欢迎访问 草业科学,今天是2025年4月12日 星期六!

AM真菌提高植物抗逆性的机制

张伟珍, 古丽君, 段廷玉

张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制[J]. 草业科学, 2018, 12(3): 491-507. DOI: 10.11829/j.issn.1001-0629.2017-0169
引用本文: 张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制[J]. 草业科学, 2018, 12(3): 491-507. DOI: 10.11829/j.issn.1001-0629.2017-0169
Wei-zhen Zhang, Li-jun Gu, Ting-yu Duan. Research progress on the mechanism of AM fungi for improving plant stress resistance[J]. Pratacultural Science, 2018, 12(3): 491-507. DOI: 10.11829/j.issn.1001-0629.2017-0169
Citation: Wei-zhen Zhang, Li-jun Gu, Ting-yu Duan. Research progress on the mechanism of AM fungi for improving plant stress resistance[J]. Pratacultural Science, 2018, 12(3): 491-507. DOI: 10.11829/j.issn.1001-0629.2017-0169

AM真菌提高植物抗逆性的机制

基金项目: 

中央高校基本科研业务费(2022016zr0003)

国家自然科学基金青年项目(31100368)

国家绿肥产业技术体系(CARS-22)

摘要: 丛枝菌根(arbuscular mycorrhizae,AM)真菌是自然界中最广泛的植物共生真菌,可以提高宿主对生物和非生物逆境的抗性。AM真菌能通过改善养分吸收、增加渗透调节物质的积累,提高抗氧化酶类活性、强化渗透调节作用并维持植物内源激素平衡,增加生长素的合成,调节碳氮代谢,刺激胁迫诱导基因表达,增强植物根系及菌丝本身对重金属元素的固持作用等提高植物对非生物逆境(如干旱、高低温、重金属、盐碱)的抗性;并能通过构建菌丝网络,形成对根部入侵病原真菌的机械屏障,增强抗病性相关酶活性,合成与抗病性相关的次生代谢产物,增强抗病、虫相关基因的表达,菌丝传递抗虫防御信号,能提高邻近植株的抗虫性,增强植物的抗病虫能力。本文归纳了近几年来国内外有关AM真菌影响植物抗逆性及其作用机理的研究进展,并对AM真菌在促进植物抗逆性方面的研究作了展望。

 

English

  • 紫花苜蓿(Medicago sativa)具有产量高、适口性好、营养价值高、环境适应能力强等优点[1],是我国种植面积最大的优质牧草之一[2]。黄土高原地区是我国农业和畜牧业生产的重要基地[3],该地区光照充足但水资源短缺,一定程度上限制了当地优质牧草的生长[4]。紫花苜蓿作为抗旱能力强的高耗水饲草作物[5],其大面积的种植会造成黄土高原地区深层土壤干燥化,最终导致紫花苜蓿草地退化,对农业的可持续发展造成不利影响[6-7]。如何在提高饲草作物产量的同时减少水分消耗成为干旱半干旱地区亟待解决的问题。

    大量学者在水分、光照对紫花苜蓿生长的影响以及水分利用等方面进行了研究。Thompson和Fick [8]发现土壤水分过多不利于紫花苜蓿根系的生长。李新乐等[9]发现紫花苜蓿生长早期对水分亏缺反应相对敏感,轻度干旱处理显著降低茎分枝数,从而降低地上生物量。陆姣云等[2]发现随着水分胁迫的减小,紫花苜蓿的株高表现出显著差异,呈现出逐渐递增的趋势;轻度水分胁迫有利于紫花苜蓿地上生物量以及水分利用效率的提高。Cao等[10]发现,通常水分亏缺会降低紫花苜蓿全生育期的耗水量。光合作用是牧草生长的基础,是牧草生产力构成的最主要因素,对牧草地上生物量起至关重要的作用。随着光照强度的降低,不同品种的紫花苜蓿株高呈现逐渐降低或先增高后降低的趋势,叶片数表现出显著下降的趋势[11],叶片光合速率降低,植物生物量下降[12]。马至良等[13]研究证明,随着光照强度逐渐降低,紫花苜蓿地上部分积累的生物量逐渐减少,光照强度显著影响了地上生物量的积累。

    基于此,本研究拟根据黄土高原半干旱区日照时间长、降水量少的气象特征,设置两种光照强度及两种水分水平,研究光照强度和水分供应对紫花苜蓿的生长动态、地上生物量和水分利用的变化规律,阐明光照强度和水分水平对紫花苜蓿的影响,以期为黄土高原半干旱环境下紫花苜蓿的种植模式以及栽培管理提供理论依据。

    本研究在兰州大学草地农业科技学院实验室控光植物培养架上进行。试验采用完全随机试验设计,设置高水(田间持水量的70%~100%)和低水(为田间持水量的50%~70%)两个供水水平;高光[总辐射接受量约为20.7 MJ·(m2·d)−1,相当于晴天的太阳辐射]和低光[总辐射接受量约为14.8 MJ·(m2·d)−1,相当于半阴天的太阳辐射]两个光照强度,共4个处理,即高水高光、高水低光、低水高光和低水低光。每个处理设置3个重复,共计12盆。其中,高水和低水处理每7 d通过称重法控制土壤水分含量;高光和低光处理分别通过模拟自然光补光灯给植株提供480和340 W·m−2光照强度的光源,所有处理每天光照14 h。供试土壤为兰州市榆中县农田耕层土,装入直径为24 cm、深度为25 cm的花盆内,土壤质地为沙壤土,田间持水量约为24% (体积含水量),根据土壤容重为1.30 g·cm−3装土,每桶约16 kg土壤。

    选用‘陇东苜蓿’为供试品种,每桶采用穴播种植20株,播种7 d后出苗,24 d后定苗,每盆选取10株长势均匀的幼苗,密度约为221 plant·m−2,并开始试验处理,播种90 d后苜蓿达到初花期并收获。

    叶片数、叶面积与株高:试验开始阶段,在每个处理组均选出一株长势良好且据代表性的植株并标记。于播种后第24日、第31日、第38日、第45日、第53日、第66日用尺子测量该植株所有叶片的叶长与叶宽并清点单株叶片数。叶面积计算公式[14]为:

    $$ A = K \cdot L \cdot W 。 $$ (1)

    式中:A为紫花苜蓿叶面积,单位为cm2K为校正系数;L为叶片的叶长,单位为cm;W为叶片的叶宽,单位为cm。校正系数K取0.736 6。

    地上生物量:将所有处理的紫花苜蓿于收获时齐地面刈割,测定其鲜重,再将植物鲜样于105 ℃下杀青30 min,65 ℃下烘干至恒重,称其地上生物量。

    根系生物量:地上生物量收获后,将根系与土分离洗净。先将土样装入直径为0.149 mm网筛中进行至少8 h的浸泡,待土块完全变软后通过水冲洗,用镊子进行根系的挑拣和整理。最后将整理好的根系放置在65 ℃的烘箱中烘干至恒重,获得根系生物量。

    根冠比:紫花苜蓿地下生物量干重与地上生物量干重之比即为根冠比[15]

    生育期耗水量( $E{T_a} $ ):通过水量平衡法计算[16]

    $$ E{T_a} = I - \Delta W 。 $$ (2)

    式中:I为灌溉水量(mm),Δ为生育期末土壤储水量与生育期初土壤储水量之差(mm)。

    水分利用效率:饲草作物的水分利用效率(water use efficiency, WUE, kg·m−3)为单位耗水生产地上生物量的效率[16]

    $$ WUE = DM/10E{T_a} 。 $$ (3)

    式中:DM为作物地上生物量(kg·m−2);ET为作物生育期耗水量(mm)。

    试验数据采用Excel汇总、整理和处理。采用SPSS 22.0对测得数据进行双因素方差分析(α = 0.05)。采用Origin软件作图。

    各处理下的紫花苜蓿叶片数在播种后38 d内均缓慢增长。播种后的38~53 d,高水低光、高水高光、低水低光处理下的紫花苜蓿叶片数大幅增长,在53 d分别是低水高光处理的2.4和2.6、2.3倍(图1)。在此阶段,高水处理下紫花苜蓿叶片数增长量较低水处理多,说明紫花苜蓿在快速生长时期叶片的生长发育受水分影响较大。收获时,高水低光处理下的紫花苜蓿叶片数最多,分别较高水高光、低水低光、低水高光处理增加3.8%、42.2%和379.7%。

    图  1  不同光照强度和水分水平下的紫花苜蓿叶片数
    Figure  1.  Changes in alfalfa leaf number under different light intensities and water levels

    各处理下的紫花苜蓿叶面积在播种后38 d内均缓慢增长,播种后的38~53 d,高水低光、高水高光、低水低光处理下的紫花苜蓿叶面积大幅增长(图2)。收获时高水低光处理下的紫花苜蓿叶面积最高,较高水高光、低水低光、低水高光处理分别增加116.1%、116.5%和2194.2%,表明高水低光条件最有利于紫花苜蓿叶面积的增加。

    图  2  不同光照强度和水分水平下的紫花苜蓿叶面积
    Figure  2.  Changes in alfalfa leaf area under different light intensities and water levels

    在两种光照强度处理下,高水处理的叶片数和叶面积均较低水处理多。高水高光的叶片数与叶面积较低水高光分别增加362.1%和961.7%,高水低光较低水低光分别增加42.2%和116.5%。这表明随着土壤水分含量的减少,单株叶片数和叶面积减少,降低了蒸腾表面积,减少了水分散失,且在高光条件下,此现象更加明显。在高水处理下,低光处理比高光处理叶片数仅增加3.8%,但叶面积增加了116.1%,这说明在水分充足的条件下,紫花苜蓿会以增加单片叶子的叶面积的形式来应对光照强度不足的情况,加强植物光合作用。在低水高光条件下,播种53 d后,紫花苜蓿出现叶片凋落以及死亡现象,叶片数以及叶面积降低。

    光照强度对紫花苜蓿地上生物量具有极显著影响(P < 0.001),高水低光处理的紫花苜蓿地上生物量较高水高光处理显著增加了32.6%,低水低光处理的紫花苜蓿地上生物量较低水高光处理显著增加了592.5%。水分梯度对紫花苜蓿地上生物量有极显著作用( P < 0.001),高水高光处理的紫花苜蓿地上生物量较低水高光处理增加779.1%,高水低光处理的紫花苜蓿地上生物量较低水低光处理增加68.4%。表明低光处理与高水处理更有利于紫花苜蓿的生长。光照强度与水分梯度的交互作用在地上生物量中达到了显著水平( P < 0.05)。高水低光处理的紫花苜蓿地上生物量最高,为15.97 g·plant −1,比低水高光处理显著增加1 065.9%。4个处理中,高水低光处理更有利于紫花苜蓿地上生物量的积累(图3)。

    图  3  不同光照强度和水分水平下的紫花苜蓿地上生物量
    不同小写字母表示不同处理间差异显著(P < 0.05)。相同光照强度或水分水平组间,“**”表示差异极显著(P < 0.001),“*”表示差异显著(P < 0.05)。下图同。
    Figure  3.  Aboveground biomass of alfalfa under different light intensities and water levels
    Different lowercase letters indicate significant differences among different treatments at the 0.05 level. “**” indicates significant differences among light intensity or water level at the 0.001 level, “*” indicates significant differences among light intensity or water level at the 0.05 level. This is applicable for the following figures as well.

    紫花苜蓿根系生物量受光强、水分和两者交互的显著影响(P < 0.05),且随土壤水分减少而降低,随光照强度的降低而增加。在两种水分处理下,低光处理的紫花苜蓿根系生物量较高光处理平均增加了70.3%,在两种光照处理下,高水处理的紫花苜蓿根系生物量较低水处理平均增加了80.9%。4个处理中,高水低光处理的根系生物量最高,为9.26 g·plant −1,较高水高光处理、低水低光处理、低水高光处理分别高6.5%、11.5%和471.8% (图4)。说明在光照强度较低、水分充足的条件下紫花苜蓿根系能够更好地生长。

    图  4  不同光照强度和水分水平下的紫花苜蓿根系生物量
    Figure  4.  Root biomass of alfalfa under different light intensities and water levels

    光照强度与水分梯度对紫花苜蓿根冠比有显著影响(P < 0.05)。高水高光处理的紫花苜蓿根冠比较高水低光处理增加了26.0%,低水高光处理的紫花苜蓿根冠比较低水低光处理增加了33.4%。低水高光处理下的紫花苜蓿根冠比较高水高光处理增加了61.0%,低水低光处理下的紫花苜蓿根冠比较高水低光处理增加了52.1%。表明在高水处理以及低光处理下,紫花苜蓿减少了对根部生物量的分配、增加了地上生物量。4个处理中,低水高光处理的紫花苜蓿根冠比最高,比高水低光显著高102.9%,表明高水低光处理最有利于植物对地上生物量的分配( 图5)。

    图  5  不同光照强度和水分水平下的紫花苜蓿根冠比
    NS表示光照强度和水分交互无显著影响。
    Figure  5.  Root to shoot ratio of alfalfa under different light intensities and water levels
    NS indicates no significant difference between light intensity and water levels.

    紫花苜蓿不同生长阶段平均日耗水量均呈先增加再降低的趋势,符合植物耗水先增后减的特点。日平均耗水量从高到低为高水高光处理、高水低光处理、低水低光处理、低水高光处理(表1)。

    表  1  不同光照和水分处理下紫花苜蓿不同生长阶段的耗水量
    Table  1.  Water consumption of alfalfa during different growth periods under different light intensities and water levels mm
    处理
    Treatment
    播种后
    0~29 d
    0~29 days
    after sowing
    播种后
    29~40 d
    29~40 days
    after sowing
    播种后
    40~50 d
    40~50 days
    after sowing
    播种后
    50~60 d
    50~60 days
    after sowing
    播种后
    60~70 d
    60~70 days
    after sowing
    播种后
    70~82 d
    70~82 days
    after sowing
    高水低光
    High water low light
    16.14 ± 0.48c 43.18 ± 3.76b 51.80 ± 2.00b 67.27 ± 4.97b 74.64 ± 3.33b 63.22 ± 1.08b
    高水高光
    High water high light
    22.03 ± 0.38a 59.09 ± 4.12a 69.78 ± 3.71a 82.45 ± 1.74a 91.81 ± 2.05a 76.93 ± 0.79a
    低水高光
    Low water high light
    16.06 ± 0.55c 32.64 ± 0.91c 36.77 ± 3.18c 46.94 ± 0.73c 47.67 ± 0.10c 47.23 ± 0.28c
    低水低光
    Low water low light
    20.78 ± 0.18b 30.36 ± 2.01c 41.12 ± 5.20c 39.05 ± 8.36c 38.24 ± 7.59c 28.74 ± 0.36d
     同列不同小写字母表示不同处理间差异显著(P < 0.05)。 
     Different lowercase letters within the same row indicate significant difference between different treatments at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    水分处理对紫花苜蓿耗水量有显著影响(P < 0.05),在两种光照处理下,高水处理下的紫花苜蓿耗水量比低水处理平均增加68.8%,光照处理对紫花苜蓿耗水量有极显著影响( P < 0.001),在两种水分处理下,高光处理下的紫花苜蓿耗水量比低光处理平均多10.5% ( 图6)。

    图  6  不同光照和水分处理下的紫花苜蓿全生育期耗水量
    Figure  6.  Water consumption during the whole growth period of alfalfa under different light intensities and water levels

    水分处理对紫花苜蓿水分利用有极显著影响(P < 0.001)。两种光照强度下,高水处理下的紫花苜蓿水分利用效率比低水处理平均增加了65.5%。光照处理对紫花苜蓿水分利用效率有极显著影响( P < 0.001),在两种水分处理下,高光处理下的紫花苜蓿水分利用效率较低光处理平均减少了60.0%。光照处理与水分处理的交互作用对紫花苜蓿的水分利用效率有显著影响( P < 0.05)。高水低光处理下的紫花苜蓿水分利用效率最高,分别比低水低光处理、高水高光处理、低水高光处理显著增加21.2%、68.8%和629.8% ( 图7)。

    图  7  不同光照和水分处理下紫花苜蓿的水分利用效率
    Figure  7.  Water-use efficiency of alfalfa under different light intensities and water levels

    光照与水分是影响紫花苜蓿生长发育的重要环境因子,其对不同光与水环境的响应策略具有很大差异。叶片是植物进行光合作用的主要器官和蒸腾作用的重要部位[17]。研究表明,植物在弱光环境下相对生长速率放缓,通过改变其外部形态、增加对茎和叶的分配、增加叶面积比来适应弱光环境[12, 18]。在任何一个生育期,紫花苜蓿遭受干旱胁迫时,叶面积均明显降低[19]。本研究中,在相同水分处理下,低光处理的紫花苜蓿叶面积均显著高于高光处理;在相同光照强度处理下,高水处理的紫花苜蓿叶面积均显著高于低水处理,这与之前的研究结果相同。本研究中,低水高光处理的叶片数与叶面积于播种后53~66 d降低是因为该处理下紫花苜蓿的正常生理活动受到严重影响,植株出现枯萎甚至死亡的状况。在4个处理中,高水低光处理下的紫花苜蓿叶片数与叶面积均最高,其次是高水高光、低水低光、低水高光处理,表明高水低光处理最适合紫花苜蓿叶片的生长。

    水分短缺会导致牧草的生长受到抑制,对牧草生产造成严重损失。光照强度相同的情况下,高水处理下的紫花苜蓿地上生物量均显著高于低水处理,这主要是因为土壤水分较低时植物光合累积减少,且干旱条件更有利于光合产物向根系的分配,使地上生物量的积累减小;而土壤水分较高时更有利于光合作用和地上部的发育[20]。覃凤飞等[12]研究证明紫花苜蓿的根冠比随土壤含水量的减小而增加,植株将更多的同化物分配到根系生长以汲取水分,从而提高了其抗旱性。王国良等[21]研究表明,随着光照强度逐渐减弱,紫花苜蓿地上部分积累的生物量逐渐减少,光照强度显著影响了地上生物量的积累。本研究中,在相同水分处理下,低光处理的紫花苜蓿的地上生物量均显著高于高光处理,根冠比均低于高光处理。说明植物在低光条件下可以通过改变其外部形态、减少对根系生物量的分配增加对光能的捕获和利用以满足其生长发育的需求[22]

    水分利用效率能够一定程度地反映植物对水分处理的响应[23]。水分利用效率受许多因素的影响,其中水分和光照强度是影响紫花苜蓿水分利用效率的重要因素[24-25],随着水分亏缺程度的增加水分利用效率随之降低[5]。刘国利[23]发现紫花苜蓿水分利用效率与水分亏缺的关系,表现出适当的水分亏缺能够提高水分利用效率。龙明秀等[25]发现,光合有效辐射与紫花苜蓿水分利用效率呈极显著负相关。本研究中,在同一光照强度条件下,低水处理的紫花苜蓿水分利用效率均高于高水处理,同一水分条件下,低光处理地紫花苜蓿水分利用效率均高于高光处理,与前人研究相符。

    高水低光处理是本研究4种管理模式下紫花苜蓿的叶片数、叶面积最大,地上生物量最高,根冠比最低,水分利用效率最高的管理模式。在相同水分处理下,低光处理的紫花苜蓿平均较高光处理耗水量低,水分利用效率高,因此,在干旱地区可通过对紫花苜蓿适当遮光、林草复合种植与玉米苜蓿间作结合等方式优化苜蓿的光照环境,提高紫花苜蓿的水分利用效率,减少苜蓿对旱地土壤水分的过度消耗[26-28],以改善旱作农区的生态环境、提高农业生产效率。

  • [1]

    Smith S E,Read D J.Mycorrhizal Symbiosis.New York:Academic Press,2010.

    [1]

    Guo Y E,Li F,Li Y D,Duan T Y.Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants.Pratacultural Science,2016,33(12):2379-2390.(in Chinese)

    [2]

    Qi G H,Yang W L,Zhang L P,Li X T,Gao S N.Effects of arbuscular mycorrhizal fungi on storage nutrient and cold resistance of Diospyros lotus L.Journal of Agricultural University of Hebei,2005,28(1):62-64.(in Chinese)

    [2]

    Sawers R J H,Svane S F,Quan C,Grønlund M,Wozniak B,Gebreselassie M N,González-Muñoz E,Chávez Montes R A,Baxter I,Goudet J,Jakobsen I,Paszkowski U.Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.New Phytologist,2017,214(2):632-643.

    [3] 郭艳娥,李芳,李应德,段廷玉.AM真菌促进植物吸收利用磷元素的机制.草业科学,2016,33(12):2379-2390.
    [3]

    Wang X B.Research progress and prospects of arbuscular mycorrhizae(AM).Hangzhou Agricultural Technology,2007(2):19-21.(in Chinese)

    [4]

    Wang L,Jia W Q,Ma F,Li S Y,Zhang S J.Mycorrhizal technology application and prospects in the field of environmental remediation.Journal of Ecological Environment,2010,19(2):487-493.(in Chinese)

    [4]

    Zhang W,Chen X X,Liu Y M,Liu D Y,Chen X P,Zou C Q.Zinc uptake by roots and accumulation in maize plants as affected by phosphorus application and arbuscular mycorrhizal colonization.Plant and Soil,2017,413(1/2):59-71.

    [5]

    Tian H,Yuan X L, Duan J F,Li W H,Zhai B N,Gao Y J.Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.PLoS One,2017,12(2):e0172154.

    [5]

    Li F,Gao P,Duan T Y.Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress.Journal of Grassland,2016,24(3):491-500.(in Chinese)

    [6]

    Zhang H Q,Wei S Z,Hu W T,Xiao L M,Tang M.Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum.Frontiers in Plant Science,2017,8:440.

    [6]

    Ren A T,Lu W H,Ma C H,Yang J J.Effect of arbuscular mycorrhiza fungi on drought tolerance of Medicago sativa L.Xinjiang Agricultural Science,2014,51(9):1677-1685.(in Chinese)

    [7]

    Zhang H H.Micro-ecosystem associated with the rhizosphere of Lycium barbarum from the loess plateau and the mechanism of symbiotic fungal inoculation on the host plant growth and drought resistance.PhD Thesis.Yangling:North West Agriculture and Forestry University,2011.(in Chinese)

    [7]

    Leyval C,Turnau K,Haselwandter K.Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological,ecological and applied aspects.Mycorrhiza,1997,7(3):139-153.

    [8]

    Augé R M.Water relations,drought and vesicular-arbuscular mycorrhizal symbiosis.Mycorrhiza,2001,11(1):3-42.

    [8]

    He X L,Gao L,Zhao L L.Effects of AM fungi on the growth and drought resistance of Seriphidium minchünense under water stress.Ecology,2011,31(4):1029-1037.(in Chinese)

    [9] 齐国辉,杨文利,张林平,李宪涛,高素娜.丛枝菌根真菌对君迁子贮藏营养及抗冻性的影响.河北农业大学学报,2005,28(1):62-64.
    [9]

    Zhao P J,An F,Tang M.Effects of arbuscular mycorrhiza fungi on drought resistance of Forsythia suspensa.Journal of Northwest Botany,2007,27(2):396-399.(in Chinese)

    [10]

    Chen J,Xie J,Tang M.Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.Journal of Beijing Forestry University,2014,36(6):142-148.(in Chinese)

    [10]

    Liu Z,Li Y,Wang J,He X,Tian C.Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress:A cry for help from the host.The Journal of Agricultural Science,2015,153(4):602-614.

    [11]

    Garg N,Pandey R.Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Millsp.) genotypes.Mycorrhiza,2015,25(3):165-180.

    [11]

    Huang Z.Studies on the physiological effect and mechanisms of arbuscular mycorrhizal fungi (AMF) in drought resistance of Melon.PhD Thesis.Yangling:North West Agriculture and Forestry University,2010.(in Chinese)

    [12]

    Zhang H.The effects of AM fungi on growth,drought resistance and total flavonoids content of Caragana microphylla Lam. and Amygdalus mongolica Maxim.Master Thesis.Hohhot:University of Inner Mongolia,2013.(in Chinese)

    [12]

    Galli U,Schüepp H,Brunold C.Heavy metal binding by mycorrhizal fungi.Physiologia Plantarum,1994,92(2):364-368.

    [13]

    Morandi D,Gollotte A,Camporota P.Influence of an arbuscular mycorrhizal fungus on the interaction of a binucleate Rhizoctonia species with Myc+ and Myc- pea roots.Mycorrhiza,2002,12(2):97-102.

    [13]

    Pan C W,Liu X F,Qu P F,Wu Q S.Arbuscular mycorrhizal fungi increased antioxidant capacity of Poncirus trifoliata roots under temperature stress.Journal of Yangtze University(Natural Science Edition),2011,8(9):245-247.(in Chinese)

    [14]

    Gange A C,Smith A K.Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects.Ecological Entomology,2005,30(5):600-606.

    [14]

    Chen X Y,Song F B,Zhu X C,Liu S Q,Bai H Z.Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics in maize plants under high temperature stress.Agriculture in North China,2013,28(2):108-113.(in Chinese)

    [15]

    Chen X Y.Effects of arbuscular mycorrhizal fungi on carbon and nitrogen metabolism of maize under low temperature stress.PhD Thesis.Changchun:Graduate School of Chinese Academy of Sciences(Northeast Institute of Geography and Agricultural Ecology),2014.(in Chinese)

    [15]

    Van der Heijden M G A,Boller T W,Sanders R.Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure.Ecology,1998,79(6):2082-2091.

    [16]

    Han B,He C X,Yan Y,Guo S R,Yu X C.Effects of arbuscular mycorrhiza fungi on seedlings growth and antioxidant systems of leaves in cucumber under low temperature stress.Chinese Academy of Agricultural Sciences,2011,44(8):1646-1653.(in Chinese)

    [16]

    Ehrenfeld J G,Ravit B,Elgersma K.Feedback in the plant-soil system.Annual Review of Environment and Resources,2005,30(1):75-115.

    [17]

    Li S L,Zhang Y G,Chen D M,Ma J,Guo S X.Effect of arbuscular mycorrhizal fungi on physiology and biochemistry of tree peony under high temperature stress.Chinese Agricultural Science Bulletin,2009,25(7):154-157.(in Chinese)

    [17]

    Lin G,McCormack M L,Ma C,Guo D.Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.New Phytologist,2017,213(3):1440-1451.

    [18] 王贤波.丛枝菌根(AM)的研究进展及展望.杭州农业科技,2007(2):19-21.
    [18]

    Kong P P.Effects of arbuscular mycorrhizal fungi on growth and temperature tolerance of Rosa nybrid and Chrysanthemum morifolium.Master Thesis.Beijing:Chinese Academy of Agricultural Sciences,2011.(in Chinese)

    [19]

    Yang J S.Development history and prospect of research on saline soil in China.Journal of Soil,2008,45(5):837-845.(in Chinese)

    [19]

    Gui H,Hyde K,Xu J C,Mortimer P.Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development.Scientific Reports,2017,7(7):42184.

    [20]

    Wang H X.Arbuscular mycorrhizal fungi’s role in the phytoremediation of soils contaminated by heavy metals.Soils and Fertilizers in China,2010(5):1-5.(in Chinese)

    [20] 王立,贾文奇,马放,李世阳,张淑娟.菌根技术在环境修复领域中的应用及展望.生态环境学报,2010,19(2):487-493.
    [21]

    Zhang T,Sun Y,Shi Z Y,Feng G.Arbuscular mycorrhizal fungi can accelerate the restoration of degraded spring grassland in Central Asia.Journal of Rangeland Ecology and Management,2012,65(4):426-432.

    [21]

    Zhang R P.Adaptation to Pi deficiency and effects to mycorrhiza of the rice plasma membrane H+-ATPase genes.PhD Thesis.Nanjing:Nanjing Agricultural University,2011.(in Chinese)

    [22]

    Boyer J S.Plant productivity and environment.Science,1982,218:443-448.

    [22]

    Liu S Y.The research on response to cadmium stress and transport process of rice under infection of arbuscular mycorrhizal fungi.Master Thesis.Harbin:Harbin Institute of Technology,2015.(in Chinese)

    [23]

    Ciais P H,Reichstein M,Viovy N,Granier A,Ogée J,Allard V,Aubinet M,Buchmann N,Bernhofer C,Carrara A,Chevallier F,de Noblet N,Friend A D,Friedllingstein P,Grünwald T,Heinesch B,Keronen P,Knohl A,Krinner G,Loustau D,Manca G,Matteucci G,Miglietta F,Ourcival J M,Papale D,Pilegaard K,Rambal S,Seufert G,Soussana J F,Sanz M J,Schulze E D,Vesala T,Valentini R.Europe-wide reduction in primary productivity caused by the heat and drought in 2003.Nature,2005,437:529-533.

    [23]

    Yang H X,Liu R J,Guo S X.Effects of arbuscular mycorrhizal fungi Glomus mosseae on growth characteristics of Festuca arundinacea under salt stress.Acta Prataculturae Sinica,2014,23(4):195-203.(in Chinese)

    [24]

    Li X,Peng X W,Wu S L,Li Z R,Feng H M,Jiang Z P.Effect of arbuscular mycorrhizae on growth,heavy metal uptake and accumulation of Zenia insignis chun seedlings.Environmental Science,2014,35(8):3142-3148.(in Chinese)

    [24]

    Qian Y B,Jiang J,Wu Z N.Soil heterogeneity and its impact on ecological distribution of plant community in the aiby lake area.Arid Land Geography,2003,26(3):217-222.

    [25]

    Huang J,Ling W T,Sun Y D,Liu J.Impacts of arbuscular mycorrhizal fungi inoculation on the uptake of cadmium and zinc by alfalfa in contaminated soil.Journal of Agro-environmental Science,2012,31(1):99-105.(in Chinese)

    [25] 李芳,高萍,段廷玉.AM菌根真菌对非生物逆境的响应及其机制.草地学报,2016,24(3):491-500.
    [26]

    Zhou Q N,Yang L F,Wang Z H.Effect of arsenic stress on protein expression profiles from maize leaves of abuscular mycorrhizal fungi (AMF) inoculation.Southwest Journal of Agriculture Science,2014,27(6):2370-2373.(in Chinese)

    [26] 任爱天,鲁为华,马春晖,杨洁晶.接种AM真菌对紫花苜蓿抗旱性的影响.新疆农业科学,2014,51(9):1677-1685.
    [27]

    Lin S S,Sun X W,Wang X J,Li Y Y,Luo Q Y,Sun L,Jin L.Mechanisms of AM fungi to increase physiological tolerance to heavy metal of host plant.Pratacultural Science,2013,30(3):365-374.(in Chinese)

    [27] 张海涵. 黄土高原枸杞根际微生态特征及其共生真菌调控寄主生长与耐旱响应机制.杨凌:西北农林科技大学博士学位论文,2011.
    [28] 贺学礼,高露,赵丽莉.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响.生态学报,2011,31(4):1029-1037.
    [28]

    Nan Z B,Li C J,Bai Y S.Grass Plant Diseases and Their Control Countermeasures in China.Beijing:China Ocean Press,2003.(in Chinese)

    [29]

    Zhang F,Duan T Y,Yan F Y,Li F.Advances in the interactions of arbuscular mycorrhizal fungi and rhizosphere microorganism.Pratacultural Science,2014,31(9):1673-1685.(in Chinese)

    [29] 赵平娟,安锋,唐明.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报,2007,27(2):396-399.
    [30]

    Wang C X.Studies on effects of AMF on growth and resistance of cucumber seedlings to wilt disease under protected conditions.PhD Thesis.Beijing:China Agricultural University,2005.(in Chinese)

    [30]

    Zézé A,Brou Y C,Meddich A,Marty F.Molecular identification of MIP genes expressed in the roots of an arbuscular mycorrhizal Trifolium alexandrium L. under water stress.African Journal of Agricultural Research,2008,3(1):78-83.

    [31]

    Lin M.Effects of AM fungi on resistance to Fusarium wilt in watermelon (Citrullus lanatus) and related mechanism.PhD Thesis.Beijing:China Agricultural University,2005.(in Chinese)

    [31]

    Aroca R,del Mar Alguacil M,Vernieri P,Ruiz-Lozano J M.Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens).Microbial Ecology,2008,56(4):704-719.

    [32]

    Ruiz-Lozano J M,Porcel R,Aroca R.Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of droughtinduced plant genes?New Phytologist,2006,171(4):693-698.

    [32]

    Zhu H H,Yao Q,Yang S Z.Interaction between AM fungus and antagonistic bacterium and its effect on tomato root phenolic compounds.Journal of South China Agricultural University,2003,24(3):20-23.(in Chinese)

    [33]

    Sheng P P,Wang B,Yuan X X,Wang X K,Liu R J.Physiological effect of signal substances in tomato plants induced by arbuscular mycorrhizal fungi.Plant Pathology Journal,2012,42(3):323-327.(in Chinese)

    [33] 陈婕,谢靖,唐明.水分胁迫下丛枝菌根真菌对紫穗槐生长和抗旱性的影响.北京林业大学报,2014,36(6):142-148.
    [34] 黄志. 丛枝菌根真菌对甜瓜抗旱性的生理效应及分子机制的研究.杨凌:西北农林科技大学博士学位论文,2010.
    [34]

    Li H Y,Liu R J,Shu H R.A preliminary report on interactions between arbuscular mycorrhizal fungi and soybean cyst nematode.Plant Pathology Journal,2002,32(4):356-360.(in Chinese)

    [35]

    Ruiz-Lozano J M,del Mar Alguacil M,Bárzana G,Vernieri P,Aroca R.Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins.Plant Molecular Biology,2009,70(5):565-579.

    [35]

    Chen S X,Jiang Y H,Liu H J,Chen Z H.Interaction between AM fungi and root-knot nematodes cucumber growth and the effect for physiological characteristics.Journal of Plant Protection,2012,39(3):253-259.(in Chinese)

    [36] 张华. AM真菌对小叶锦鸡儿和蒙古扁桃生长、抗旱性及总黄酮含量的影响.呼和浩特:内蒙古大学硕士学位论文,2013.
    [36]

    Liu Y H,Zhong M Y,Wu R X,Wei X T,Pan D,Shao X X.Study of the inductive effect of arbuscular mycorrhizal fungi on Elymus nutans pest-resistant information.Journal of Grassland,2016,24(3):604-609.(in Chinese)

    [37]

    Gong M Q,Chen Y L,Zhong C L.Research and Applications of Mycorrhizae.Beijing:China Forestry Publishing House,1997.(in Chinese)

    [37]

    Goicoechea N,Merino S,Sánchez-Díaz M.Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought.Journal of Plant Physiology,2005,162(1):27-35.

    [38]

    Subramanian K S,Santhanakrishnan P,Balasubramanian P.Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress.Scientia Horticulturae,2006,107(3):245-253.

    [39]

    Qin X,Zeevaart J A D.The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean.Proceedings of the National Academy of Sciences,1999,96(26):15354-15361.

    [40]

    Rillig M C,Wright S F,Eviner V T.The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:Comparing effects of five plant species.Plant and Soil,2002,238(2):325-333.

    [41]

    Jiang W,Gou G,Ding Y.Influences of arbuscular mycorrhizal fungi on growth and mineral element absorption of chenglu hybrid bamboo seedlings.Pakistan Journal of Botany,2013,45(1):303-310.

    [42] 潘传威,刘小芳,屈鹏飞,吴强盛.丛枝菌根真菌提高温度胁迫下枳根系抗氧化能力.长江大学学报(自然科学版),2011,8(9):245-247.
    [43] 陈笑莹,宋凤斌,朱先灿,刘胜群,柏会子.高温胁迫下丛枝菌根真菌对玉米光合特性的影响.华北农学报,2013,28(2):108-113.
    [44]

    Zhu X C,Song F B,Liu S Q,Liu T D.Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress.Plant and Soil,2011,346(1/2):189-199.

    [45] 陈笑莹. 低温胁迫下丛枝菌根真菌对玉米碳氮代谢的影响.长春:中国科学院研究生院(东北地理与农业生态研究所)博士学位论文,2014.
    [46]

    Zhu X C,Song F B,Liu F L,Liu S Q,Tian C J.Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress.Crop and Pasture Science,2015,66(1):62-70.

    [47] 韩冰,贺超兴,闫妍,郭世荣,于贤昌.AMF对低温胁迫下黄瓜幼苗生长和叶片氧化系统的影响.中国农业科学,2011,44(8):1646-1653.
    [48]

    Liu A,Chen S,Chang R,Liu D,Chen H,Ahammed G J,Lin X,He C.Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity.Journal of Plant Research,2014,127(6):775-785.

    [49]

    Chen S,Jin W,Liu A,Zhang S,Liu D,Wang F,Lin X,He C.Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress.Scientia Horticulturae,2013,160:222-229.

    [50] 李思龙,张玉刚,陈丹明,马健,郭绍霞.丛枝菌根对高温胁迫下牡丹生理生化的影响.中国农学通报,2009,25(7):154-157.
    [51] 孔佩佩. 丛枝菌根真菌对切花月季和切花菊生长及温度胁迫耐受性的影响.北京:中国农业科学院硕士学位论文,2011.
    [52] 杨劲松. 中国盐渍土研究的发展历程与展望.土壤学报,2008,45(5):837-845.
    [53]

    Porcel R,Aroca R,Ruiz-Lozano J.Salinity stress alleviation using arbuscular mycorrhizal fungi:A review.Agronomy for Sustainable Development,2012,32(1):181-200.

    [54] 王红新. 丛枝菌根真菌在植物修复重金属污染土壤中的作用.中国土壤与肥料,2010(5):1-5.
    [55]

    Ouziad F,Wilde P,Schmelzer E,Hildebrandt U,Bothe H.Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress.Environmental and Experimental Botany,2006,57(1/2):177-186.

    [56] 张瑞萍. 水稻质膜质子泵基因对低磷胁迫的响应和丛枝菌根的影响.南京:南京农业大学博士学位论文,2011.
    [57] 刘双洋. 丛枝菌根真菌对水稻镉胁迫响应及其转运过程的影响研究.哈尔滨:哈尔滨工业大学硕士学位论文,2015.
    [58] 杨海霞,刘润进,郭绍霞.AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响.草业学报,2014,23(4):195-203.
    [59] 李霞,彭霞薇,伍松林,李志茹,冯红梅,江泽平.丛枝菌根对翅荚木生长及吸收累积重金属的影响.环境科学,2014,35(8):3142-3148.
    [60] 黄晶,凌婉婷,孙艳娣,刘娟.丛枝菌根真菌对紫花苜蓿吸收土壤中镉和锌的影响.农业环境科学学报,2012,31(1):99-105.
    [61]

    Moradi A,Younesi O.Influence of arbuscular mycorrhiza on membrane lipid peroxidation and soluble sugar content of soybean under salt stress.Agriculturae Conspectus Scientificus,2015,79(4):227-232.

    [62]

    He Z Q,Huang Z.Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress.Journal of Microbiology, 2013,51(1):100-104.

    [63] 周权男,杨礼富,王真辉.砷胁迫对丛枝菌根接种玉米叶片蛋白表达谱的影响.西南农业学报,2014,27(6):2370-2373.
    [64]

    Lin J X,Wang Y N,Sun S N,Mu C S,Yan X F.Effects of arbuscular mycorrhizal fungi on the growth,photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition.Science of the Total Environment,2017,576:234-241.

    [65]

    Evelin H,Kapoor R,Giri B.Arbuscular mycorrhizal fungi in alleviation of salt stress:A review.Annals of Botany,2009, 104(7):1263-1280.

    [66] 林双双,孙向伟,王晓娟,李媛媛,罗巧玉,孙莉,金樑.AM真菌提高寄主植物耐受重金属胁迫的生理机制.草业科学,2013,30(3):365-374.
    [67] 南志标,李春杰,白原生.我国草类作物病害及其防治对策.北京:海洋出版社,2003.
    [68] 张峰,段廷玉,闫飞扬,李芳.丛枝菌根真菌与根际微生物的互作.草业科学,2014,31(9):1673-1685.
    [69] 王倡宪. AM真菌对设施黄瓜幼苗生长及抗枯萎病能力研究.北京:中国农业大学博士学位论文,2005.
    [70] 李敏. AM真菌对西瓜抗枯萎病的效应及其机制.北京:中国农业大学博士学位论文,2005.
    [71]

    Safir G R.The Influence of vesicular-arbuscular mycorrhiza on the resistance on onion to Pyrenochaeta terrestris.Master Thesis.Urbana:University of Illinois,1968.

    [72]

    Maya M A,Matsubara Y.Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen.Crop Protection,2013,47:41-48.

    [73]

    Martínez-Medina A,Roldán A,Pascual J A.Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops:Growth response and Fusarium wilt biocontrol.Applied Soil Ecology,2011,47(2):98-105.

    [74]

    Kloppholz S,Kuhn H,Requena N.A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.Current Biology,2011,21(14):1204-1209.

    [75] 朱红惠,姚青,羊宋贞.AM真菌与拮抗细菌的互作及对番茄根系酚类物质的影响.华南农业大学学报,2003,24(3):20-23.
    [76] 盛萍萍,王彬,苑学霞,王小坤,刘润进.AM真菌诱导的番茄信号物质及其对根结线虫的抑制效应.植物病理学报,2012,42(3):323-327.
    [77] 李海燕,刘润进,束怀瑞.丛枝菌根真菌与大豆胞囊线虫相互作用研究初报.植物病理学报,2002,32(4):356-360.
    [78] 陈书霞,姜永华,刘宏久,程智慧.AM真菌和根结线虫互作对黄瓜生长及生理特征的影响.植物保护学报,2012,39(3):253-259.
    [79]

    Banuelos J,Trejo D,Alarcon A,Lara L,Moreira C,Cruz S.The reduction in proline buildup in mycorrhizal plants affected by nematodes.Journal of Soil Science and Plant Nutrition,2012,12(2):263-270.

    [80]

    Merrild M P,Ambus P,Rosendahl S,Jakobsen L.Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants.New Phytologist,2013,200(1):229-240.

    [81]

    Hardham A R,Mitchell H J.Use of molecular cytology to study the structure and biology of phytopathogenic and mycorrhizal fungi.Fungal Genetics and Biology,1998,24(1):252-284.

    [82]

    Ortu G,Balestrini R,Pereira P A,Becker J D,Küster H,Bonfante P.Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions.Molecular Plant,2012,5(4):951-954.

    [83]

    Fiorilli V,Catoni M,Francia D,Cardinale F,Lanfranco L.The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea.Journal of Plant Pathology,2011,93(1):237-242.

    [84]

    Abbott L K,Robson A D.The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation.Crop and Pasture Science,1982,33(2):389-408.

    [85]

    Thompson J P,Wildermuth G B.Colonization of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and a negative correlation with root infection by Bipolaris sorokiniana.Canadian Journal of Botany,1989,67(3):687-693.

    [86]

    Pozo M J,Cordier C,Dumas-Gaudot E,Gianinazzi S,Barea J M,Azcon-Aguilar C.Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants.Journal of Experimental Botany,2002,53:525-534.

    [87]

    Cameron D D,Neal A L,van Wees S C M,Ton J.Mycorrhiza-induced resistance:more than the sum of its parts?Trends in Plant Science,2013,18(10):539-545.

    [88]

    Pozo M J,Azcon-Aguilar C.Unraveling mycorrhiza-induced resistance.Current Opinion in Plant Biology,2007,10(4):393-398.

    [89]

    Ruiz-Lozano J M,Roussel H,Gianinazzi S,Gianinazzi-Pearson V.Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes.Molecular Plant-Microbe Interactions,1999,12(11):976-984.

    [90]

    Pozo M J,Azcón-Aguilar C,Dumas-Gaudot E,Barea J M.β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or phytophthora parasitica and their possible involvement in bioprotection.Plant Science,1999,141(2):149-157.

    [91]

    Gao L L,Smith F A,Smith S E.The rmc locus does not affect plant interactions or defence-related gene expression when tomato (Solanum lycopersicum) is infected with the root fungal parasite,Rhizoctonia.Functional Plant Biology,2006,33(3):289-296.

    [92]

    Gao L L,Knogge W,Delp G,Smith F A,Smith S E.Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato.Molecular Plant-Microbe Interactions,2004,17(10):1103-1113.

    [93]

    Vannette R L,Rasmann S.Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions:A phylogenetic study.Functional Ecology,2012,26(5):1033-1042.

    [94] 刘月华,钟梦莹,武瑞鑫,位晓婷,潘多,邵新庆.AM真菌介导垂穗披碱草抗虫作用研究.草地学报,2016,24(3):604-609.
    [95]

    Gange A C,West H M.Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L.New Phytologist,1994,128(1):79-87.

    [96]

    Barber N A.Arbuscular mycorrhizal fungi are necessary for the induced response to herbivores by Cucumis sativus. Journal of Plant Ecology,2013,6(2):171-176.

    [97]

    Xie L J,Song Y Y,Zeng R S,Wang R L,Wei X C,Ye M,Hu L,Zhang H.Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks.Chinese Journal of Applied Ecology,2012,23(5):1145-1152.

    [98]

    Hempel S,Stein C,Unsicker S,Renker C,Auge H,Weisser W,Buscot F.Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant-herbivore-parasitoid system.Oecologia,2009,160(2):267-277.

    [99]

    Moon D C,Barnouti J,Younginger B.Context-dependent effects of mycorrhizae on herbivore density and parasitism in a tritrophic coastal study system.Ecological Entomology,2013,38(1):31-39.

    [100]

    Nishida T,Izumi N,Katayama N,Ohgushi T.Short-term response of arbuscular mycorrhizal association to spider mite herbivory.Population Ecology,2009,51(2):329-334.

    [101]

    Cosme M,Stout M J,Wurst S.Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus).Mycorrhiza,2011,21(7):651.

    [102]

    Song Y Y,Zeng R S,Xu J F,Li J,Shen X,Yihdego W G.Interplant communication of tomato plants through underground common mycorrhizal networks.PLoS One,2010,5(10):e13324.

    [103] 弓明钦,陈应龙,仲崇禄.菌根研究及应用.北京:中国林业出版社,1997.
    [104]

    Zhao P J,An F,Ding M M.Advances in the researches of the methanism of disease resistance promotion of mycorrhiza.Journal of Northwest Forestry University,2004,19(1):93-97.

    [105]

    Tang M,Chen H,Shang H S H.Effects of arbuscular mycorrhizal fungi (AMF) on Hippophae rhamnoides drought resistance.Scientia Silvae Sinicae,1999,35(3):48-52.

  • 期刊类型引用(2)

    1. 李想. 朱日和降水天气统计分析及对牧草生长的影响与对策. 南方农机. 2024(10): 95-98 . 百度学术
    2. 乌日古木拉,赵巴音那木拉,兰天,叶贺,裴志福,张俊民,胡有林,白雪原,红梅. 水肥一体化技术促进黄芪减氮增效及养分需求规律研究. 中国土壤与肥料. 2024(10): 161-171 . 百度学术

    其他类型引用(3)

计量
  • PDF下载量: 
  • 文章访问数: 
  • HTML全文浏览量: 
  • 被引次数: 5
文章相关
  • 收稿日期:  2017-04-05
  • 发布日期:  2018-03-19

目录

/

返回文章
返回