欢迎访问 草业科学,今天是2025年4月12日 星期六!

放牧对武功山草甸土壤微生物生物量及酶活性的影响

徐晓凤, 牛德奎, 郭晓敏, 邓邦良, 周桂香, 王书丽, 朱丛飞, 罗汉东

徐晓凤, 牛德奎, 郭晓敏, 邓邦良, 周桂香, 王书丽, 朱丛飞, 罗汉东. 放牧对武功山草甸土壤微生物生物量及酶活性的影响[J]. 草业科学, 2018, 12(7): 1634-1640. DOI: 10.11829/j.issn.1001-0629.2017-0629
引用本文: 徐晓凤, 牛德奎, 郭晓敏, 邓邦良, 周桂香, 王书丽, 朱丛飞, 罗汉东. 放牧对武功山草甸土壤微生物生物量及酶活性的影响[J]. 草业科学, 2018, 12(7): 1634-1640. DOI: 10.11829/j.issn.1001-0629.2017-0629
Xiao-feng Xu, De-kui Niu, Xiao-min Guo, Bang-liang Deng, Gui-xiang Zhou, Shu-li Wang, Cong-fei Zhu, Han-dong Luo. Effects of grazing on soil microbial and biomass enzyme activities in Wugong Mountain, China[J]. Pratacultural Science, 2018, 12(7): 1634-1640. DOI: 10.11829/j.issn.1001-0629.2017-0629
Citation: Xiao-feng Xu, De-kui Niu, Xiao-min Guo, Bang-liang Deng, Gui-xiang Zhou, Shu-li Wang, Cong-fei Zhu, Han-dong Luo. Effects of grazing on soil microbial and biomass enzyme activities in Wugong Mountain, China[J]. Pratacultural Science, 2018, 12(7): 1634-1640. DOI: 10.11829/j.issn.1001-0629.2017-0629

放牧对武功山草甸土壤微生物生物量及酶活性的影响

基金项目: 

武功山山地草甸退化土壤生态特征时空变异与土壤碳汇相应机制研究(31360177)

摘要: 以武功山山地草甸为研究对象,通过分析不同放牧强度对土壤微生物生物量碳氮以及酶活性的影响,旨在为退化草甸修复提供理论依据。结果表明:1)不同土壤微生物生物量碳氮含量表现为0-20 cm土层>20-40 cm土层,除20-40 cm土层轻牧和中牧的土壤微生物生物量氮无显著差异外(P>0.05),随放牧强度增加,土壤微生物生物量碳氮含量均显著降低(P<0.05);2)可溶性碳氮含量在0-20和20-40 cm土层间无显著差异(P>0.05),均表现为在0-20 cm土层轻牧显著大于中牧和重牧(P<0.05);3)碱解氮和易氧化碳含量表现为在不同土层,轻牧和中牧含量均显著高于重牧(P<0.05);4)土壤β-葡萄糖甘酶、β-N-乙酰氨基葡萄糖甘酶和脲酶活性表现为在不同土层下,轻度和中牧均显著高于重牧(P<0.05);5)相关性分析表明,不同放牧强度土壤β-葡萄糖甘酶、β-N-乙酰氨基葡萄糖甘酶和脲酶活性与微生物生物量碳氮均呈显著性正相关(P<0.05)或极显著正相关(P<0.01)。

 

English

  • [1]

    Saggar S,Jha N,Deslippe J,Bolan N S,Luo J,Giltrap D L,Kim D G,Zaman M,Tillman R W.Denitrification and N2O:N2 production in temperate grasslands:Processes,measurements modelling and mitigating negative impacts.Science of The Total Environment,2013,465:173-195.

    [1]

    Deng B L.Effect of warming and nitrogen deposition on soil carbon and nitrogen in meadow restoration by Wugong Mountain.Master Thesis.Nanchang:Jiangxi Agricultural University,2016.(in Chinese)

    [2]

    Deng B L,Yuan Z Y,Guo X M.Distribution of trace elements in the soil of meadow in Wugong Mountain and its response to human disturbance.Pratacultural Science,2015,32(10):1555-1560.(in Chinese)

    [2] 邓邦良. 增温和氮沉降对武功山修复草甸土壤碳氮过程的影响研究.南昌:江西农业大学硕士学位论文,2016.
    [3]

    Li Z,Yuan Y D,Hu Y W,Meng W W,Zhang X L,Guo X M,Zhang W Y,Hu D N,Niu D K.Effects of altitude and tourism disturbance on soil permeability of mountainous meadow in Wugong Mountain.Acta Ecologica Sinica,2018,32(2):634-645.(in Chinese)

    [3]

    Prieto L H,Bertiller M B,Carrera A L,Olivera N L.Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte,Argentina.Geoderma,2011,162(3):281-287.

    [4]

    Adler P,Raff D,Lauenroth W.The effect of grazing on the spatial heterogeneity of vegetation.Oecologia,2001,128(4):465-479.

    [4]

    Bao S D.Soil and Agricultural Chemistry Analysis.Beijing:China Agriculture Press,2000.(in Chinese)

    [5]

    Guan S Y.Soil enzymes and the research methods.Beijing:China Agriculture Press,1986.(in Chinese)

    [5]

    Chillo V,Ojeda R A,Anand M,Reynolds J F.A novel approach to assesslivestock management effects on biodiversity of drylands.Ecological Indicators,2015,50:69-78.

    [6]

    Xu M,Xie F,Wang K.Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of northern China.PloS One,2014,9(5):96604.

    [6]

    Wang G B,Zhao X L,Wang M H,Ruan H H,Xu C B,Xu Y M.Effect of land use change on soil easy oxidation carbon content along North Jiangsu coast.Chinese Journal of Applied Ecology,2013,24(4):921-926.(in Chinese)

    [7]

    Liu Z G,Li Z Q,Nijs I,Bogaert J.Fine-scale spatial pattern of Cleistogenes squarrosa population under different grazing intensities.Acta Prataculturae Sinica,2005,14(1):11-17.(in Chinese)

    [7] 邓邦良,袁知洋,郭晓敏.武功山草甸土壤微量元素分布及对人为干扰的响应.草业科学,2015,32(10):1555-1560.
    [8]

    Wei W,Chen L,Zhang H,Chen J.Effect of rainfall variation and land-scape change on runoff and sediment yield from a loess hilly catchment in China.Environmental Earth Sciences,2015,73(3):1005-1016.

    [8]

    Ma X X,Wang L L,Li Q H,Li H,Zhang S L,Sun B H,Yang X X.Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities in maize growth stages.Acta Ecologica Sinica,2012,32(17):5502-5511.(in Chinese)

    [9]

    Deng L,Sweeney S,Shangguan Z P.Grassland responses to grazing disturbance:Plant diversity changes with grazing intensity in a desert steppe.Grass and Forage Science,2014,69(3):524-533.

    [9]

    Wang X T,Zhang S H,Chen D D,Tan Y R,Sun D S,Du G Z.Study on vegetation characteristics and soil nutrient variation of alpine meadow under different grazing intensities.Acta Agrestia Sinica,2010,18(4):510-516.(in Chinese)

    [10]

    Zhu G,Deng L,Zhang X,Shangguan Z.Effects of grazing exclusion on plant community and soil physicochemical properties in a desert steppe on the Loess Plateau,China.Ecological Engineering,2016,90:372-381.

    [10]

    Cao L H,Liu H M,Zhao S W.Distribution characteristics of soil organic carbon and its relationship with soil nutrient in DaXiong degraded meadow.Chinese Agricultural Science Bulletin,2012,27(24):69-73.(in Chinese)

    [11]

    Talore D G,Tesfamariam E H,Hassen A,Toit J C O D,Klumpp K,Soussana J F.Long-term impacts of season of grazing on soil carbon sequestration and selected soil properties in the arid Eastern Cape,South Africa.Plant and Soil,2015,397(1-2):317-329.

    [11]

    Jiao T,Chang G Z,Zhou X H,Hou Y H,Yang H S,Miao X L,Liu R T.Relationship between soil enzyme and fertility under different grazing intensities of temperate desert grassland.Acta Agrestia Sinica,2009,17(5):581-587.(in Chinese)

    [12]

    Stephens S E,Walker J A,Blunck D R,Jayaraman A,Naugle D E,Ringelman J K,Smith A J.Predicting risk of habitat conversion in native temperate grasslands.Conservation Biology,2008,22(5):1320-1330.

    [13]

    Chartier M P,Rostagno C M,Videla L S.Selective erosion of clay,organic car-bon and total nitrogen in grazed semiarid rangelands of north eastern Patagonia,Argentina.Journal of Arid Environments,2013,88:43-49.

    [14]

    Panayiotou E,Dimou M,Monokrousos N.The effects of grazing intensity on soil processes in a Mediterranean protected area.Environmental Monitoring and Assessment,2017,189(9):441.

    [15]

    Liu N,Kan H,Yang G,Zhang Y.Changes in plant,soil,andmicrobes in a typical steppe from simulated grazing:Explaining potential change in soil C.Ecological Monographs,2015,85(2):269-286.

    [16]

    Bandick A K,Dick R P.Field management effects on soil enzyme activities.Soil Biology and Biochemistry,1999,31(11):1471-1479.

    [17]

    Ge G,Li Z,Fan F,Chu G,Hou Z,Liang Y.Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers.Plant and Soil,2010,326:31-44.

    [18]

    Garclagil J C,Plaza C,Solerrovira P,Polo A.Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass.Soil Biology and Biochemistry,2000,32(13):1907-1913.

    [19]

    Zhou X,Zhang Y,Downing A.Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert,northwestern China.Soil Biology and Biochemistry,2012,47:67-77.

    [20]

    Craine J M,Ballantyne F,Peel M,Zambatis N,Morrow C,Stock W D.Grazing and landscape controls on nitrogen availability across 330 South African savanna sites.Austral Ecology,2009,34:731-740.

    [21] 李志,袁颖丹,胡耀文,孟文武,张学玲,郭晓敏,张文元,胡冬南,牛德奎.海拔及旅游干扰对武功山山地草甸土壤渗透性的影响.生态学报,2018,32(2):634-645.
    [22] 鲍士旦. 土壤农化分析.北京:中国农业出版社,2000.
    [23] 关松荫. 土壤酶及其研究法.北京:中国农业出版社,1986.
    [24]

    Allison S D,Jastrow J D.Activities of extracellular enzymes in physically isolated fractions of restored grassland soils.Soil Biology and Biochemistry,2006,38(11):3245-3256.

    [25]

    DeForest J L,Smemo K A,Burke D J,Elliott H L,Becker J C.Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests.Biogeochemistry,2012,109:189-202.

    [26] 王国兵,赵小龙,王明慧,阮宏华,徐长柏,徐亚明.苏北沿海土地利用变化对土壤易氧化碳含量的影响.应用生态学报,2013,24(4):921-926.
    [27] 刘振国,李镇清,Ivan Nijs,Jan Bogaert.糙隐子草种群在不同放牧强度下的小尺度空间格局.草业学报,2005,14(1):11-17.
    [28] 马晓霞,王莲莲,黎青慧,李花,张树兰,孙本华,杨学云.长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响.生态学报,2012,32(17):5502-5511.
    [29] 王向涛,张世虎,陈懂懂,谈嫣蓉,孙大帅,杜国祯.不同放牧强度下高寒草甸植被特征和土壤养分变化研究.草地学报,2010,18(4):510-516.
    [30] 曹丽华,刘合满,赵世伟.当雄退化草甸土壤有机碳分布特征及其与土壤主要养分的关系.中国农学通报,2011,27(24):69-73.
    [31] 焦婷,常根柱,周学辉,侯彦会,杨红善,苗小林,刘荣堂.温性荒漠化草原不同放牧强度下土壤酶与肥力的关系.草地学报,2009,17(5):581-587.
    [32]

    Mastrogianni A,Papatheodorou E M,Monokrousos N,Menkissoglu-Spiroudi U,Stamou G P.Reclamation of lignite mine areas with Triticum aestivum:The dynamics of soil functions and microbial communities.Applied Soil Ecology,2014,80:51-59.

    [33]

    Monokrousos N,Boutsis G,Diamantopoulos J D.Development of soil chemical and biological properties in the initial stages of post-mining deposition sites. Environmental Monitoring and Assessment,2014,186(12):9065-9074.

计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 0
文章相关
  • 收稿日期:  2017-11-13
  • 修回日期:  2018-03-15
  • 发布日期:  2018-07-19

目录

    /

    返回文章
    返回