Zn和Cd处理下内生真菌对中华羊茅生长及内源激素的影响
English
-
喜旱莲子草(Alternanthera philoxeroides)是一种水陆双生的外来入侵恶性杂草,在我国适生面积占国土面积的22.2% [1]。强大的克隆繁殖能力,使其相比本地物种拥有更高的资源利用率和生长速率,只需少量的陆生型喜旱莲子草片段,经过一个生长季就能长成1~3 m宽的植株斑块[2];水生型喜旱莲子草越冬后,70%以上的茎都可在一周内萌芽,从3月到8月中旬可生长5.08 m,形成的漂浮垫层可从海岸线蔓延4.6 m [3]。喜旱莲子草不仅对我国生物多样性和生态系统造成了极大的威胁,还会造成农作物大量减产[4-6]。Mehmood等[7]经过两年的田间试验发现喜旱莲子草不仅造成水稻(Oryza sativa)产量和直链淀粉的损失,还会影响稻米蛋白质含量。
光照是影响植物生长发育的重要环境因子之一。自然界中的光环境会随着时间和空间发生变化,导致植物接收到的光照强度、光照时间和光谱成分等发生改变,从而影响植物的生长。对于遮光产生的光照强度变化,植物可以通过表型可塑性改变生物量分配和形态来适应,以维持正常的生长状态[8]。表型可塑性也被认为是外来植物成功入侵的重要机制之一,具有确定的遗传基础[9]。
关于不同光照强度下喜旱莲子草的表型可塑性研究也有一些报道。陈中义等[10]发现在不同的光照强度下喜旱莲子草通过表型可塑性维持了相对稳定的空间生长格局,是其成功入侵的一个重要机制。许建平等[11]发现光照影响喜旱莲子草主茎和叶片的表型可塑性,使植株在不同光环境下通过生长权衡来占据有利生境。班芷桦和王琼[12]在林下和林缘生境中观察到喜旱莲子草的优势种地位会逐渐被其他草本植物取代,并采用盆栽试验证明了接骨草(Sambucus chinensis)可以作为中度遮阴的陆生生境下喜旱莲子草生物替代的控制材料。这表明:1)不同遮光率可能会影响喜旱莲子草的生长、形态;2)低光照可能会抑制喜旱莲子草的生长和表型可塑性带来的抗逆作用,即存在遮光防控阈值。但喜旱莲子草对不同遮光率的生理生态参数响应模式尚不明确,因此,本研究以陆生型喜旱莲子草为研究对象,通过设置不同的遮光梯度,重点监测不同遮光率下喜旱莲子草生理生态参数的响应模式,为探索该入侵物种的遮光防治阈值提供参考依据。
1. 材料与方法
1.1 试验地点与材料
试验在湖北省武汉市湖北大学资源环境学院的试验园(30º34′27′′ N, 114º19′45′′ E)中进行。
取中国农业科学院油料研究所试验田的土壤,自然风干(土壤含水量为1.48%,有机质含量为1.41%),过0.15 mm筛后,与沙子1 ꞉ 1混合后作为培养基质。
喜旱莲子草是一种多年生宿根草本,幼嫩时整株全绿,成熟后茎部呈红褐色,其茎上有茎节,茎节处萌发嫩芽或分枝,叶片于茎节处对生,靠近地面的茎节上生根。全光照时匍匐生长在池塘、沟渠、河流、水田、旱田、草坪、果园等环境中,遮阴明显的地方更倾向于直立生长[13-15]。2020年10月16日在武汉市外沙湖界标(30º34′31′′ N, 114º19′46′′ E)周围采集生长状况良好、长势一致的陆生型喜旱莲子草。剪取含5个茎节、长25~28 cm、健康、生长一致且带完整顶梢的主茎。选取的主茎最下部茎节均生有细小不定根。
购买市售的9种具有不同孔隙密度的遮光网,2020年9月29日至10月9日,每天09:00、12:00和15:00在试验地点用手持照度计(TA 8123)测量全光照和9种遮光网遮光后的光照强度,并计算遮光率。从中挑选出5种遮光率有明显差异的遮光网,设置遮光率为不遮光(CK)、51.0% ± 2.9% (L1)、64.3% ± 2.4% (L2)、69.7% ± 2.6% (L3)、81.8% ± 2.5% (L4)和88.3% ± 1.4% (L5)的6组遮光环境。
1.2 试验方法
2020年10月16日将喜旱莲子草垂直插扦入花盆中,插扦深度5~8 cm,每盆2株,共25盆,用遮光率为L1的遮光网覆盖后进行预培养,及时替换长势较差的植株。
2020年11月11日,待植株生长稳定后,挑选长势较均一的18盆植株进行遮光处理。用选定的5种遮光网制作遮光棚,每棚下放3盆,另有不遮光的3盆作对照组(CK)。
试验期间,环境温度控制在(28 ± 2) ℃,相对湿度 > 65%。每3 d浇一次水,并用绿陇三合一土壤检测仪测定土壤湿度,将湿度值控制在6~8。每周根据茎叶生长状况调整植株摆放位置,保证每盆植株都能完整遮光。
2021年1月13日收获,记录喜旱莲子草的分枝数、 > 10 cm的长分枝数、叶片数。选取顶端向下第3节的叶片测量叶面积、叶厚、相对叶绿素含量。用ImageJ测定叶面积,用CD-S15c数显卡尺测量叶片最宽处横断面厚度,用CCM-200 plus叶绿素仪测定相对叶绿素含量。将洗净后的根、茎、叶分开,放入80 ℃烘箱中烘干72 h后,分别测定根生物量、茎生物量和叶生物量。地上生物量 = 茎生物量 + 叶生物量,根冠比 = 地下生物量/地上生物量。各参数可塑性指数的计算采用Valladares等[16]的方法,即各参数的最大值减去其最小值之差与其最大值之比。
1.3 数据处理
所有试验数据均用Excel 2016软件计算平均值和标准误。使用SPSS 26.0软件对数据进行单因素方差分析及差异显著性检验,用Excel 2016对生物量和分枝数数据进行线性拟合。用Origin 2021进行绘图。
2. 结果与分析
2.1 不同遮光率处理下植株生物量
遮光对喜旱莲子草的地上生物量、地下生物量、根冠比有极显著影响(P < 0.01) (表1)。为探究不同遮光率对喜旱莲子草生物量影响的程度,对不同遮光率与其地上、地下生物量、根冠比进行了回归分析。遮光率对喜旱莲子草的地上、地下生物量均呈线性影响(R2 > 0.95),随遮光率的增加生物量逐渐下降。相关关系公式分别为y = −0.829 4x + 1.170 5和y = −1.055 9x + 1.115 0,相关系数分别为0.829 4和1.055 9。喜旱莲子草的根冠比也随遮光率增加呈反对数式下降模式(R2 > 0.98),其相关关系公式为y = −1.125 2x2 + 0.325x + 0.945 4。
表 1 不同遮光率处理下喜旱莲子草的生物量变化Table 1. Effects of different shading rates on the biomass of A. philoxeroides遮光梯度
Shading intensity单株地上生物量
Aboveground biomass per plant/g单株地下生物量
Underground biomass per plant/g单株根冠比
Root shoot ratio per plantCK 1.136 4 ± 0.168 4A 1.076 8 ± 0.166 2A 0.947 1 ± 0.018 6A L1 0.781 9 ± 0.090 7B 0.629 8 ± 0.105 9B 0.801 5 ± 0.065 7B L2 0.726 7 ± 0.073 1B 0.520 8 ± 0.075 1B 0.713 6 ± 0.033 8C L3 0.568 4 ± 0.075 2C 0.347 9 ± 0.058 8C 0.609 4 ± 0.025 1D L4 0.493 3 ± 0.116 3CD 0.235 4 ± 0.043 8CD 0.483 6 ± 0.033 6E L5 0.370 3 ± 0.059 7D 0.128 3 ± 0.051 2D 0.335 4 ± 0.081 9F CK、L1、L2、L3、L4、L5分别表示不遮光和 51.0%、64.3%、69.7%、81.8% 和 88.3% 遮光率;同列不同大写字母表示各处理间差异极显著(P < 0.01);下图同。
CK, L1, L2, L3, L4, and L5 indicate not shading and shading rate of 51.0%, 64.3%, 69.7%, 81.8%, and 88.3% respectively. Different capital letters within the same column indicate highly significant differences among different treatments at the 0.01 level; this is appilcable for the following figures.2.2 不同遮光率处理下植株形态
喜旱莲子草的各形态参数对遮光的平均可塑性指数达到0.66,且分枝数、长枝占比、叶片数的可塑性指数皆在0.80左右(表2)。遮光对喜旱莲子草的分枝在数量和长短枝分配上的影响极显著(P < 0.01) (图1)。随着遮光程度的增加,喜旱莲子草的单株分枝数呈线性下降模式(y = –20.114x + 24.103) (R2 = 0.944 5)。而单株长枝占比则与之相反,呈持续上升趋势。经统计,当遮光率达到L2时,其平均分枝数下降了56.84%,而平均长枝占比则增加了100%。
表 2 喜旱莲子草形态参数对遮光的可塑性指数Table 2. Effects of plasticity index of morphological parameters on the shading of A. philoxeroides形态参数
Morphological parameters可塑性指数
Plasticity index分枝数 Shoot number 0.79 长枝占比 Long branch ratio 0.81 叶片数 Leaf number 0.76 叶片厚度 Leaf thickness 0.46 叶面积 Leaf area 0.48 平均 Average 0.66 叶片作为喜旱莲子草的临时储能器官,其数量、面积、厚度受遮光率的影响极显著(P < 0.01)。喜旱莲子草叶片的数量和厚度均随着遮光率的增加而下降,且叶片厚度在L2和L5处出现了明显的下降(图1)。而喜旱莲子草叶面积则随遮光程度的增加呈先增后降的趋势,在L2处达到最大值。
2.3 不同遮光率处理下植株相对叶绿素含量
遮光对喜旱莲子草的相对叶绿素含量(relative chlorophyll content, SPAD)影响极显著(P < 0.01)。喜旱莲子草的SPAD随遮光率增加呈先升后降的趋势(图2)。在L2处达到最高值,为CK的1.64倍;之后再快速降低,L5处,平均SPAD已低于不遮光状态,只有CK的84.42%。以上喜旱莲子草的SPAD变化表明,一定程度的遮光促进了叶片中叶绿素的合成,而当遮光率达到L2以后,这种促进作用则会随着遮光率的进一步增加而减弱,直至完全消失,进而抑制叶绿素的合成。
3. 讨论
喜旱莲子草专化的劳动分工能力,表现为地下部分专化吸收地下资源,与其他植物争夺水分、营养和地面生态位;而地上部分则专化地上扩繁,占据空间生态位和抢夺光资源,再通过克隆整合进行物质传输与共享,生境中养分越高这种分工能力就越强[17-18]。当喜旱莲子草遭遇遮阴逆境时,会导致地上部分通过光合作用获取的能量减少,致使其地上部分的生物量下降。植株的地下部分会通过克隆整合对地上部分进行资源支持来缓解逆境压力,进而使地下生物量也随着遮光率的增加呈下降趋势[19]。从喜旱莲子草的生物量变化规律可以看出,植株的生物量随遮光率增加而持续降低,且地下生物量的降低幅度更大。当遮光率达到L2 (61.9%~66.7%)时,就可将地下生物量降低一半以上。而喜旱莲子草的地下根茎才是主要决定其繁殖分配和地上部分生长的部位[20]。这对拥有发达的地下根茎和更强的昆虫采食防御能力的陆生型喜旱莲子草的防治具有重要意义[21]。
在本研究中,喜旱莲子草的形态对遮光率变化表现出了极高的表型可塑性。结合分枝数、长枝占比和叶片数等指标的单株变化量来看,发现表型可塑型指数越高,遮光对该形态指标的降低效果越明显。这说明喜旱莲子草可能主要通过形态可塑性来适应不同的光环境。
强大的分枝发生能力是其能发展成为优势种群的重要原因之一[11]。本研究中,随遮光率不断增加,喜旱莲子草的分枝发生能力持续降低,转而将茎生物量更多地投入到分枝的伸长上,以逃离遮光环境,大幅度降低了喜旱莲子草的生存和繁衍能力。同时,遮光会使喜旱莲子草通过降低叶片数量和叶片厚度来减少在叶部的资源分配,使得叶部作为临时存储器官延缓干扰对幼嫩分株片段影响的能力减弱[22]。一定程度的遮光还会促使喜旱莲子草通过表型可塑性来增大叶面积,以最大化的获取光资源,但当遮光率增加到L2 (61.9%~66.7%)后,随遮光率增加这种促进作用会被抑制。
叶绿素的生物合成量对光合作用至关重要,在实际检测中可以用SPAD指标基本反映出其含量水平[23-25]。光照是影响叶绿素合成、分解过程动态平衡的主要外部因素。形成叶绿素所需要的光照强度较低,而在强光下形成的单线态氧会损伤叶绿体,造成光损伤使叶绿素含量降低,因此,在本研究中出现遮光后叶绿素含量升高的现象。与石栎(Lithocarpus fohaiensis)幼苗、海芋(Alocasia macrorrhiza)等随光照强度减弱叶绿素含量增加的结果是一致的[26-27]。当遮光率高于L2 (61.9%~66.7%)后SPAD值开始下降,主要是因为弱光环境下,植物体内与叶绿素合成有关的基因表达减弱,而与其分解有关的基因表达则会增加[28-29],进而导致叶绿素合成受阻,影响其光合作用。因此,只有当遮光率高于L2 (61.9%~66.7%)后,才能有效降低喜旱莲子草的光合作用能力。
4. 结论
本研究表明,遮光率增加显著降低了喜旱莲子草的生物量,改变了其生长资源的分配模式,使其将更多的资源用于向外扩张以逃离遮光环境,从而降低了其生存繁殖能力。喜旱莲子草强大的表型可塑性虽能缓解遮光逆境带来的不利影响,但当遮光率在61.9%~66.7%,这种由表型可塑性带来的抗逆作用会被抑制。因此,可在实际工作中将61.9%~66.7%作为喜旱莲子草的遮光防治阈值,来减缓其定殖扩张速度,让本地耐阴物种有更多的生长机会并发展成为优势物种,从而进一步抑制喜旱莲子草的生长。
参考文献
[1] SCHARDL C L, LCUCHTMANN A, SPICRING M J. Symbioses of grasses with secdborne fungal endophytes. Annual Review of Plant Biology, 2004, 55(1): 315-340. doi: 10.1146/annurev.arplant.55.031903.141735
[2] 南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. doi: 10.3321/j.issn:1000-0933.2004.03.031 NAN Z B, LI C J. Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. doi: 10.3321/j.issn:1000-0933.2004.03.031
[3] 田沛, 旷宇, 南志标. 中华羊茅的优良特性以及利用内生真菌进行育种潜力浅析. 草业科学, 2015, 32(7): 1079-1087. doi: 10.11829/j.issn.1001-0629.2014-0438 TIAN P, KUANG Y, NAN Z B. The characteristics of Festuca sinensis and its breeding potential. Pratacultural Science, 2015, 32(7): 1079-1087. doi: 10.11829/j.issn.1001-0629.2014-0438
[4] SABZALIAN M R, HATAMI B, MIRLOHI A. Mealybug, Phenococcus solani, and barley aphid, Sipha maydis, response to endophyte‐infected tall and meadow fescues. Entomologia Experimentalis Et Applicata, 2010, 113(3): 205-209.
[5] MALINOWSKI D P, BELESKY D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. doi: 10.2135/cropsci2000.404923x
[6] VÁZQUEZ-DE-ALDANA B R, ZABALGOGEAZCOA I, GARCÍA-CRIADO B. An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant and Soil, 2013, 362(1-2): 201-213. doi: 10.1007/s11104-012-1283-7
[7] 蔺伟虎, 汪建军, 李会强, 张光明, 田沛. 不同生长条件下内生真菌对多年生黑麦草生理特性的影响. 草业科学, 2016, 33(8): 1574-1582. doi: 10.11829/j.issn.1001-0629.2016-0131 LIN W H, WANG J J, LI H Q, ZHANG G M, TIAN P. Effects of endophytic fungi on Perennial ryegrass physiological characteristics under different growth conditions. Pratacultural Science, 2016, 33(8): 1574-1582. doi: 10.11829/j.issn.1001-0629.2016-0131
[8] HUME D E, RYAN G. D, GIBER A, HELANDER M, MIRLOHI A, SABZALIAN M R. Epichloë Fungal endophytes for grassland ecosystems. Sustainable Agriculture Reviews, 2016, 19: 233-305. doi: 10.1007/978-3-319-26777-7
[9] 彭清青. Neotyphodium内生真菌对中华羊茅耐寒性的影响. 兰州: 兰州大学硕士学位论文, 2012. PENG Q Q. Effect of Neotyphodium endophyte on chilling tolerance to Festuca sinensis. Mater Thesis. Lanzhou: Lanzhou University, 2012.
[10] WANG J J, ZHOU Y P, LIN W H, LI M M, WANG M N, WANG Z G, KUANG Y, TIAN P. Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecology, 2017, 30: 39-47. doi: 10.1016/j.funeco.2017.08.005
[11] LIN W H, WANG X X, WANG J J, NZABANITA C, XU W B, YANG L, XI H F, TIAN P, WANG Y B, LI M M, WANG M N. Intra-and interspecific competition of Elymus nutans griseb. and Festuca sinensis keng. ex eb alexeev. infected by Epichloë endophyte. Bangladesh Journal of Botany, 2018, 47(3): 699-709.
[12] TIAN P, KUANG Y, LIN W H, WANG J J, NAN Z B. Shoot morphology and alkaloid content of Epichloë endophyte-Festuca sinensis associations. Crop and Pasture Science, 2018, 69(4): 430-438. doi: 10.1071/CP17231
[13] 王志坤. Cd污染对大豆内源激素及生长发育的影响. 长沙: 湖南农业大学硕士学位论文, 2006. WANG Z K. Effects of cadmium pollution on phytohormone contents and growth of Glycine max plants. Master Thesis. Changsha: Hunan Agricultural University, 2006.
[14] 陈美静. 碱蓬内生菌EF0801对三种非生物胁迫水稻幼苗内源激素及有机酸的影响. 沈阳: 沈阳师范大学硕士学位论文, 2016. CHEN M J. Effect of endophyte EF0801 infection on endogenous hormones and organic acids in rice seedings under three types of abiotic stress. Master Thesis. Shenyang: Shenyang Normal University, 2016.
[15] 龚红梅, 李卫国. 锌对植物的毒害及机理研究进展. 安徽农业科学, 2009, 37(29): 14009-14015. GONG H M, LI W G. Research progress on the toxicity of zinc to plants and its mechanism. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14009-14015.
[16] 李荣春. Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响. 植物生态学报, 2000, 24(2): 238-242. doi: 10.3321/j.issn:1005-264X.2000.02.019 LI R C. Effects of cadmium and lead on physiological and ultra-structural features in tobacco leaves. Acta Phytoecologica Sinica, 2000, 24(2): 238-242. doi: 10.3321/j.issn:1005-264X.2000.02.019
[17] 李坤, 李琳, 侯和胜, 苏绣荣, 范钦信. Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用. 应用与环境生物学报, 2002, 8(4): 395-398. doi: 10.3321/j.issn:1006-687X.2002.04.013 LI K, LI L, HOU H S, SU X R, FAN Q X. Study on toxicity of heavy metal ions to two species of marine unicellular algae. Chinese Journal of Applied & Environmental Biology, 2002, 8(4): 395-398. doi: 10.3321/j.issn:1006-687X.2002.04.013
[18] 多立安, 高玉葆, 赵树兰. 重金属递进胁迫对黑麦草初期生长的影响. 植物研究, 2006, 26(1): 117-122. doi: 10.3969/j.issn.1673-5102.2006.01.024 DUO L A, GAO Y B, ZHAO S L. Effects on initial growth of under heavy metal progressive stress. Bulletin of Botanical Research, 2006, 26(1): 117-122. doi: 10.3969/j.issn.1673-5102.2006.01.024
[19] 李川. 内生真菌感染对宿主禾草重金属耐受性影响的研究. 天津: 南开大学硕士学位论文, 2009. LI C. Effects of endophyte infection on tolerance of heavy metals in host grass. Mater Thesis. Tianjin: Nankai University, 2009.
[20] LIU H, HECKMAN J R, MURPHY J A. Screening fine fescues for aluminum tolerance. Journal of Plant Nutrition, 1996, 19(5): 677-688. doi: 10.1080/01904169609365152
[21] ELBERSEN H W, WEST C P. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass & Forage Science, 2010, 51(4): 333-342.
[22] 金文进, 李春杰, 王正凤. 禾草内生真菌的多样性及意义. 草业学报, 2015, 24(1): 168-175. doi: 10.11686/cyxb20150120 JIN W J, LI C J, WANG Z F. Research advances on diversity of grass Epichloё endophytes. Acta Prataculturae Sinica, 2015, 24(1): 168-175. doi: 10.11686/cyxb20150120
[23] 李娇, 张宝龙, 赵颖, 辛士刚, 陈强, 宋宁宁. 内生菌对提高植物抗盐碱性的研究进展. 生物技术通报, 2014, 27(4): 14-18. LI J, ZHANG B L, ZHAO Y, XIN S G, CHEN Q, SONG N N. Progress in endophyte improving plant salt and alkali resistance. Biotechnology Bulletin, 2014, 27(4): 14-18.
[24] LODEWYCKX C, TAGHAVI S, MERGEAY M, VANGRONSVELD J, CLIJSTERS H, LELIE D. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation, 2001, 3(2): 173-187. doi: 10.1080/15226510108500055
[25] IDRIS R, TRIFONOVA R, PUSCHENREITER M, WENZEL W, SESSITSCH A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied & Environmental Microbiology, 2004, 70(5): 2667-2677.
[26] 杨洋. 中华羊茅内生真菌及其对宿主抗寒性的影响. 兰州: 兰州大学硕士学位论文, 2010. YANG Y. Neotyphodium endophyte in Festuca sinensis and effect on cold tolerance to host. Master Thesis. Lanzhou: Lanzhou University, 2010.
[27] 赵丹丹. Cd2+及Cd2+-Zn2+组合对苇状羊茅生长及抗逆性影响的初步研究. 成都: 四川师范大学硕士学位论文, 2008. ZHAO D D. Studies on growth and resistance of Festuca arundinacea under the stress of Cd2+ and Cd2+-Zn2+. Master Thesis. Chengdu: Sichuan Normal University, 2008.
[28] 梅映学. 碱蓬内生菌高Y1-1对镉和/或铝胁迫下水稻幼苗内源激素及有机酸含量的影响. 沈阳: 沈阳师范大学硕士学位论文, 2017. MEI Y X. Effect of endophyte Gao Y1-1 infection on endogenous hormones and organic acids of rice seedlings under Cd and/or Ai stress. Master Thesis. Shenyang: Shenyang Normal University, 2017.
[29] 李川, 任安芝, 高玉葆. 内生真菌感染对宿主植物高羊茅锌耐受性的影响. 生态学报, 2010, 30(7): 1684-1690. LI C, REN A Z, GAO Y B. Effect of endophyte infection on Zn resistance of tall fescue. Acta Ecologica Sinica, 2010, 30(7): 1684-1690.
[30] 金忠民, 沙伟, 刘丽杰, 潘林, 莫继先, 郝宇. 铅镉抗性菌株JB11强化植物对污染土壤中铅镉的吸收. 生态学报, 2014, 34(11): 2900-2906. JIN Z M, SHA W, LIU L J, PAN L, MO J X, HAO Y. Lead-and cadmium-resistant bacterial strain JB11 enhances lead and cadmium uptake in the phytoremediation of soils. Acta Ecologica Sinica, 2014, 34(11): 2900-2906.
[31] 郭晓音, 严重玲, 叶彬彬. 镉锌复合胁迫对秋茄幼苗渗透调节物质的影响. 应用与环境生物学报, 2009, 15(3): 308-312. GUO X Y, YAN Z L, YE B B. Effect of Cd-Zn combined stress on contents of osmotic substances in Kandelia candel druce seedlings. Chinese Journal of Applied and Environmental Biology, 2009, 15(3): 308-312.
[32] 南志标. 内生真菌在我国部分国产和引进禾草品种种子中的分布. 草业学报, 1996, 5(2): 1-8. doi: 10.3321/j.issn:1004-5759.1996.02.001 NAN Z B. Incidence and distribution of endophytic fungi in seeds of some native and introduced grasses in China. Acta Prataculturae Sinica, 1996, 5(2): 1-8. doi: 10.3321/j.issn:1004-5759.1996.02.001
[33] VAN ASSCHE F, CLIJSTERS H. Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 1990, 13(3): 195-206.
[34] LANARAS T, MOUSTAKAS M, SYMEONIDIS L, DIAMANTOGLOU S, KARATAGLIS S. Plant metal content, growth responses and some photosynthetic measurements on field‐cultivated wheat growing on ore bodies enriched in Cu. Physiologia Plantarum, 1993, 88(2): 307-314. doi: 10.1111/ppl.1993.88.issue-2
[35] 萧浪涛, 王若仲, 丁君辉, 严钦泉. 内源激素与亚种间杂交稻籽粒灌浆的关系. 湖南农业大学学报(自然科学版), 2002, 28(4): 269-273. XIAO L T, WANG R Z, DING J H, YAN Q Q. Relationship between endogenous hormones and grain filling of inter-subspecies hybrid rice. Journal of Hunan Agricultural University, 2002, 28(4): 269-273.
[36] SENARATNA T, TOUCHELL D, BUNN E, DIXON K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 2000, 30(2): 157-161. doi: 10.1023/A:1006386800974
[37] 董宝娣, 刘孟雨, 张正斌, 李全起. 水分胁迫条件下不同抗旱类型小麦灌浆初期内源激素的变化. 麦类作物学报, 2007, 27(5): 852-858. doi: 10.3969/j.issn.1009-1041.2007.05.022 DONG B D, LIU M Y, ZHANG Z B, LI Q Q. Changes of endogenous hormones in different types of winter wheat during early grain filling stage under water stress. Journal of Triticeae Crops, 2007, 27(5): 852-858. doi: 10.3969/j.issn.1009-1041.2007.05.022
[38] 李博文, 郝晋珉. 土壤镉, 铅, 锌污染的植物效应研究进展. 河北农业大学学报, 2002(z1): 74-76. doi: 10.3969/j.issn.1000-1573.2002.z1.023 LI B W, HAO J M. Research advance in effects of cadmium, lead and zinc on plants in soils contaminated with these metals. Journal of Agricultural University of Hebei, 2002(z1): 74-76. doi: 10.3969/j.issn.1000-1573.2002.z1.023
[39] CHAUDHARY D S, TOTAWAT K L. Zinc and phosphorus interaction on growth and nutrient uptake by wheat. Annals of Arid Zone, 1985, 24(1): 31-38.
[40] 李春喜, 鲁旭阳, 邵云, 姜丽娜, 冯淑利, 李向力. As, Zn复合污染对小麦幼苗生长及生理生化反应的影响. 农业环境科学学报, 2006, 25(1): 43-48. doi: 10.3321/j.issn:1672-2043.2006.01.009 LI C X, LU X Y, SHAO Y, JIANG L N, FENG S L, LI X L. Effects of As, Zn combined pollution on growth and physiological and biochemical reactions of wheat seedling. Journal of Agro-Environment Science, 2006, 25(1): 43-48. doi: 10.3321/j.issn:1672-2043.2006.01.009
[41] 徐卫红, 熊治庭, 李文一, 王宏信, 刘吉振, 李仰锐. 4品种黑麦草对重金属Zn的耐性及Zn积累研究. 西南大学学报(自然科学版), 2005, 27(6): 785-790. XU W H, XIONG Z T, LI W Y. WANG H X, LIU J Z, LI Y R. Tolerance and accumulation of zinc in four varieties of ryegrass. Journal of Southwest Agricultural University, 2005, 27(6): 785-790.
[42] SKOOG F. Relationships between zinc and auxin in the growth of higher plants. American Journal of Botany, 1940, 27(10): 939-951. doi: 10.1002/ajb2.1940.27.issue-10
[43] LAW D M. Gibberellin enhanced indole‐3‐acetic acid biosynthesis: d-tryptophan as the precursor of indole‐3‐acetic acid. Physiologia Plantarum, 1987, 70(4): 626-632. doi: 10.1111/ppl.1987.70.issue-4
[44] 张兴旭, 南志标, 李春杰. 内生真菌提高禾草耐重金属胁迫的研究进展. 草业科学, 2014, 31(8): 1466-1474. doi: 10.11829/j.issn.1001-0629.2013-0483 ZHANG X X, NAN Z B, LI C J. Research progress of improved resistance of the grass to the heavy metal stress by endophyte. Pratacultural Science, 2014, 31(8): 1466-1474. doi: 10.11829/j.issn.1001-0629.2013-0483
[45] ZHANG X X, LI C J, NAN Z B. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians, symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 2010, 175(1-3): 703-709. doi: 10.1016/j.jhazmat.2009.10.066
[46] ZHANG X X, LI C J, NAN Z B. Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Science China Life Sciences, 2012, 55(9): 793-799. doi: 10.1007/s11427-012-4359-y
[47] 张兴旭. 醉马草-内生真菌共生体对胁迫的响应及其次生代谢产物活性的研究. 兰州: 兰州大学博士学位论文, 2012. ZHANG X X. Response of Achnatherum inebrians/Neotyphodium gansuense symbiont to stresses and secondary metabolites activities. PhD Thesis. Lanzhou: Lanzhou University, 2012.
[48] BONNET M, CAMARES O, VEISSEIRE P. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne). Journal of Experimental Botany, 2000, 51(346): 945-953.
[49] 吴慧凤. 菌根真菌对铁皮石斛种子萌发及其生长的影响. 海口: 海南大学硕士学位论文, 2011. WU H F. Effects of mycorrhizal fungi on the seed symbiotic germination and development of Dendrobiuyn catenatum. Master Thesis. Haikou: Hainan University, 2011.
-
图 1 Zn、Cd处理下内生真菌对中华羊茅的株高和分蘖的影响
不同小写字母表示不同处理下差异显著(P < 0.05)。下图同。
Figure 1. Effect of endophyte infection on plant height and the tiller of Festuca sinensis under Zn and Cd treatments
Different lowercase letters indicate significant differences between different treatments at the 0.05 level; similary for the following figures.
表 1 重金属Zn、Cd处理下内生真菌对中华羊茅生物量的影响
Table 1 Effect of endophyte infection on aboveground and underground biomass of Festuca sinensis under Zn and Cd treatments
处理 Treatment 地上生物量 Aboveground/g 地下生物量 Underground/g E+ E– E+ E– CK 0.59 ± 0.02ab 0.49 ± 0.01b 0.62 ± 0.03b 0.51 ± 0.04c Zn 0.66 ± 0.01a 0.59 ± 0.04ab 0.73 ± 0.01a 0.70 ± 0.01a Cd 0.57 ± 0.01ab 0.40 ± 0.06c 0.50 ± 0.04c 0.43 ± 0.02c 不同小写字母表示不同处理间地上或地下生物量间显著差异(P < 0.05)。
Different lowercase letters indicate significant differences between different treatments at the 0.05 level. -
[1] SCHARDL C L, LCUCHTMANN A, SPICRING M J. Symbioses of grasses with secdborne fungal endophytes. Annual Review of Plant Biology, 2004, 55(1): 315-340. doi: 10.1146/annurev.arplant.55.031903.141735
[2] 南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. doi: 10.3321/j.issn:1000-0933.2004.03.031 NAN Z B, LI C J. Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. doi: 10.3321/j.issn:1000-0933.2004.03.031
[3] 田沛, 旷宇, 南志标. 中华羊茅的优良特性以及利用内生真菌进行育种潜力浅析. 草业科学, 2015, 32(7): 1079-1087. doi: 10.11829/j.issn.1001-0629.2014-0438 TIAN P, KUANG Y, NAN Z B. The characteristics of Festuca sinensis and its breeding potential. Pratacultural Science, 2015, 32(7): 1079-1087. doi: 10.11829/j.issn.1001-0629.2014-0438
[4] SABZALIAN M R, HATAMI B, MIRLOHI A. Mealybug, Phenococcus solani, and barley aphid, Sipha maydis, response to endophyte‐infected tall and meadow fescues. Entomologia Experimentalis Et Applicata, 2010, 113(3): 205-209.
[5] MALINOWSKI D P, BELESKY D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. doi: 10.2135/cropsci2000.404923x
[6] VÁZQUEZ-DE-ALDANA B R, ZABALGOGEAZCOA I, GARCÍA-CRIADO B. An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant and Soil, 2013, 362(1-2): 201-213. doi: 10.1007/s11104-012-1283-7
[7] 蔺伟虎, 汪建军, 李会强, 张光明, 田沛. 不同生长条件下内生真菌对多年生黑麦草生理特性的影响. 草业科学, 2016, 33(8): 1574-1582. doi: 10.11829/j.issn.1001-0629.2016-0131 LIN W H, WANG J J, LI H Q, ZHANG G M, TIAN P. Effects of endophytic fungi on Perennial ryegrass physiological characteristics under different growth conditions. Pratacultural Science, 2016, 33(8): 1574-1582. doi: 10.11829/j.issn.1001-0629.2016-0131
[8] HUME D E, RYAN G. D, GIBER A, HELANDER M, MIRLOHI A, SABZALIAN M R. Epichloë Fungal endophytes for grassland ecosystems. Sustainable Agriculture Reviews, 2016, 19: 233-305. doi: 10.1007/978-3-319-26777-7
[9] 彭清青. Neotyphodium内生真菌对中华羊茅耐寒性的影响. 兰州: 兰州大学硕士学位论文, 2012. PENG Q Q. Effect of Neotyphodium endophyte on chilling tolerance to Festuca sinensis. Mater Thesis. Lanzhou: Lanzhou University, 2012.
[10] WANG J J, ZHOU Y P, LIN W H, LI M M, WANG M N, WANG Z G, KUANG Y, TIAN P. Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecology, 2017, 30: 39-47. doi: 10.1016/j.funeco.2017.08.005
[11] LIN W H, WANG X X, WANG J J, NZABANITA C, XU W B, YANG L, XI H F, TIAN P, WANG Y B, LI M M, WANG M N. Intra-and interspecific competition of Elymus nutans griseb. and Festuca sinensis keng. ex eb alexeev. infected by Epichloë endophyte. Bangladesh Journal of Botany, 2018, 47(3): 699-709.
[12] TIAN P, KUANG Y, LIN W H, WANG J J, NAN Z B. Shoot morphology and alkaloid content of Epichloë endophyte-Festuca sinensis associations. Crop and Pasture Science, 2018, 69(4): 430-438. doi: 10.1071/CP17231
[13] 王志坤. Cd污染对大豆内源激素及生长发育的影响. 长沙: 湖南农业大学硕士学位论文, 2006. WANG Z K. Effects of cadmium pollution on phytohormone contents and growth of Glycine max plants. Master Thesis. Changsha: Hunan Agricultural University, 2006.
[14] 陈美静. 碱蓬内生菌EF0801对三种非生物胁迫水稻幼苗内源激素及有机酸的影响. 沈阳: 沈阳师范大学硕士学位论文, 2016. CHEN M J. Effect of endophyte EF0801 infection on endogenous hormones and organic acids in rice seedings under three types of abiotic stress. Master Thesis. Shenyang: Shenyang Normal University, 2016.
[15] 龚红梅, 李卫国. 锌对植物的毒害及机理研究进展. 安徽农业科学, 2009, 37(29): 14009-14015. GONG H M, LI W G. Research progress on the toxicity of zinc to plants and its mechanism. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14009-14015.
[16] 李荣春. Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响. 植物生态学报, 2000, 24(2): 238-242. doi: 10.3321/j.issn:1005-264X.2000.02.019 LI R C. Effects of cadmium and lead on physiological and ultra-structural features in tobacco leaves. Acta Phytoecologica Sinica, 2000, 24(2): 238-242. doi: 10.3321/j.issn:1005-264X.2000.02.019
[17] 李坤, 李琳, 侯和胜, 苏绣荣, 范钦信. Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用. 应用与环境生物学报, 2002, 8(4): 395-398. doi: 10.3321/j.issn:1006-687X.2002.04.013 LI K, LI L, HOU H S, SU X R, FAN Q X. Study on toxicity of heavy metal ions to two species of marine unicellular algae. Chinese Journal of Applied & Environmental Biology, 2002, 8(4): 395-398. doi: 10.3321/j.issn:1006-687X.2002.04.013
[18] 多立安, 高玉葆, 赵树兰. 重金属递进胁迫对黑麦草初期生长的影响. 植物研究, 2006, 26(1): 117-122. doi: 10.3969/j.issn.1673-5102.2006.01.024 DUO L A, GAO Y B, ZHAO S L. Effects on initial growth of under heavy metal progressive stress. Bulletin of Botanical Research, 2006, 26(1): 117-122. doi: 10.3969/j.issn.1673-5102.2006.01.024
[19] 李川. 内生真菌感染对宿主禾草重金属耐受性影响的研究. 天津: 南开大学硕士学位论文, 2009. LI C. Effects of endophyte infection on tolerance of heavy metals in host grass. Mater Thesis. Tianjin: Nankai University, 2009.
[20] LIU H, HECKMAN J R, MURPHY J A. Screening fine fescues for aluminum tolerance. Journal of Plant Nutrition, 1996, 19(5): 677-688. doi: 10.1080/01904169609365152
[21] ELBERSEN H W, WEST C P. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass & Forage Science, 2010, 51(4): 333-342.
[22] 金文进, 李春杰, 王正凤. 禾草内生真菌的多样性及意义. 草业学报, 2015, 24(1): 168-175. doi: 10.11686/cyxb20150120 JIN W J, LI C J, WANG Z F. Research advances on diversity of grass Epichloё endophytes. Acta Prataculturae Sinica, 2015, 24(1): 168-175. doi: 10.11686/cyxb20150120
[23] 李娇, 张宝龙, 赵颖, 辛士刚, 陈强, 宋宁宁. 内生菌对提高植物抗盐碱性的研究进展. 生物技术通报, 2014, 27(4): 14-18. LI J, ZHANG B L, ZHAO Y, XIN S G, CHEN Q, SONG N N. Progress in endophyte improving plant salt and alkali resistance. Biotechnology Bulletin, 2014, 27(4): 14-18.
[24] LODEWYCKX C, TAGHAVI S, MERGEAY M, VANGRONSVELD J, CLIJSTERS H, LELIE D. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation, 2001, 3(2): 173-187. doi: 10.1080/15226510108500055
[25] IDRIS R, TRIFONOVA R, PUSCHENREITER M, WENZEL W, SESSITSCH A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied & Environmental Microbiology, 2004, 70(5): 2667-2677.
[26] 杨洋. 中华羊茅内生真菌及其对宿主抗寒性的影响. 兰州: 兰州大学硕士学位论文, 2010. YANG Y. Neotyphodium endophyte in Festuca sinensis and effect on cold tolerance to host. Master Thesis. Lanzhou: Lanzhou University, 2010.
[27] 赵丹丹. Cd2+及Cd2+-Zn2+组合对苇状羊茅生长及抗逆性影响的初步研究. 成都: 四川师范大学硕士学位论文, 2008. ZHAO D D. Studies on growth and resistance of Festuca arundinacea under the stress of Cd2+ and Cd2+-Zn2+. Master Thesis. Chengdu: Sichuan Normal University, 2008.
[28] 梅映学. 碱蓬内生菌高Y1-1对镉和/或铝胁迫下水稻幼苗内源激素及有机酸含量的影响. 沈阳: 沈阳师范大学硕士学位论文, 2017. MEI Y X. Effect of endophyte Gao Y1-1 infection on endogenous hormones and organic acids of rice seedlings under Cd and/or Ai stress. Master Thesis. Shenyang: Shenyang Normal University, 2017.
[29] 李川, 任安芝, 高玉葆. 内生真菌感染对宿主植物高羊茅锌耐受性的影响. 生态学报, 2010, 30(7): 1684-1690. LI C, REN A Z, GAO Y B. Effect of endophyte infection on Zn resistance of tall fescue. Acta Ecologica Sinica, 2010, 30(7): 1684-1690.
[30] 金忠民, 沙伟, 刘丽杰, 潘林, 莫继先, 郝宇. 铅镉抗性菌株JB11强化植物对污染土壤中铅镉的吸收. 生态学报, 2014, 34(11): 2900-2906. JIN Z M, SHA W, LIU L J, PAN L, MO J X, HAO Y. Lead-and cadmium-resistant bacterial strain JB11 enhances lead and cadmium uptake in the phytoremediation of soils. Acta Ecologica Sinica, 2014, 34(11): 2900-2906.
[31] 郭晓音, 严重玲, 叶彬彬. 镉锌复合胁迫对秋茄幼苗渗透调节物质的影响. 应用与环境生物学报, 2009, 15(3): 308-312. GUO X Y, YAN Z L, YE B B. Effect of Cd-Zn combined stress on contents of osmotic substances in Kandelia candel druce seedlings. Chinese Journal of Applied and Environmental Biology, 2009, 15(3): 308-312.
[32] 南志标. 内生真菌在我国部分国产和引进禾草品种种子中的分布. 草业学报, 1996, 5(2): 1-8. doi: 10.3321/j.issn:1004-5759.1996.02.001 NAN Z B. Incidence and distribution of endophytic fungi in seeds of some native and introduced grasses in China. Acta Prataculturae Sinica, 1996, 5(2): 1-8. doi: 10.3321/j.issn:1004-5759.1996.02.001
[33] VAN ASSCHE F, CLIJSTERS H. Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 1990, 13(3): 195-206.
[34] LANARAS T, MOUSTAKAS M, SYMEONIDIS L, DIAMANTOGLOU S, KARATAGLIS S. Plant metal content, growth responses and some photosynthetic measurements on field‐cultivated wheat growing on ore bodies enriched in Cu. Physiologia Plantarum, 1993, 88(2): 307-314. doi: 10.1111/ppl.1993.88.issue-2
[35] 萧浪涛, 王若仲, 丁君辉, 严钦泉. 内源激素与亚种间杂交稻籽粒灌浆的关系. 湖南农业大学学报(自然科学版), 2002, 28(4): 269-273. XIAO L T, WANG R Z, DING J H, YAN Q Q. Relationship between endogenous hormones and grain filling of inter-subspecies hybrid rice. Journal of Hunan Agricultural University, 2002, 28(4): 269-273.
[36] SENARATNA T, TOUCHELL D, BUNN E, DIXON K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 2000, 30(2): 157-161. doi: 10.1023/A:1006386800974
[37] 董宝娣, 刘孟雨, 张正斌, 李全起. 水分胁迫条件下不同抗旱类型小麦灌浆初期内源激素的变化. 麦类作物学报, 2007, 27(5): 852-858. doi: 10.3969/j.issn.1009-1041.2007.05.022 DONG B D, LIU M Y, ZHANG Z B, LI Q Q. Changes of endogenous hormones in different types of winter wheat during early grain filling stage under water stress. Journal of Triticeae Crops, 2007, 27(5): 852-858. doi: 10.3969/j.issn.1009-1041.2007.05.022
[38] 李博文, 郝晋珉. 土壤镉, 铅, 锌污染的植物效应研究进展. 河北农业大学学报, 2002(z1): 74-76. doi: 10.3969/j.issn.1000-1573.2002.z1.023 LI B W, HAO J M. Research advance in effects of cadmium, lead and zinc on plants in soils contaminated with these metals. Journal of Agricultural University of Hebei, 2002(z1): 74-76. doi: 10.3969/j.issn.1000-1573.2002.z1.023
[39] CHAUDHARY D S, TOTAWAT K L. Zinc and phosphorus interaction on growth and nutrient uptake by wheat. Annals of Arid Zone, 1985, 24(1): 31-38.
[40] 李春喜, 鲁旭阳, 邵云, 姜丽娜, 冯淑利, 李向力. As, Zn复合污染对小麦幼苗生长及生理生化反应的影响. 农业环境科学学报, 2006, 25(1): 43-48. doi: 10.3321/j.issn:1672-2043.2006.01.009 LI C X, LU X Y, SHAO Y, JIANG L N, FENG S L, LI X L. Effects of As, Zn combined pollution on growth and physiological and biochemical reactions of wheat seedling. Journal of Agro-Environment Science, 2006, 25(1): 43-48. doi: 10.3321/j.issn:1672-2043.2006.01.009
[41] 徐卫红, 熊治庭, 李文一, 王宏信, 刘吉振, 李仰锐. 4品种黑麦草对重金属Zn的耐性及Zn积累研究. 西南大学学报(自然科学版), 2005, 27(6): 785-790. XU W H, XIONG Z T, LI W Y. WANG H X, LIU J Z, LI Y R. Tolerance and accumulation of zinc in four varieties of ryegrass. Journal of Southwest Agricultural University, 2005, 27(6): 785-790.
[42] SKOOG F. Relationships between zinc and auxin in the growth of higher plants. American Journal of Botany, 1940, 27(10): 939-951. doi: 10.1002/ajb2.1940.27.issue-10
[43] LAW D M. Gibberellin enhanced indole‐3‐acetic acid biosynthesis: d-tryptophan as the precursor of indole‐3‐acetic acid. Physiologia Plantarum, 1987, 70(4): 626-632. doi: 10.1111/ppl.1987.70.issue-4
[44] 张兴旭, 南志标, 李春杰. 内生真菌提高禾草耐重金属胁迫的研究进展. 草业科学, 2014, 31(8): 1466-1474. doi: 10.11829/j.issn.1001-0629.2013-0483 ZHANG X X, NAN Z B, LI C J. Research progress of improved resistance of the grass to the heavy metal stress by endophyte. Pratacultural Science, 2014, 31(8): 1466-1474. doi: 10.11829/j.issn.1001-0629.2013-0483
[45] ZHANG X X, LI C J, NAN Z B. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians, symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 2010, 175(1-3): 703-709. doi: 10.1016/j.jhazmat.2009.10.066
[46] ZHANG X X, LI C J, NAN Z B. Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Science China Life Sciences, 2012, 55(9): 793-799. doi: 10.1007/s11427-012-4359-y
[47] 张兴旭. 醉马草-内生真菌共生体对胁迫的响应及其次生代谢产物活性的研究. 兰州: 兰州大学博士学位论文, 2012. ZHANG X X. Response of Achnatherum inebrians/Neotyphodium gansuense symbiont to stresses and secondary metabolites activities. PhD Thesis. Lanzhou: Lanzhou University, 2012.
[48] BONNET M, CAMARES O, VEISSEIRE P. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne). Journal of Experimental Botany, 2000, 51(346): 945-953.
[49] 吴慧凤. 菌根真菌对铁皮石斛种子萌发及其生长的影响. 海口: 海南大学硕士学位论文, 2011. WU H F. Effects of mycorrhizal fungi on the seed symbiotic germination and development of Dendrobiuyn catenatum. Master Thesis. Haikou: Hainan University, 2011.
-
期刊类型引用(1)
1. 邢红爽,冯秋红,史作民,刘顺,许格希,陈健,巩闪闪. 青藏高原东缘川滇高山栎和西南花楸叶片性状对海拔的响应. 应用生态学报. 2024(03): 606-614 . 百度学术
其他类型引用(0)