欢迎访问 草业科学,今天是2025年4月13日 星期日!

乌兰布和沙漠油蒿叶片PSⅡ叶绿素荧光动力学参数及其光响应曲线动态

张景波, 张金鑫, 卢琦, 辛智鸣, 李新乐, 刘庆新, 李宏亮

张景波,张金鑫,卢琦,辛智鸣,李新乐,刘庆新,李宏亮. 乌兰布和沙漠油蒿叶片PSII叶绿素荧光动力学参数及其光响应曲线动态变化. 草业科学, 2019, 36(3): 713-719 . DOI: 10.11829/j.issn.1001-0629.2018-0691
引用本文: 张景波,张金鑫,卢琦,辛智鸣,李新乐,刘庆新,李宏亮. 乌兰布和沙漠油蒿叶片PSII叶绿素荧光动力学参数及其光响应曲线动态变化. 草业科学, 2019, 36(3): 713-719 . DOI: 10.11829/j.issn.1001-0629.2018-0691
ZHANG J B, ZHANG J X, LU Q, XIN Z M, LI X L, LIU Q X, LI H L. Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in . Pratacultural Science, 2019, 36(3): 713-719 . DOI: 10.11829/j.issn.1001-0629.2018-0691
Citation: ZHANG J B, ZHANG J X, LU Q, XIN Z M, LI X L, LIU Q X, LI H L. Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in . Pratacultural Science, 2019, 36(3): 713-719 . DOI: 10.11829/j.issn.1001-0629.2018-0691

乌兰布和沙漠油蒿叶片PSⅡ叶绿素荧光动力学参数及其光响应曲线动态

基金项目: 国家自然科学基金青年科学基金(31400620);中央级公益性科研院所基本科研业务费专项资金(CAFYBB2014QB029、CAFYBB2016SY005)
摘要: 本研究以内蒙古磴口原生油蒿(Artemisia ordosica)为对象,分析了7–9月生长期油蒿比叶面积、叶片氮含量、叶片PSⅡ荧光动力学参数及快速光响应曲线光合生理指标动态变化。结果表明,油蒿比叶面积(specific leaf area, SLA)在8月达到最大值,9月显著降低(P < 0.05),叶氮含量(Nmass)呈现相反的变化趋势;油蒿的初始荧光(Fo)、最大荧光(Fm)以及最大光化学效率(Fv/Fm)在保持相对稳定;光下最小荧光产量(Fo′)和最大荧光产量(Fm′)以8月最高,9月显著下降(P < 0.05);光合电子传递量子效率(ΦPSⅡ)及光化学猝灭(qP)随着光强的增加而降低,非光化学猝灭(NPQ)和光合电子传递速率(ETR)随光强的增加而增加;同光强作用下,油蒿叶片ETR和NPQ以9月最高,而8月最低。表明油蒿叶片具有相对较高的光能捕获和光抑制自我保护能力。

 

English

  • [1] 卢琦, 王继和, 褚建民. 中国荒漠植物图鉴. 北京: 中国林业出版社, 2012: 495.

    LU Q, WANG J H, CHU J M. Desert Plants in China. Beijing: China Forestry Press, 2012: 495.

    [2] 靳虎甲, 王继和, 李毅, 马全林, 张德魁, 刘有军. 油蒿生态学研究综述. 西北林学院学报, 2009, 24(4): 62-66.

    JIN H J, WANG J H, LI Y, MA Q L, ZHANG D K, LIU Y J. Summary of Artemisia ordosica ecology studies. Journal of Northwest Forestry University, 2009, 24(4): 62-66.

    [3] 张继伟, 赵昕, 陈国雄, 李新荣. 盐胁迫下荒漠植物柠条和油蒿的离子吸收及分配特征. 干旱区资源与环境, 2016, 30(3): 68-73.

    ZHAGN J W, ZHAO X, CHEN G X, LI X R. Ion absorption and distribution in Caragana korshinskii and Artemisia ordosica seedlings under different NaCl stress. Journal of Arid Land Resources and Environment, 2016, 30(3): 68-73.

    [4] 马全林, 郑庆中, 贾举杰, 袁宏波, 张德魁, 丁峰, 张锦春, 魏怀东, 靳虎甲, 刘有军, 孙涛, 王继和. 乌兰布和沙漠沙蒿与油蒿群落的物种组成与数量特征. 生态学报, 2012, 3(11): 3423-3431.

    MA Q L, ZHENG Q Z, JIA J J, YUAN H B, ZHANG D K, DING F, ZHANG J C, WEI H D, JIN H J, LIU Y J, SUN T, WANG J H. Quantitative characteristics and species composition of Artemisia sphaerocephala and A. ordosica communities in the Ulanbuh Desert. Acta Ecologica Sinica, 2012, 3(11): 3423-3431.

    [5] 王莉, 秦树高, 张宇清, 吴斌, 冯薇, 刘军, 白宇轩, 佘维维. 生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响. 北京林业大学学报, 2017, 39(3): 48-56.

    WANG L, QIN S G, ZHANG Y Q, WU B, FENG W, LIU J, BAI Y X, SHE W W. Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China. Journal of Beqing Forestry University, 2017, 39(3): 48-56.

    [6]

    Pasternak D, Schlissel A. Combating Desertification with Plant. New York: Kluwer Academic /Plenum Publishers, 2001.

    [7]

    ZHAO H L, ZHAO X Y, ZHANG T H, ZHOU R L. Bioprocess of Desertification and Restoration Mechanism of Degraded Vegetation. Beijing: Science Press, 2007: 54-82.

    [8] 杨洪晓, 张金屯, 吴波, 王妍, 李晓松, 许彬. 油蒿对半干旱区沙地生境的适应及其生态作用. 北京师范大学学报: 自然科学版, 2004, 40(5): 681-690.

    YANG H X, ZHANG J T, WU B, WANG Y, LI X S, XU B. Adaptation of Artemisia ordosica to temperature arid sandy land and its roles in habitat shift. Journal of Beijing Normal University (Natural Science), 2004, 40(5): 681-690.

    [9]

    STIRBET A. On the relation between the Kautsky effect (chlorophy Ⅱ a fluorescence induction) and Photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1): 236-257.

    [10] 刘晓晴, 常宗强, 马亚丽, 吴雨霞. 胡杨(Populus euphratica)异形叶叶绿素荧光动力学. 中国沙漠, 2014, 34(3): 704-711.

    LIU X Q, CHANG Z Q, MA Y L, WU Y X. Characteristics of the fast chlorophyll fluorescence induction kinetics of heteromorphic leaves in Populus euphratica. Journal of Desert Research, 2014, 34(3): 704-711.

    [11] 张明艳, 贾昕, 查天山, 秦树高, 吴雅娟, 任才. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应. 中国沙漠, 2017, 37(3): 475-482.

    ZHANG M Y, JIA X, ZHA T S, QIN S G, WU Y J, REN C. PSII photochemical efficiency of Artemisia ordosica in response to rainfall exclusion. Journal of Desert Research, 2017, 37(3): 475-482.

    [12]

    PORCAR CASTELL A, PFÜNDEL E, KORHONEN J F, JUUROLA E. A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem Ⅱ in field conditions. Photosynthesis Research, 2008, 96(2): 173-179. doi: 10.1007/s11120-008-9292-3

    [13] 种培芳, 李毅, 苏世平. 荒漠植物红砂叶绿素荧光参数日变化及其环境因子的关系. 中国沙漠, 2010, 30(3): 539-545.

    CHOGN P F, LI Y, SU S P. Diurnal change in chlorophyll Ⅱ fluorescence parameters of desert plant Reaumuria soongorica and its relationship with environmental factors. Journal of Desert Research, 2010, 30(3): 539-545.

    [14] 陈凤丽, 靳正忠, 李生宇, 徐新文, 李磊. 高温对花花柴(Karelinia caspica)光系统Ⅱ的影响. 中国沙漠, 2013, 33(5): 1371-1376.

    CHEN F L, JIN Z Z, LI S Y, XU X W, LI L. Effects of heat stress on photosystemⅡ in Karelinia caspica. Journal of Desert Research, 2013, 33(5): 1371-1376.

    [15] 吴雅娟, 查天山, 贾昕, 秦树高, 李媛, 王奔. 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子. 生态学杂志, 2015, 34(2): 319-325.

    WU Y J, ZHA T S, JIA X, QIN S G, LI Y, WANG B. Temporal variation and controlling factors of photochemical efficiency and non-photochemical quenching in Artemisia ordosica. Chinese Journal of Ecology, 2015, 34(2): 319-325.

    [16] 王飞, 刘世增, 康才周, 李得禄, 陈政融, 李雪洮. 干旱胁迫对沙地云杉光合、叶绿素荧光特性的影响. 干旱区资源与环境, 2017, 31(1): 142-147.

    WANG F, LIU S Z, KANG C Z, LI D L, CHEN Z R, LI X T. Effects of drought stress on photosynthesis and chlorophyll fluorescence characteristics of Picea mongolica. Journal of Arid Land Resources and Environment, 2017, 31(1): 142-147.

    [17]

    DAI J, GAO H, DAI Y, ZOU Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biology, 2004, 6(2): 171-177. doi: 10.1055/s-2004-817845

    [18] 郭玉朋, 郑霞, 王新宇, 曹孜义. 叶绿素荧光技术在筛选光合突变体中的应用. 草业学报, 2009, 18(6): 226-234. doi: 10.3321/j.issn:1004-5759.2009.06.031

    GUO Y P, ZHENG X, WANG X Y, CAO Z Y. Application of a chlorophyll fluorescence technique for screening photosynthetic mutants. Acta Prataculturae Sinica, 2009, 18(6): 226-234. doi: 10.3321/j.issn:1004-5759.2009.06.031

    [19] 张亚娟, 谢忠奎, 赵学勇, 安丽萍, 高宏. 水分胁迫对东方百合光合特性、叶绿素荧光参数及干物质积累的影响. 中国沙漠, 2011, 31(4): 884-888.

    ZHANG Y J, XIE Z K, ZHAO X Y, AN L P, GAO H. Effects of water stress on photosynthetic characteristics, chlorophyll fluorescence, and dry matter of Oriental lilies. Journal of desert research, 2011, 31(4): 884-888.

    [20]

    MALLICK N, RAI L C. Physiological responses of non-vascularplants to heavy metals.// In: PRASAD M N V, STRZALKA K. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Dordrecht: Kluwer Academic Publishers, 2001: 111-147.

    [21]

    MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: A practical guide. Journal of Experimental Botany, 2000, 1: 659-668.

    [22]

    JIANG C D, GAO H Y, ZOU Q. Changes of donor and accepter side in photosystemⅡ complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271. doi: 10.1023/B:PHOT.0000011960.95482.91

    [23] 张华, 吴睿, 康雅茸. 民勤绿洲梭梭同化枝光合生理特性与形态. 草业科学, 2018, 35(2): 371-379.

    ZHANG H, WU R, KANG Y R. Photosynthetic, physiological, and morphological characteristics of Haloxylon ammondendron assimilation twigs in Minqin Oasis. Pratacultural Science, 2018, 35(2): 371-379.

    [24]

    GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 1989, 990: 87-92. doi: 10.1016/S0304-4165(89)80016-9

    [25]

    KRAMER D M, JOHNSON G, KIIRATS O, EDWARDS G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004, 79: 209-218. doi: 10.1023/B:PRES.0000015391.99477.0d

  • 图  1   油蒿生长期比叶面积与叶氮含量动态变化

    Figure  1.   Dynamic changes of specific leaf area and leaf nitrogen content in Artemisia ordosica

    图  2   生长期油蒿叶绿素荧光参数动态变化

    Figure  2.   Dynamic change of chlorophyll fluorescence parameters in Artemisia ordosica

    图  3   油蒿叶绿素主要荧光参数快速光响应曲线动态变化

    *表示同一光强下不同月份间差异显著(P < 0.05)。

    Figure  3.   Dynamic change of fast light response curve of main fluorescence parameters of Artemisia ordosica

    * indicate significant differences between different months under the same light intensity at the 0.05 level.

  • [1] 卢琦, 王继和, 褚建民. 中国荒漠植物图鉴. 北京: 中国林业出版社, 2012: 495.

    LU Q, WANG J H, CHU J M. Desert Plants in China. Beijing: China Forestry Press, 2012: 495.

    [2] 靳虎甲, 王继和, 李毅, 马全林, 张德魁, 刘有军. 油蒿生态学研究综述. 西北林学院学报, 2009, 24(4): 62-66.

    JIN H J, WANG J H, LI Y, MA Q L, ZHANG D K, LIU Y J. Summary of Artemisia ordosica ecology studies. Journal of Northwest Forestry University, 2009, 24(4): 62-66.

    [3] 张继伟, 赵昕, 陈国雄, 李新荣. 盐胁迫下荒漠植物柠条和油蒿的离子吸收及分配特征. 干旱区资源与环境, 2016, 30(3): 68-73.

    ZHAGN J W, ZHAO X, CHEN G X, LI X R. Ion absorption and distribution in Caragana korshinskii and Artemisia ordosica seedlings under different NaCl stress. Journal of Arid Land Resources and Environment, 2016, 30(3): 68-73.

    [4] 马全林, 郑庆中, 贾举杰, 袁宏波, 张德魁, 丁峰, 张锦春, 魏怀东, 靳虎甲, 刘有军, 孙涛, 王继和. 乌兰布和沙漠沙蒿与油蒿群落的物种组成与数量特征. 生态学报, 2012, 3(11): 3423-3431.

    MA Q L, ZHENG Q Z, JIA J J, YUAN H B, ZHANG D K, DING F, ZHANG J C, WEI H D, JIN H J, LIU Y J, SUN T, WANG J H. Quantitative characteristics and species composition of Artemisia sphaerocephala and A. ordosica communities in the Ulanbuh Desert. Acta Ecologica Sinica, 2012, 3(11): 3423-3431.

    [5] 王莉, 秦树高, 张宇清, 吴斌, 冯薇, 刘军, 白宇轩, 佘维维. 生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响. 北京林业大学学报, 2017, 39(3): 48-56.

    WANG L, QIN S G, ZHANG Y Q, WU B, FENG W, LIU J, BAI Y X, SHE W W. Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China. Journal of Beqing Forestry University, 2017, 39(3): 48-56.

    [6]

    Pasternak D, Schlissel A. Combating Desertification with Plant. New York: Kluwer Academic /Plenum Publishers, 2001.

    [7]

    ZHAO H L, ZHAO X Y, ZHANG T H, ZHOU R L. Bioprocess of Desertification and Restoration Mechanism of Degraded Vegetation. Beijing: Science Press, 2007: 54-82.

    [8] 杨洪晓, 张金屯, 吴波, 王妍, 李晓松, 许彬. 油蒿对半干旱区沙地生境的适应及其生态作用. 北京师范大学学报: 自然科学版, 2004, 40(5): 681-690.

    YANG H X, ZHANG J T, WU B, WANG Y, LI X S, XU B. Adaptation of Artemisia ordosica to temperature arid sandy land and its roles in habitat shift. Journal of Beijing Normal University (Natural Science), 2004, 40(5): 681-690.

    [9]

    STIRBET A. On the relation between the Kautsky effect (chlorophy Ⅱ a fluorescence induction) and Photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1): 236-257.

    [10] 刘晓晴, 常宗强, 马亚丽, 吴雨霞. 胡杨(Populus euphratica)异形叶叶绿素荧光动力学. 中国沙漠, 2014, 34(3): 704-711.

    LIU X Q, CHANG Z Q, MA Y L, WU Y X. Characteristics of the fast chlorophyll fluorescence induction kinetics of heteromorphic leaves in Populus euphratica. Journal of Desert Research, 2014, 34(3): 704-711.

    [11] 张明艳, 贾昕, 查天山, 秦树高, 吴雅娟, 任才. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应. 中国沙漠, 2017, 37(3): 475-482.

    ZHANG M Y, JIA X, ZHA T S, QIN S G, WU Y J, REN C. PSII photochemical efficiency of Artemisia ordosica in response to rainfall exclusion. Journal of Desert Research, 2017, 37(3): 475-482.

    [12]

    PORCAR CASTELL A, PFÜNDEL E, KORHONEN J F, JUUROLA E. A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem Ⅱ in field conditions. Photosynthesis Research, 2008, 96(2): 173-179. doi: 10.1007/s11120-008-9292-3

    [13] 种培芳, 李毅, 苏世平. 荒漠植物红砂叶绿素荧光参数日变化及其环境因子的关系. 中国沙漠, 2010, 30(3): 539-545.

    CHOGN P F, LI Y, SU S P. Diurnal change in chlorophyll Ⅱ fluorescence parameters of desert plant Reaumuria soongorica and its relationship with environmental factors. Journal of Desert Research, 2010, 30(3): 539-545.

    [14] 陈凤丽, 靳正忠, 李生宇, 徐新文, 李磊. 高温对花花柴(Karelinia caspica)光系统Ⅱ的影响. 中国沙漠, 2013, 33(5): 1371-1376.

    CHEN F L, JIN Z Z, LI S Y, XU X W, LI L. Effects of heat stress on photosystemⅡ in Karelinia caspica. Journal of Desert Research, 2013, 33(5): 1371-1376.

    [15] 吴雅娟, 查天山, 贾昕, 秦树高, 李媛, 王奔. 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子. 生态学杂志, 2015, 34(2): 319-325.

    WU Y J, ZHA T S, JIA X, QIN S G, LI Y, WANG B. Temporal variation and controlling factors of photochemical efficiency and non-photochemical quenching in Artemisia ordosica. Chinese Journal of Ecology, 2015, 34(2): 319-325.

    [16] 王飞, 刘世增, 康才周, 李得禄, 陈政融, 李雪洮. 干旱胁迫对沙地云杉光合、叶绿素荧光特性的影响. 干旱区资源与环境, 2017, 31(1): 142-147.

    WANG F, LIU S Z, KANG C Z, LI D L, CHEN Z R, LI X T. Effects of drought stress on photosynthesis and chlorophyll fluorescence characteristics of Picea mongolica. Journal of Arid Land Resources and Environment, 2017, 31(1): 142-147.

    [17]

    DAI J, GAO H, DAI Y, ZOU Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biology, 2004, 6(2): 171-177. doi: 10.1055/s-2004-817845

    [18] 郭玉朋, 郑霞, 王新宇, 曹孜义. 叶绿素荧光技术在筛选光合突变体中的应用. 草业学报, 2009, 18(6): 226-234. doi: 10.3321/j.issn:1004-5759.2009.06.031

    GUO Y P, ZHENG X, WANG X Y, CAO Z Y. Application of a chlorophyll fluorescence technique for screening photosynthetic mutants. Acta Prataculturae Sinica, 2009, 18(6): 226-234. doi: 10.3321/j.issn:1004-5759.2009.06.031

    [19] 张亚娟, 谢忠奎, 赵学勇, 安丽萍, 高宏. 水分胁迫对东方百合光合特性、叶绿素荧光参数及干物质积累的影响. 中国沙漠, 2011, 31(4): 884-888.

    ZHANG Y J, XIE Z K, ZHAO X Y, AN L P, GAO H. Effects of water stress on photosynthetic characteristics, chlorophyll fluorescence, and dry matter of Oriental lilies. Journal of desert research, 2011, 31(4): 884-888.

    [20]

    MALLICK N, RAI L C. Physiological responses of non-vascularplants to heavy metals.// In: PRASAD M N V, STRZALKA K. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Dordrecht: Kluwer Academic Publishers, 2001: 111-147.

    [21]

    MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: A practical guide. Journal of Experimental Botany, 2000, 1: 659-668.

    [22]

    JIANG C D, GAO H Y, ZOU Q. Changes of donor and accepter side in photosystemⅡ complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271. doi: 10.1023/B:PHOT.0000011960.95482.91

    [23] 张华, 吴睿, 康雅茸. 民勤绿洲梭梭同化枝光合生理特性与形态. 草业科学, 2018, 35(2): 371-379.

    ZHANG H, WU R, KANG Y R. Photosynthetic, physiological, and morphological characteristics of Haloxylon ammondendron assimilation twigs in Minqin Oasis. Pratacultural Science, 2018, 35(2): 371-379.

    [24]

    GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 1989, 990: 87-92. doi: 10.1016/S0304-4165(89)80016-9

    [25]

    KRAMER D M, JOHNSON G, KIIRATS O, EDWARDS G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004, 79: 209-218. doi: 10.1023/B:PRES.0000015391.99477.0d

图(3)
计量
  • PDF下载量:  21
  • 文章访问数:  1659
  • HTML全文浏览量:  1010
  • 被引次数: 0
文章相关
  • 通讯作者: 卢琦
  • 收稿日期:  2018-12-16
  • 接受日期:  2018-03-17
  • 网络出版日期:  2019-03-28
  • 发布日期:  2019-02-28

目录

/

返回文章
返回