122873
[17] FARHOUDI F, ALLAHYARI H, TABADKANI S M, GHOLIZADEH M. Prey preference of Aphidoletes aphidimyza on Acyrthosiphon pisum: Effect of prey color and size. Journal of insect Behavior, 2014, 27(6): 776-785. doi: 10.1007/s10905-014-9470-4
[18] LOSEY J E, HARMON J, BALLANTYNE F, BROWN C. A polymorphism maintained by opposite patterns of parasitism and predation. Nature, 1997, 388: 269-272. doi: 10.1038/40849
[19] FRANTZ A, CALCAGNO V, MIEUZET L, PLANTEGENEST M, SIMON J C. Complex trait differentiation between host- populations of the pea aphid Acyrthosphon pisum (Harris): Implications for the evolution of ecological specialisation. Biological Journal of the Lin-nean Socicty, 2009, 97(4): 718-727. doi: 10.1111/j.1095-8312.2009.01221.x
[20] LIBBRECHT R, GWYNN D M, FELLOWES M D E. Aphidius ervi preferentially attacks the green morph of the pea aphid, Acyrthosiphon pisum. Journal of insect Behavior, 2007, 20(1): 25-32. doi: 10.1007/s10905-006-9055-y
[21] 王小强, 刘长仲, 祁发鹏, 李毅恒. 吡虫啉亚致死剂量对2种色型豌豆蚜生长发育和种群参数的影响. 草地学报, 2014, 22(5): 1110-1116. doi: 10.11733/j.issn.1007-0435.2014.05.031 WANG X Q, LIU C Z, QI F P, LI Y H. Effects of sublethal dosage of imidacloprid on the growth, development and population parameter of two color morphs of pea aphid. Acta Agrectia Sinica, 2014, 22(5): 1110-1116. doi: 10.11733/j.issn.1007-0435.2014.05.031
[22] AHSAEI S M, TABADKANI S M, HOSSEININAVEH V, ALLAHYARI H, BIGHAM M. Differential accumulation of energy by the colour morphs of the pea aphid Acyrthosiphon pisum mirrors their ecological adaptations. European Journal of Entomology, 2013, 110(2): 241-245. doi: 10.14411/eje.2013.035
[23] SCHUETT W, DALL S R, KLOESENER M H, BAEUMER J, BEINLICH F, EGGERS T. Life-history trade-offs mediate‘personality’variation in two colour morphs of the pea aphid, Acyrthosiphon pisum. Journal of Animal Ecology, 2015, 84(1): 90-101. doi: 10.1111/1365-2656.12263
[24] 王小强, 刘长仲. 阿维菌素亚致死剂量下2种色型豌豆蚜解毒酶活力的研究. 中国生态农业学报, 2014, 22(6): 675-681. WANG X Q, LIU C Z. Detoxification enzymes activities in two color morphs of pea aphid (Acyrthosiphon pisum) treated with different sub-lethal concentrations of avermectin. Chinese Journal of Eco-Agriculture, 2014, 22(6): 675-681.
[25] LI Z, WAGN M Y, LI X P, WANG X T, JIA C L, YANG X Z, FENG R Q, YUAN M L. A small set of differentially expressed genes was associated with two color morphs in natural populations of the pea aphid Acyrthosiphon pisum. Gene, 2018, 651: 23-32.
[26] 邵娅, 王森山, 叶超. 单宁酸对红、绿色型豌豆蚜生长发育及繁殖的影响. 草地学报, 2017, 25: 866-870. doi: 10.11733/j.issn.1007-0435.2017.04.026 SHAO Y, WANG S S, YE C. Effects of tannic acid on growth and reproduction of red and green aphids. Acta Grassland Sinica, 2017, 25: 866-870. doi: 10.11733/j.issn.1007-0435.2017.04.026
[27] 叶超. 豌豆蚜人工饲料及饲养技术研究. 兰州: 甘肃农业大学硕士学位论文, 2016. YE C.Investigation on artificial diet and rearing technique of pea aphid (Acyrthosiphon pisum Harris). Master Thesis. Lanzhou: Gansu Agricultural University, 2016.
[28] POLLARD D. Plant penetration by feeding aphids (Hemiptera, Aphidoidea): A review. Bulletin of Entomological Research, 1973, 62: 631-714. doi: 10.1017/S0007485300005526
[29] TJALLINGⅡ W, ESCH T H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology, 1993, 18: 317-328. doi: 10.1111/j.1365-3032.1993.tb00604.x
[30] KANG J H, LIU G, SHI F, JONES A, BEAUDRY R M, HOWE G A. The tomatoodorless-2 mutant is defective in trichome-based production of diverse specializedmetabolites and broad-spectrum resistance to insect herbivores. Plant Physiological, 2010, 154: 262-272. doi: 10.1104/pp.110.160192
[31] GRIFFITHS D W, DEIGHTON N, BIRCH A N E, PATRIAN B, BAUR R, STÄDLER E. Identification of glucosinolates on the leaf surface of plants from the cruciferaeand other closely related species. Phytochemistry, 2001, 57: 693-700. doi: 10.1016/S0031-9422(01)00138-8
[32] REINA-PINTO J J, YEPHREMOV A. Surface lipids and plant defenses. Plant Physiological Biochemistry, 2009, 47: 540-549. doi: 10.1016/j.plaphy.2009.01.004
[33] GLAS J J, SCHIMMEL B C, ALBA J M, ESCOBAR-BRAVO R, SCHUURINK R C, KANT M R. Plant glandular trichomes as targets for breeding or engineering of resistance toherbivores. International Journal of Molecular Sciences, 2012, 13: 17077-17103. doi: 10.3390/ijms131217077
[34] 杨巧燕. 豌豆蚜体内共生菌对蚜虫与寄主互作关系的影响研究. 兰州: 甘肃农业大学硕士学位论文, 2017. YANG Q Y. Research on the effects of the intracellular bacterial symbionts in Acyrthosiphon pisum harris on the interaction between aphids and host plants. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.
[35] KOGA R, TSUCHIDA T, FUKATSU T. Changing partners in an obligate symbiosis: A facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society B:Biological Sciences, 2003, 270: 2543-2550. doi: 10.1098/rspb.2003.2537
[36] 刘向东, 张元臣. 蚜虫共生菌感染格局、动态及在宿主种群分化中的作用. 南京农业大学学报, 2018, 41(2): 209-217. doi: 10.7685/jnau.201709009 LIU X D, ZHANG Y C. Infection pattern and dynamics of endosymbionts in aphids and their effects on population differentiation of hosts. Journal of Nanjing Agricultural University, 2018, 41(2): 209-217. doi: 10.7685/jnau.201709009
[37] 王宪楷. 天然药物化学. 北京: 人民卫生出版社, 1988: 391-460. WANG X K. Natural Pharmaceutical Chemistry. Beijing: People's Medical Publishing House, 1988: 391-460.
[38] 张亚妮.植物源杀虫剂川楝素环境安全性评价.杨凌: 西北农林科技大学硕士学位论文, 2007. ZHANG Y N. Environmental safety evaluation of botanical pesticide toosedanim. Master Thesis. Yangling: Northwest A & F University.2007.
[39] 汪文陆, 赵善欢, 韩玖, 徐应生. 苦楝中几种杀虫有效成分对菜青虫和亚洲玉米螟的生物活性. 植物保护学报, 1992(4): 359-364. WANG W L, ZHAO S X, HAN J, XU Y S. Bioactivity of several insecticidal active components in neem against cabbage and Asiatic corn borer. Journal of Plant Protection, 1992(4): 359-364.
[40] 胡江川, 孙爱芹, 路明花. 苦楝皮活性成分对几种地下害虫的杀虫效果研究. 北方园艺, 2012(7): 147-149. HU J C, SONG A Q, LU M H. Study on the insecticidal effect of neem bark active components on several underground pests. Northern Horticulture, 2012(7): 147-149.
[41] 董易之, 张茂新, 凌冰. 葫芦素B对甜菜夜蛾幼虫取食和成虫产卵的影响. 华南农业大学学报, 2005, 26(2): 56-58. doi: 10.3969/j.issn.1001-411X.2005.02.014 DONG Y Z, ZhANG M X, LING B. Influence of cucurbitacin B on feeding behavior and oviposition of Spodoptera exigua. Journal of South China Agricultural University, 2005, 26(2): 56-58. doi: 10.3969/j.issn.1001-411X.2005.02.014
[42] 张茂新, 凌冰. 六种植物叶片中葫芦素B对美洲斑潜蝇寄主选择性的影响. 生态学报, 2004, 24(11): 2564-2568. doi: 10.3321/j.issn:1000-0933.2004.11.030 ZHANG M X, LING B. Effect of cucurbitacin B in leaves from six plants species on plant selectivity of the leaf miner, Liriomyza sativae. Acta Ecologicasinica, 2004, 24(11): 2564-2568. doi: 10.3321/j.issn:1000-0933.2004.11.030
[43] 王树栋. 四种植物源化合物对甜菜夜蛾酚氧化酶的影响及酶免疫学研究. 泰安: 山东农业大学硕士学位论文, 2010. WANG S D.Study on the effects of four plant-derived compounds on phenoloxidase of Spodotera exigua (Hübner) and immunology of the enzyme. Master Thesis. Tai'an: Shandong Agricultural University, 2010.
-
表 1 不同质量浓度齐墩果酸对绿色型豌豆蚜生长发育的影响
Table 1 Effect of the different concentrations oleanolic acid on the growth and development of green pea aphid
齐墩果酸浓度
Oleanolic concentration treatment/(mg·mL-1)存活率 Survival rate/% 相对日均体重增长率
Growth rate of relative daily average weight/%有翅蚜率
Rate of aphid
with wings/%第6天
The 6th day第12天
The 12h day第20天
The 20th day0 (CK) 96.7 ± 3.3a 60.0 ± 5.8a 33.3 ± 3.3a 0.29 ± 0.01a 3.3 ± 3.3c 0.1 (C1) 96.7 ± 3.3a 66.6 ± 3.3a 26.7 ± 6.6a 0.26 ± 0.01abc 26.7 ± 3.3b 0.5 (C2) 96.7 ± 3.3a 66.6 ± 3.3a 20.0 ± 10.0a 0.27 ± 0.01ab 40.0 ± 5.7ab 1.0 (C3) 96.7 ± 3.3a 53.3 ± 3.3a 20.0 ± 5.8a 0.23 ± 0.01cd 56.7 ± 6.6ab 1.5 (C4) 93.3 ± 6.6a 56.7 ± 8.8a 0.0 ± 0.0b 0.24 ± 0.01bc 50.0 ± 5.7a 2.0 (C5) 93.3 ± 3.3a 50.0 ± 5.7a 0.0 ± 0.0b 0.21 ± 0.00d 50.0 ± 11.5a 不同小写字母表示同一指标间不同浓度间差异显著 (P < 0.05)。下同。
Different lowercase letters indicate significant difference between different concentrations of the same index at the 0.05 level; similarly for the following tables and figures.表 2 不同质量浓度齐墩果酸对红色型豌豆蚜生长发育的影响
Table 2 Effect of different concentrations oleanolic acid on the growth and development of red pea aphid
齐墩果酸浓度
Oleanolic concentration treatment/(mg·mL-1)存活率Survival rate/% 相对日均体重增长
Growth rate of relative dailyaverage weight/%有翅蚜率
Rate of aphid
with wings/%第6天
The 6th day第12天
The 12th day第20天
The 20th day0 (CK) 83.3 ± 6.6a 53.3 ± 3.3a 10.0 ± 0.0a 0.21 ± 0.00a 10.0 ± 0.0c 0.1 (C1) 83.3 ± 3.3a 46.7 ± 3.3a 6.7 ± 3.3a 0.23 ± 0.01a 20.0 ± 0.0bc 0.5 (C2) 80.0 ± 0.0a 40.0 ± 10.0a 3.3 ± 0.0a 0.22 ± 0.01a 20.0 ± 5.7bc 1.0 (C3) 80.0 ± 5.7a 43.3 ± 14.5a 3.3 ± 3.3a 0.22 ± 0.00a 33.3 ± 8.8a 1.5 (C4) 80.0 ± 5.7a 43.3 ± 14.5a 4.7 ± 3.3a 0.22 ± 0.01a 10.0 ± 5.7c 2.0 (C5) 73.3 ± 6.6a 40.0 ± 0.0a 3.6 ± 0.0a 0.21 ± 0.00a 13.3 ± 8.8bc -
[1] 匡海学.中药化学.北京:中国中医药出版社, 2003:226-259. KUANG H X. Traditional Chinese Medicine Chemistry. Beijing: Chinese Traditional Medicine Press, 2003:226-259.
[2] 孙彦, 龙瑞才, 张铁军, 杨青川, 周禾. 紫花苜蓿皂苷研究进展. 草业学报, 2013, 22(3): 274-283. SUN Y, LONG R C, ZHANG T J, YANG Q C, ZHOU H. Research progress on saponins of alfalfa. Journal of Grass Industry, 2013, 22(3): 274-283.
[3] 彭少麟, 南蓬, 钟扬. 植物中的萜类化合物及其在生态系统中的作用. 生态学杂志, 2002(3): 33-38. doi: 10.3321/j.issn:1000-4890.2002.03.009 PENG S L, NAN P, ZHONG Y. Indole compounds in higher plants and their roles in ecosystems. Journal of Ecology, 2002(3): 33-38. doi: 10.3321/j.issn:1000-4890.2002.03.009
[4] 景沛, 鲁庭延, 熊丹, 李劲薇, 刘易陇, 钟志容. 齐墩果酸片的处方优化设计. 泸州医学院学报, 2014, 37(3): 235-238. doi: 10.3969/j.issn.1000-2669.2014.03.001 JIANG P, LU T Y, XIONG D, LI J W, LIU Y L, ZHONG Z R. Prescription optimization design of oleanolic acid tablets. Journal of Luzhou Medical College, 2014, 37(3): 235-238. doi: 10.3969/j.issn.1000-2669.2014.03.001
[5] 张亮.新疆紫花苜蓿皂苷的提取、分离及纯化工艺研究.乌鲁木齐: 新疆大学硕士学位论文, 2009. ZHANG L. Study on the saponins of extraction, separation and purification of Xinjiang alfalfa. Master Thesis. Urumqi: Xinjiang University, 2009.
[6] 付佳, 王洋, 阎秀峰. 萜类化合物的生理生态功能及经济价值. 东北林业大学学报, 2003, 31(6): 59-62. doi: 10.3969/j.issn.1000-5382.2003.06.021 FU J, WANG Y, PEI X F. Economic of physiological and ecological functions value of terpenoids. Journal of Northeast Forestry University, 2003, 31(6): 59-62. doi: 10.3969/j.issn.1000-5382.2003.06.021
[7] 徐正浩, 崔绍荣, 何勇, 李迪, 赵明, 张旭, 余柳青. 植物次生代谢物质和害虫防治. 植物保护, 2004, 30(4): 8-11. doi: 10.3969/j.issn.0529-1542.2004.04.002 XU Z H, CUI S R, HE Y, LI D, ZHAO M, ZHANG X, YU L Q. Plant secondary metabolites and pest control. Plant Protection, 2004, 30(4): 8-11. doi: 10.3969/j.issn.0529-1542.2004.04.002
[8] GOVINDACHARI T R, SURESH G. Antifungal activity of some B, D-secolimoniods from two Meliaceous plants. Journal of Chemical Ecology, 1999, 25(4): 923-933. doi: 10.1023/A:1020809204288
[9] 谷文祥, 段舜山, 骆世明. 萜类化合物的生态特性及其对植物的化感作用. 华南农业大学学报, 1998, 19(4): 111-115. GU W X, DUAN Y S, LUO S M. The ecological characteristics of indole compounds and their allelopathic effects on plants. Journal of South China Agricultural University, 1998, 19(4): 111-115.
[10] 董红霞, 王敬淑, 刘光华, 凌冰. 植物次生化合物在害虫防治中的作用. 仲恺农业技术学院学报, 2005, 18(2): 65-71. doi: 10.3969/j.issn.1674-5663.2005.02.014 DONG H X, WANG J S, LIU G H, LING B. The roles of secondary metabolites in insect pest control. Journal of Zhongkai University of Agriculture and Technolog, 2005, 18(2): 65-71. doi: 10.3969/j.issn.1674-5663.2005.02.014
[11] 吕宁, 刘长仲. 不同抗生素对豌豆蚜生物学特性的影响. 中国生态农业学报, 2014, 22(2): 208-216. LYU N, LIU C Z. Effect of different antibiotics on the biological characteristics of pea aphid. Chinese Journal of Eco-Agriculture, 2014, 22(2): 208-216.
[12] 朱玉永. 豌豆蚜与寄主互作关系的研究. 石河子: 石河子大学硕士学位论文, 2014. ZHU Y Y. Study on the interaction between aphids and their host. Master Thesis. Shihezi: Shihezi University, 2014.
[13] 武德功, 杜军利, 贺春贵. 4个苜蓿品种对两种体色豌豆蚜的抗生性. 植物保护, 2015, 41: 49-54, 62. doi: 10.3969/j.issn.0529-1542.2015.06.008 WU D G, DU J L, HE C G. Antibiosis of four alfalfa cultivars against two color morphs of Acyrthosiphon pisum. Plant Protection, 2015, 41: 49-54, 62. doi: 10.3969/j.issn.0529-1542.2015.06.008
[14] 武德功, 王森山, 刘长仲, 胡桂馨, 杜军利, 贺春贵. 豌豆蚜刺吸胁迫对不同苜蓿品种体内单宁含量及生理活性的影响. 草地学报, 2011, 19: 351-355. doi: 10.11733/j.issn.1007-0435.2011.02.029 WU D G, WANG S S, LIU C Z, HU G X, DU J L, HE C G. Effects of herbivore stress by Acyrthosiphon pisum on the contents of Tannin and physiological activity in different alfalfa cultivars. Acta Agrestia Sinica, 2011, 19: 351-355. doi: 10.11733/j.issn.1007-0435.2011.02.029
[15] 孙玺文. 光照与温度交互作用对两种色型豌豆蚜种群的影响.兰州: 甘肃农业大学硕士学位论文, 2017. SUN X W. Effects of photo period and temperature interaction on population of two colour morphs of Acyrthosiphon pisum. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.
[16] BRAENDLE C, WEISSER W W. Variation in escape behavior of red and green clones of the pea aphid. Journal of Insect Behavior, 2001, 14(4): 497-509. doi: 10.1023/A:1011124122873
[17] FARHOUDI F, ALLAHYARI H, TABADKANI S M, GHOLIZADEH M. Prey preference of Aphidoletes aphidimyza on Acyrthosiphon pisum: Effect of prey color and size. Journal of insect Behavior, 2014, 27(6): 776-785. doi: 10.1007/s10905-014-9470-4
[18] LOSEY J E, HARMON J, BALLANTYNE F, BROWN C. A polymorphism maintained by opposite patterns of parasitism and predation. Nature, 1997, 388: 269-272. doi: 10.1038/40849
[19] FRANTZ A, CALCAGNO V, MIEUZET L, PLANTEGENEST M, SIMON J C. Complex trait differentiation between host- populations of the pea aphid Acyrthosphon pisum (Harris): Implications for the evolution of ecological specialisation. Biological Journal of the Lin-nean Socicty, 2009, 97(4): 718-727. doi: 10.1111/j.1095-8312.2009.01221.x
[20] LIBBRECHT R, GWYNN D M, FELLOWES M D E. Aphidius ervi preferentially attacks the green morph of the pea aphid, Acyrthosiphon pisum. Journal of insect Behavior, 2007, 20(1): 25-32. doi: 10.1007/s10905-006-9055-y
[21] 王小强, 刘长仲, 祁发鹏, 李毅恒. 吡虫啉亚致死剂量对2种色型豌豆蚜生长发育和种群参数的影响. 草地学报, 2014, 22(5): 1110-1116. doi: 10.11733/j.issn.1007-0435.2014.05.031 WANG X Q, LIU C Z, QI F P, LI Y H. Effects of sublethal dosage of imidacloprid on the growth, development and population parameter of two color morphs of pea aphid. Acta Agrectia Sinica, 2014, 22(5): 1110-1116. doi: 10.11733/j.issn.1007-0435.2014.05.031
[22] AHSAEI S M, TABADKANI S M, HOSSEININAVEH V, ALLAHYARI H, BIGHAM M. Differential accumulation of energy by the colour morphs of the pea aphid Acyrthosiphon pisum mirrors their ecological adaptations. European Journal of Entomology, 2013, 110(2): 241-245. doi: 10.14411/eje.2013.035
[23] SCHUETT W, DALL S R, KLOESENER M H, BAEUMER J, BEINLICH F, EGGERS T. Life-history trade-offs mediate‘personality’variation in two colour morphs of the pea aphid, Acyrthosiphon pisum. Journal of Animal Ecology, 2015, 84(1): 90-101. doi: 10.1111/1365-2656.12263
[24] 王小强, 刘长仲. 阿维菌素亚致死剂量下2种色型豌豆蚜解毒酶活力的研究. 中国生态农业学报, 2014, 22(6): 675-681. WANG X Q, LIU C Z. Detoxification enzymes activities in two color morphs of pea aphid (Acyrthosiphon pisum) treated with different sub-lethal concentrations of avermectin. Chinese Journal of Eco-Agriculture, 2014, 22(6): 675-681.
[25] LI Z, WAGN M Y, LI X P, WANG X T, JIA C L, YANG X Z, FENG R Q, YUAN M L. A small set of differentially expressed genes was associated with two color morphs in natural populations of the pea aphid Acyrthosiphon pisum. Gene, 2018, 651: 23-32.
[26] 邵娅, 王森山, 叶超. 单宁酸对红、绿色型豌豆蚜生长发育及繁殖的影响. 草地学报, 2017, 25: 866-870. doi: 10.11733/j.issn.1007-0435.2017.04.026 SHAO Y, WANG S S, YE C. Effects of tannic acid on growth and reproduction of red and green aphids. Acta Grassland Sinica, 2017, 25: 866-870. doi: 10.11733/j.issn.1007-0435.2017.04.026
[27] 叶超. 豌豆蚜人工饲料及饲养技术研究. 兰州: 甘肃农业大学硕士学位论文, 2016. YE C.Investigation on artificial diet and rearing technique of pea aphid (Acyrthosiphon pisum Harris). Master Thesis. Lanzhou: Gansu Agricultural University, 2016.
[28] POLLARD D. Plant penetration by feeding aphids (Hemiptera, Aphidoidea): A review. Bulletin of Entomological Research, 1973, 62: 631-714. doi: 10.1017/S0007485300005526
[29] TJALLINGⅡ W, ESCH T H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology, 1993, 18: 317-328. doi: 10.1111/j.1365-3032.1993.tb00604.x
[30] KANG J H, LIU G, SHI F, JONES A, BEAUDRY R M, HOWE G A. The tomatoodorless-2 mutant is defective in trichome-based production of diverse specializedmetabolites and broad-spectrum resistance to insect herbivores. Plant Physiological, 2010, 154: 262-272. doi: 10.1104/pp.110.160192
[31] GRIFFITHS D W, DEIGHTON N, BIRCH A N E, PATRIAN B, BAUR R, STÄDLER E. Identification of glucosinolates on the leaf surface of plants from the cruciferaeand other closely related species. Phytochemistry, 2001, 57: 693-700. doi: 10.1016/S0031-9422(01)00138-8
[32] REINA-PINTO J J, YEPHREMOV A. Surface lipids and plant defenses. Plant Physiological Biochemistry, 2009, 47: 540-549. doi: 10.1016/j.plaphy.2009.01.004
[33] GLAS J J, SCHIMMEL B C, ALBA J M, ESCOBAR-BRAVO R, SCHUURINK R C, KANT M R. Plant glandular trichomes as targets for breeding or engineering of resistance toherbivores. International Journal of Molecular Sciences, 2012, 13: 17077-17103. doi: 10.3390/ijms131217077
[34] 杨巧燕. 豌豆蚜体内共生菌对蚜虫与寄主互作关系的影响研究. 兰州: 甘肃农业大学硕士学位论文, 2017. YANG Q Y. Research on the effects of the intracellular bacterial symbionts in Acyrthosiphon pisum harris on the interaction between aphids and host plants. Master Thesis. Lanzhou: Gansu Agricultural University, 2017.
[35] KOGA R, TSUCHIDA T, FUKATSU T. Changing partners in an obligate symbiosis: A facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society B:Biological Sciences, 2003, 270: 2543-2550. doi: 10.1098/rspb.2003.2537
[36] 刘向东, 张元臣. 蚜虫共生菌感染格局、动态及在宿主种群分化中的作用. 南京农业大学学报, 2018, 41(2): 209-217. doi: 10.7685/jnau.201709009 LIU X D, ZHANG Y C. Infection pattern and dynamics of endosymbionts in aphids and their effects on population differentiation of hosts. Journal of Nanjing Agricultural University, 2018, 41(2): 209-217. doi: 10.7685/jnau.201709009
[37] 王宪楷. 天然药物化学. 北京: 人民卫生出版社, 1988: 391-460. WANG X K. Natural Pharmaceutical Chemistry. Beijing: People's Medical Publishing House, 1988: 391-460.
[38] 张亚妮.植物源杀虫剂川楝素环境安全性评价.杨凌: 西北农林科技大学硕士学位论文, 2007. ZHANG Y N. Environmental safety evaluation of botanical pesticide toosedanim. Master Thesis. Yangling: Northwest A & F University.2007.
[39] 汪文陆, 赵善欢, 韩玖, 徐应生. 苦楝中几种杀虫有效成分对菜青虫和亚洲玉米螟的生物活性. 植物保护学报, 1992(4): 359-364. WANG W L, ZHAO S X, HAN J, XU Y S. Bioactivity of several insecticidal active components in neem against cabbage and Asiatic corn borer. Journal of Plant Protection, 1992(4): 359-364.
[40] 胡江川, 孙爱芹, 路明花. 苦楝皮活性成分对几种地下害虫的杀虫效果研究. 北方园艺, 2012(7): 147-149. HU J C, SONG A Q, LU M H. Study on the insecticidal effect of neem bark active components on several underground pests. Northern Horticulture, 2012(7): 147-149.
[41] 董易之, 张茂新, 凌冰. 葫芦素B对甜菜夜蛾幼虫取食和成虫产卵的影响. 华南农业大学学报, 2005, 26(2): 56-58. doi: 10.3969/j.issn.1001-411X.2005.02.014 DONG Y Z, ZhANG M X, LING B. Influence of cucurbitacin B on feeding behavior and oviposition of Spodoptera exigua. Journal of South China Agricultural University, 2005, 26(2): 56-58. doi: 10.3969/j.issn.1001-411X.2005.02.014
[42] 张茂新, 凌冰. 六种植物叶片中葫芦素B对美洲斑潜蝇寄主选择性的影响. 生态学报, 2004, 24(11): 2564-2568. doi: 10.3321/j.issn:1000-0933.2004.11.030 ZHANG M X, LING B. Effect of cucurbitacin B in leaves from six plants species on plant selectivity of the leaf miner, Liriomyza sativae. Acta Ecologicasinica, 2004, 24(11): 2564-2568. doi: 10.3321/j.issn:1000-0933.2004.11.030
[43] 王树栋. 四种植物源化合物对甜菜夜蛾酚氧化酶的影响及酶免疫学研究. 泰安: 山东农业大学硕士学位论文, 2010. WANG S D.Study on the effects of four plant-derived compounds on phenoloxidase of Spodotera exigua (Hübner) and immunology of the enzyme. Master Thesis. Tai'an: Shandong Agricultural University, 2010.