AM真菌促进植物吸收利用磷元素的机制
郭艳娥, 李芳, 李应德, 段廷玉
草地农业生态系统国家重点实验室 兰州大学草地农业科技学院,甘肃 兰州 730020
段廷玉(1976-),男,甘肃靖远人,副教授,博士,研究方向为菌根生态学。E-mail:duanty@lzu.edu.cn

第一作者:郭艳娥(1991-),女,甘肃会宁人,在读硕士生,研究方向为植物病理学。E-mail:guoye15@lzu.edu.cn

摘要

磷是植物生长发育的必需营养元素之一,是植物代谢过程不可或缺的物质。我国耕地土壤中有1/3~1/2的土壤缺磷,极大地限制了作物的生长。由丛枝菌根(arbuscular mycorrhizal,AM)真菌与植物形成的菌根共生体广泛存在于自然界中,可极大地促进寄主植物对磷元素的吸收。本文从形态特征、生理生化和分子生物学方面系统总结了丛枝菌根真菌促进磷元素吸收和利用的研究进展。AM真菌可与根际土壤和根皮层细胞形成密集的菌丝网,扩大植物根系吸收面积,缩短养分运输距离;分泌磷酸酶、有机酸和质子,改变根系周围土壤理化性质,解离难溶性磷酸盐,以及磷转运蛋白基因的特异性表达等。

关键词: 菌根; 形态特征; 生理生化反应; 磷酸转运蛋白
中图分类号:S718.83 文献标志码:A 文章编号:1001-0629(2016)12-2379-12 doi: 10.11829/j.issn.1001-0629.2015-0747
Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants
Guo Yan-e, Li Fang, Li Ying-de, Duan Ting-yu
State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Corresponding author: Duan Ting-yu E-mail:duanty@lzu.edu.cn
Abstract

Phosphorus is one of the most important nutrients for plant growth and development, and it is also indispensable for plant metabolism. Deficiency of P greatly limits crop growth in one-third to one-half of cultivated land in China. Symbiotic association between plants and arbuscular mycorrhizal fungi (AMF) is widespread, and is of particular importance to improving plant P uptake efficiency. This paper summarizes progress in the elucidation of the mechanisms of mycorrhizal fungi in the promotion of phosphorus uptake and utilization by plants, including aspects of mycorrhizal morphological features, physiology, biochemistry, and molecular biology. In addition, we discuss research on the potential of growth-promoting mechanisms of mycorrhizal fungi. AMF can form a dense network of hyphae in rhizosphere soil and root cortical cells, increase the absorptive surface areas of the root system, reduce nutrient transport distances, excrete phosphatase, organic acid, and protons, and dissociate insoluble phosphate and the specific expression of phosphate transporter genes.

Keyword: mycorrhiza; morphological features; physiological and biochemical responses; phosphate transporter

磷作为植物生长发育的三大必需营养元素之一, 占植物细胞干重的0.2%[1], 是植物生长代谢过程, 如信号转导、能量转换、光合和呼吸以及生物大分子合成等必不可少的物质[2]。我国耕地土壤中有1/3~1/2的土壤缺磷, 在许多土壤中, 有效磷质量分数低于10 mg· kg-1 [3], 限制了植物的生长[4]。因此, 改善磷的吸收对促进植物生长、保护生物多样性和维持生态系统生产力有着重要的作用[5]

菌根(mycorrhizae)是土壤中球囊菌门真菌(Glomeromycota)与高等维管束植物根系形成的一种普遍存在于自然界中的互惠共生体[6]。菌根真菌的主要功能之一是改善植物的矿质营养, 尤其是丛枝菌根(arbuscular mycorrhizas, AM)真菌, 其根外菌丝可以吸收根系以外土壤中的磷, 并转运到根皮层细胞内, 从而有助于解决植物根系的磷缺乏状况[7]。更为重要的是, AM真菌可以从土壤中吸收多聚磷酸盐, 并将其通过多聚磷酸酶转化为植物可利用的正磷酸盐[8], 缓解根际的磷匮乏现象, 被誉为“ 生物肥料” 。菌根共生体在不同植物个体之间的养分交换、能量流动、信息传递, 以及维持生态系统生产力、多样性和系统稳定性方面都具有重要潜能[5, 9]

菌根真菌促进植物生长的效应与菌根侵染改善植物磷营养密切相关, 菌根植物吸收与利用磷的能力显著高于非菌根植物, 尤其在供磷不足的土壤环境中, 其作用更加明显。如接种根内球囊霉(Glomus intraradices)可以提高玉米(Zea mays)植株全磷含量以及籽粒中磷的积累量[10]。在灭菌土壤中接种摩西球囊霉(Glomus mosseae)的大蒜(Allium sativum)植株磷含量地上部增加82.7%, 地下部增加71.2%[11]; 接种苏格兰球囊霉(G. caledonium)后, 地上、地下磷含量分别增加74.2%和67.8%。AM真菌还可以显著提高高粱(Sorghum bicolor)植株全磷含量以及单位长度根系的全磷含量[12]; 能够明显促进小麦(Triticum aestivum)幼苗对土壤磷的吸收, 尤其是在速效磷含量偏低的土壤基质中, 其作用更为显著[13]

目前, 关于AM真菌促进植物吸收利用磷的研究已取得了很大进步, 但其机理方面仍处于起步阶段, 对机制方面的深入研究有助于更好地理解AM真菌本身, 进而将其转化为生产力, 突显菌根在整个生态系统中的重要作用。本文就近年来国内外有关AM真菌高效吸收利用磷元素的作用机制进行总结, 以期为更好地利用菌根真菌改善植物根系磷吸收、促进植物生长、提高植物产量、促进和维持生态系统稳定提供理论依据。

1 AM真菌促进植物利用磷元素的形态学机理

AM真菌与植物形成共生体后, 可以改变根系形态, 扩大植物根系吸收养分的范围, 缩短养分的扩散距离, 利用其广谱特性形成菌丝桥, 从而促进植物对磷的吸收和利用。AM真菌侵染寄主植物后, 宿主根尖的表皮加厚、细胞层数增多, 有利于根系的生长、分枝[14]以及形态结构的改变[15]。研究发现, 牧豆树(Prosopis juliflora)菌根化后, 根长增加了44%~76%[16]; 在葡萄(Vitis vinifera)上接种聚生球囊霉(Glomus fasciculatum)可显著提高其二级侧根和三级侧根的数量[17]; 菌根侵染后, 滇柏(Cupressus duclouxiana)和楸树(Catalpa bungei)根系的细根直径、长度和表面积都显著增加, 而细根形态特征的增加扩大了根系吸收养分的范围[15, 16, 18, 19](表1)。

表1 AM真菌对植物根系生长及形态的影响 Table 1 Effects of arbuscular mycorrhizal fungi on plant root growth and morohology

AM真菌的根外菌丝及菌索的生长, 可比根系更远地扩展到土壤之中, 从而缩短养分的扩散距离, 吸取更大范围的养分[25, 26]。不仅如此, 这些菌丝还有大量分枝, 在数量、长度、与土壤接触表面积和吸收力和寿命等方面远远超过根毛[27]。同时根内菌丝、丛枝和泡囊都可以较大幅度地提高植物根系吸收面积, 使得植物对磷元素的吸收更有利[28]。一定磷浓度下, 菌根植物根系吸收磷速度的大小是影响植物吸收磷量多少的重要因素。研究表明, AM真菌的菌丝无横隔, 运输阻力小, 使根外菌丝吸收的土壤磷较迅速地转移到根内丛枝中, 因此菌丝体吸收磷速率可达到植物根系的6倍[27]

由于AM真菌的寄主具有广谱性, 单一寄主植物的菌丝如果在向周边生长的过程中遇到另一植物的根系, 可再度侵染, 在两个植株间形成菌丝桥[29]。Heap和Newman[30]于1980年首次发现在同种和不同种植物根系间均可以形成菌丝桥。之后, 研究者们采用放射性自显影技术[31]、通过直接观察的方法[32]证明了菌丝桥的存在及其对养分的传递功能。菌丝桥把邻近的植株联系起来, 使其之间具有养分的交换, 并相互影响, 养分的数量与菌丝桥及其供体、受体植株营养状况等因素相关[33, 34]。由于供体和受体植株所处磷营养状况的差异, 利用菌丝桥对磷元素进行的传递是可行的, 而且形成的菌丝桥越多, 受体植株获得的养分越多[35], 尤其是在土壤养分比较贫瘠的自然生态系统中, 对磷的传递作用更为显著。菌丝桥不仅在同种植物的不同植株间发挥作用, 还可在不同种的植物养分交换中起到桥梁作用[36]

2 AM真菌促进植物利用磷元素的生理生化机理

AM真菌对磷元素的高效利用, 除形态学机制外, 亦有其特有的生理生化机制。AM真菌的根外菌丝和植物根系一样, 能够分泌一些物质改变其周围土壤的性质, 进而以直接或间接的方式影响土壤磷的生物有效性和植物的吸磷效率[37, 38]。根系分泌物种类众多, 主要包括磷酸酶、有机酸和质子等[39]。研究表明, 根系分泌物是根际微生态系统中物质迁移和调控的重要组分, 也是保持根际微生态系统活力的关键因素[40, 41, 42, 43]

植物根际有机磷的利用与根系分泌或根际土壤中磷酸酶的活性具有密切的关系[44, 45, 46]。根内菌丝磷酸酶活性表示菌根内部活性菌丝占全部菌丝的比例, 代表菌根共生体中参与磷代谢的菌丝比例[47]。磷酸酶既与土壤有机磷的含量呈正相关关系, 也与土壤中植物有效磷含量呈正相关关系。根据磷酸酶发挥作用时的最适pH值不同, 可将其分为碱性磷酸酶和酸性磷酸酶。碱性磷酸酶(alkaline phosphatase, ALP)是菌根共生系统中的一种特异性酶[48], 酸性磷酸酶(acid phosphatase, ACP)是一种诱导酶, 其活性受低磷条件特异诱导。接种AM真菌, 能够显著增强植物根系分泌的酸性磷酸酶和碱性磷酸酶的活性, 同时AM真菌菌丝也能分泌酸性磷酸酶和碱性磷酸酶, 从而增加难溶性磷被利用的有效性, 提高寄主对土壤有机磷的利用, 改善菌根磷营养[49, 50, 51, 52]。接种摩西球囊霉真菌对玉米根际土壤酸性磷酸酶和碱性磷酸酶活性均有增强作用[53]; 接种AM真菌显著增强枳(Poncirus trifoliata)的土壤碱性磷酸酶活性[54]; 非转Bt基因抗虫棉(non-Bt) 根际土壤碱性磷酸酶活性接菌后与不接菌对照相比, 显著上升了33.76%[55], 这些研究进一步验证了以上结论。云杉(Picea asperata)根际土壤的酸性磷酸酶活性是相同条件下非根际土壤酸性磷酸酶活性的2~2.5倍[56]。菌根根际土壤酸性磷酸酶活性较非根际土壤明显增加[57], 从而使AM真菌在根际土壤有机磷的分解转化过程中起到重要作用, 增强了植株对磷的吸收(表2)。

表2 AM真菌对土壤磷酸酶活性的影响 Table 2 Effects of arbuscular mycorrhizal fungi on soil phosphatase activity

有机酸是植物根系分泌物中一个重要的有机物。在有机酸的作用下, 难溶性磷酸盐向解离的方向移动, 从而提高有效态磷的含量[58]。有机酸还以配体的形式与土壤中的金属阳离子形成螯合物, 降低其离子浓度, 使难溶性磷酸盐解离, 从而促进磷的吸收利用[59]。接种丛枝菌根真菌显著增加了枳根系分泌有机酸的含量和种类[60]; 外生菌根真菌能分泌大量的氢离子和多种有机酸, 对溶解难溶性无机磷有重要作用[61]。此外, 根际酸化pH的降低对土壤中磷素的生物有效性影响显著, Hinsinger[39]的研究表明, 植物分泌的质子可以降低根际土壤的pH值, 从而提高土壤磷元素的生物有效性。另一方面, pH的变化也会导致磷酸酶活性的差异, 最适的pH往往会使磷酸酶活性达到最大[62, 63]

3 AM真菌促进植物吸收利用磷元素的分子机理
3.1 磷在AM共生体中的吸收和转运途径

细胞学、生理学以及分子生物学试验证实, 共生体之间磷的转运发生在真菌丛枝结构和寄主皮层细胞之间[64]。无机态磷在共生体结构内的转运包括根外菌丝从土壤中吸收含磷养分, 随后以多聚磷酸盐的形式转运到根内真菌组织, 再由丛枝流入丛枝周腔前降解为磷酸盐, 并通过丛枝界面输送到根皮层细胞内[65, 66]。其中, 丛枝界面所进行的养分交流过程以主动吸收为主体, 双方先将各自相应的营养物质共同释放到非共质体空间丛枝周腔内, 之后以主动吸收的方式获取所需养分。

AM真菌所介导磷吸收途径的第1步是借助真菌细胞膜上的磷转运蛋白进行跨膜运输, 将土壤中含有的无机态磷酸盐转运到菌根外延菌丝中, 在植物与真菌的共生界面又依靠对AM真菌具有特异性的植物磷转运蛋白, 将质外体空间中呈游离态存在的磷酸盐转移到皮层细胞。菌根化植物对土壤中磷元素的摄取存在两条途径:直接吸收途径(DUP)与菌根吸收途径(MUP)[67]。DUP是通过根部表皮细胞直接实现的, 包括根毛形成时, 根系对土壤中磷元素的吸收。植物所编码的高亲和力磷转运蛋白, 其表达量在根毛和根尖处的细胞中最大, 在根的成熟区有所下降[68]。MUP潜在作用位点发生在根尖后端。AM真菌在土壤中形成发达而又广泛的菌丝网, 通过真菌的高亲和力磷转运蛋白吸收离根表面数厘米并能明显延伸至匮乏区的磷(以多聚磷酸盐的形式被迅速转移到根部), 克服了磷在土壤溶液中的缓慢扩散, 相比于植物根系, 真菌的菌丝直径要小得多, 因此能够通过更狭窄的土壤空隙, 使得土壤容积有所增加[69]。在一定程度上菌根途径能够替代根系吸收磷途径对磷营养的贡献[70], 在特定的条件下甚至可以完全替代根系吸收磷的作用[71]

3.2 AM中的磷酸转运蛋白

土壤中的磷主要以正磷酸盐(H2P O4-)的形式被植物根系所截获, 并借助于细胞膜上特定磷转运蛋白将其运输进入植物体内。根外菌丝对磷酸盐的吸收是由一种转运蛋白介导的, 该蛋白对磷酸盐具有较高亲和性。如从马铃薯(Solanum tuberosum)菌根内分离出来的StPT3蛋白[72]和从蒺藜苜蓿(Medicago truncatula)根中分离到的MtPT4蛋白[73] , 该类蛋白为菌根化根系所特有, 并在含有丛枝结构的皮层细胞中大量表达。AM的形成可以特异性诱导很多基因的表达, 尤以磷酸转运蛋白基因与之功能关系最为密切。植物的 PHS(phosphate:H+sympoter)转运蛋白, 尤其是其中的Pht1类转运蛋白是目前人们研究最多的一类。一般认为有3种类型的Pht1转运体参与AM中磷的吸收及转运调节, 分别是AM特异性诱导的磷酸转运蛋白, 植物磷酸转运蛋白以及AM 真菌中的磷酸转运蛋白[8]

已发现AM特异性的植物磷酸转运蛋白几乎都属于Pht1转运体家族。这些基因被认为参与AM共生膜界面上AM真菌释放出来的磷的获取, 因而通常被作为AM共生磷代谢途径的标识性基因[74]。功能分析试验表明, Phtl家族的大多数磷转运蛋白属于高亲和力转运蛋白, 该蛋白以及与它们相关的真菌转运蛋白均是定位于质膜上, 利用H+梯度进行H+/Pi同向转运的磷转运蛋白[75]。到目前为止, AM特异性磷酸转运蛋白中研究最全面的是Pht1家族中第Ⅰ 亚族的MtPT4蛋白, 该蛋白是从豆科模式植物蒺藜苜蓿(Medicago truncatula)中分离得到的。通过RNA干扰技术发现, MtPT4蛋白与丛枝的形成密切相关, 当敲除编码该蛋白的基因时, 丛枝败育[68]; 同时当消解野生型蒺藜苜蓿的丛枝细胞时, 编码MtPT4蛋白的基因也不再表达[73]。MtPT4蛋白发挥类似于信号物质的作用, 通过向植物细胞内转运磷, 维持丛枝的发育和AM真菌在根系内的生长代谢[8]。这些研究均表明, 磷转运蛋白功能的缺失是AM共生减弱的原因而不是结果[76]。相应地, Maeda等[77]在另一种豆科模式植物日本百脉根(Lotus japonicus)中研究发现, AM特异性磷酸转运蛋白LjPT3可以影响AM的发育, 当编码LjPT3蛋白的基因沉默后, 丛枝数量明显下降, 然而LjPT3对于丛枝的发育并不是不可或缺的。此外, 在有些植物[如蒺藜苜蓿, 番茄(Lycopersicon esculentum)和玉米]中, AM特异性的磷酸转运蛋白基因的表达存在AM真菌的菌种特异性, 即不同的AM真菌可以不同程度去调节这些基因的表达[78, 79], 这可能与AM真菌在促进植物生长以及磷吸收方面的功能多样性密切相关[80]

除AM 特异性的磷酸转运蛋白外, 植物体本身还存在其它的磷酸转运蛋白。最早发现的植物磷转运基因Phtl是从拟南芥(Arabidopsis thaliana)和马铃薯(Solanum tuberosum)中分离得到的[81]。大部分己经鉴定克隆的植物磷转运子基因属于Phtl家族, 在根部, 尤其在根部的外皮层和中柱细胞中强烈表达[82, 83, 84], 其序列以及结构有着极高的相似性[85]。这些转运体基因是磷缺乏响应基因, 但并不随AM共生体的建立而被诱导, 相反有的甚至出现表达量下降。例如, 玉米中的ZEAma; Pht1; 3基因[79], 蒺藜苜蓿中的MtPT2基因[80]。其调控机理目前尚不清楚, Smith等[86]认为低磷条件下, 在非菌根化植物中表达量上调的基因可能与植物的“ 胁迫应答” 有关。

不同于植物的磷酸转运蛋白, AM真菌中磷酸转运蛋白的组成及功能方面的研究比较滞后。在AM共生体中, AM真菌的根外菌丝从土壤中吸收磷并通过丛枝细胞的质膜流向植物细胞。近年来, 一些与磷吸收相关的磷酸转运蛋白陆续被发现, 然而这些转运体是否与磷素从AM 真菌转运到植物细胞的跨膜运输相关尚且未知。目前已鉴定的 AM 真菌中的磷酸转运蛋白有3种:GvPT, GintPT和GmosPT(表3), 它们分别来自于Glomus veriforme, 根内球囊霉菌(Rhizophagus irregularis)和摩西球囊霉坳(Glomus mosseae)[87, 88]。这些磷酸转运蛋白大多在根外菌丝中表达, 因而被认为与菌丝中磷的吸收有关[89]。Fiorilli等[90]运用激光解剖结合荧光实时定量PCR发现, GintPT蛋白在真菌丛枝结构中表达, 其表达量受基质中磷浓度的影响, 高磷条件诱导该基因表达, 低磷条件则抑制该基因表达。GmosPT蛋白被检测到在根内菌丝中表达, 但尚没有直接证据表明该磷酸转运蛋白参与磷元素从AM真菌到植物细胞的跨膜运输[91]

表3 与磷吸收转运相关的一些磷酸转运蛋白/基因 Table 3 Phosphate(Pi) transporter proteins or genes related to phosphorus absorption and transportation

高亲和性磷转运子基因资源的表达为有效进行植物磷吸收效率的遗传改良提供了思路, 后续研究有望通过基因工程的手段来增强高亲和性磷转运子基因在植物根系细胞膜上的强烈表达, 以此来提高其吸收表面上磷转运子的数量和离子亲和力, 进而改善作物对磷的吸收性能。

4 问题与展望

磷元素是植物生长代谢所必需的大量元素之一, 据估计, 地球上可被植物直接利用的有效磷最多还能维持200年[7]。此外, 磷在土壤中的扩散系数低, 易被固定和沉淀, 如磷酸根易与Fe、Na、Al等金属离子结合而被固定, 或与土壤中的胶体结合变成难溶性磷, 不能被植物直接吸收[92]。农业生产中磷元素的匮乏往往成为限制草地生产力的重要因素, 然而AM作为解决植物磷营养缺乏的生物手段对于农业的可持续发展具有重要意义。磷酸转运蛋白作为磷吸收和转运过程中最重要的蛋白, 对其(特别是AM真菌中的磷酸转运蛋白)结构与功能的研究有助于将AM真菌更好地应用到农业生产实践中。不同于植物的磷酸转运蛋白, 对AM真菌中磷酸转运蛋白组成及功能方面的研究一直比较滞后。由于 AM 真菌是多核细胞活体专性共生微生物, 导致外源质粒很难转入并稳定遗传, 目前其基因的敲除技术也尚未成熟, 很难运用反向遗传学技术研究其特定基因的功能。随着现代生理和分子生物学技术的不断进步, 为菌根真菌的发展注入了新的活力, 使得对菌根这一复杂系统的认识取得了长足发展, 同时也使AM真菌促进植物吸收利用磷素的机制不断被揭示。但是不论是形态、生理生化还是分子机制方面, 对AM真菌促进植物吸收磷素研究的广度和深度都远远不够。加之已开展的研究大多是从AM真菌和外生菌根入手, 对于其它类型菌根的研究尚且处于空白, 因此需加强对其它类型的菌根真菌的研究。

The authors have declared that no competing interests exist.

参考文献
[1] Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell. Plant Physiology, 1998, 116(2): 447-453. [本文引用:1]
[2] Raghothama K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Biology, 1999, 50(1): 665-693. [本文引用:1]
[3] 沈善敏, 万洪富, 谢建昌. 中国土壤肥力. 北京: 中国农业出版社, 1998. [本文引用:1]
[4] Holford I C R. Soil phosphorus: Its measurement, and its uptake by plants. Australian Journal of Soil Research, 1997, 35(2): 227-240. [本文引用:1]
[5] Heijden M G A V D, Klironomos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sand ers I R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72. [本文引用:2]
[6] Remy W, Taylor T N, Hass H, Kerp H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, 1994, 91(25): 11841-11843. [本文引用:1]
[7] Schroeder J I, Delhaize E, Frommer W B, Guerinot M L, Harrison M J, Herrera-Estrella L, Horie T, Kochian L V, Munns R, Nishizawa N K, Tsay Y F, Sand ers D. Using membrane transporters to improve crops for sustainable food production. Nature, 2013, 497: 60-66. [本文引用:2]
[8] Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E. Protein actors sustaining arbuscular mycorrhizal symbiosis: Underground artists break the silence. New Phytologist, 2013, 199(1): 26-40. [本文引用:3]
[9] Hart M M, Reader R J, Klironomos J N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology and Evolution, 2003, 18(8): 418-423. [本文引用:1]
[10] Cozzolino V, Meo V D, Piccolo A. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration, 2013, 129: 40-44. [本文引用:1]
[11] 贺学礼, 赵丽莉, 周春菊, 李生秀. VA菌根真菌对大蒜幼苗生理特性的影响. 西北农业学报, 1999, 8(2): 84-86.
He X L, Zhao L L, Zhou C J, Li S X. Effects of mycorrhizal fungi on the physiological characters of garlic seedling. Acta Agriculturae Boreali-Occidentalis Sinica, 1999, 8(2): 84-86. (in Chinese) [本文引用:1]
[12] Osonubi O. Comparative effects of vesicular-arbuscular mycorrhizal inoculation and phosphorus fertilization on growth and phosphorus uptake of maize (Zea mays L. ) and sorghum (Sorghum bicolor L. ) plants under drought-stressed conditions. Biology and Fertility of Soils, 1994, 18(1): 55-59. [本文引用:1]
[13] 戴开军, 龚宏伟. VA 菌根对冬小麦幼苗生长的影响. 西安联合大学学报, 2002, 5(2): 34-36.
Dai K J, Gong H W. VA Glomus mosseae effect on growth of winter wheat sprout. Journal of Xi’an United University, 2002, 5(2): 34-36. (in Chinese) [本文引用:1]
[14] Rakshit A, Bhadoria P S. Influence of arbuscular mycorrhizal hyphal length on simulation of P influx with the mechanistic model. African Journal of Microbiology Research, 2009, 3(1): 1-4. [本文引用:1]
[15] Yao Q, Wang L R, Zhu H H, Chen J Z. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf. ) seedlings. Scientia Horticulturae, 2009, 121(4): 458-461. [本文引用:2]
[16] Solís-Domínguez F A, Valentín-Vargas A, Chorover J, Maier R M. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment, 2011, 409(6): 1009-1016. [本文引用:2]
[17] Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter A H. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L. ). Annals of Botany, 1991, 68(2): 135-141. [本文引用:1]
[18] Wu Q S, Peng Y H, Zou Y N, Liu C Y. Exogenous polyamines affect mycorrhizal development of Glomus mosseae-colonized citrus (Citrus tangerine) seedlings. Science Asia, 2010, 36: 254-258. [本文引用:1]
[19] Wu Q S, He X H, Zou Y N, Liu C Y, Xiao J, Li Y. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regulation, 2012, 68(1): 27-35. [本文引用:1]
[20] 宋会兴, 钟章成, 王开发. 土壤水分和接种 VA 菌根对构树根系形态和分形特征的影响. 林业科学, 2007, 43(7): 142-147.
Song H X, Zhong Z C, Wang K F. Effects of soil moisture and VAM inoculation on root morphology and fractal character in Broussonetia papyrifera. Scientia Silvae Sinicae, 2007, 43(7): 142-147. (in Chinese) [本文引用:1]
[21] 袁丽环, 闫桂琴, 朱志敏. 丛枝菌根 ( AM) 真菌对翅果油树幼苗根系的影响. 西北植物学报, 2009, 29(3): 580-585.
Yuan L H, Yan G Q, Zhu Z M. Effects of arbuscular mycorrhizal fungi on the seedling roots of Elaeagnus mollis Diels. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 580-585. (in Chinese) [本文引用:1]
[22] 王如岩, 于水强, 张金池, 周垂帆, 陈莉莎. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响. 南京林业大学学报: 自然科学版, 2012, 36(6): 23-27.
Wang R Y, Yu S Q, Zhang J C, Zhou C F, Chen L S. Effects of arbuscular mycorrhizal fungus inoculation on the root of Cupressus duclouxiana and Catalpa bungei seedlings under drought stress. Journal of Nanjing Forestry University: Natural Science Edition, 2012, 36(6): 23-27. (in Chinese) [本文引用:1]
[23] 邹英宁, 吴强盛, 李艳, 黄咏明. 丛枝菌根真菌对枳根系形态和蔗糖, 葡萄糖含量的影响. 应用生态学报, 2014, 25(4): 1125-1129.
Zou Y N, Wu Q S, Li Y, Huang Y M. Effects of arbuscular mycorrhizal fungi on root system morphology sucrose and glucose contents of Poncirus trifoliata. Chinese Journal of Applied Ecology, 2014, 25(4): 1125-1129. (in Chinese) [本文引用:1]
[24] 张中峰, 张金池, 黄玉清, 郭晓平, 杨慧, 邓艳. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响. 生态学杂志, 2015, 34(5): 1198-1204.
Zhang Z F, Zhang J C, Huang Y Q, Guo X P, Yang H, Deng Y. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings. Chinese Journal of Ecology, 2015, 34(5): 1198-1204. (in Chinese) [本文引用:1]
[25] Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 1991, 136(1): 41-48. [本文引用:1]
[26] Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 1994, 159(1): 89-102. [本文引用:1]
[27] 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007.
Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007. (in Chinese) [本文引用:2]
[28] Bucher M, Rausch C, Daram P. Molecular and biochemical mechanisms of phosphorus uptake into plants. Journal of Plant Nutrition and Soil Science, 2001, 164(2): 209-217. [本文引用:1]
[29] Kytöviita M M, Vestberg M, Tuomi J. A test of mutual aid in common mycorrhizal networks: Established vegetation negates benefit in seedlings. Ecology, 2003, 84(4): 898-906. [本文引用:1]
[30] Heap A J, Newman E I. Links between roots by hyphae of vesicular-arbuscular mycorrhizas. New Phytologist, 1980, 85(2): 169-171. [本文引用:1]
[31] Finlay R D, Read D J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytologist, 1986, 103(1): 157-165. [本文引用:1]
[32] Newman E I, Devoy C L N, Easen N J, Fowles K J. Plant species that can be linked by VA mycorrhizal fungi. New phytologist, 1994: 691-693. [本文引用:1]
[33] Bethlenfalvay G J, Reyes-Solis M G, Camel S B, Ferrera-Cerrato R. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiologia Plantarum, 1991, 82: 423-432. [本文引用:1]
[34] Ikram A, Jensen E S, Jakobsen I. No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biology and Biochemistry, 1994, 26(11): 1541-1547. [本文引用:1]
[35] 艾为党, 张俊伶, 李隆, 李晓林, 冯固. 三叶草体内磷通过菌丝桥向黑麦草的传递研究. 应用生态学报, 1999(5): 615-618.
Ai W D, Zhang J L, Li L, Li X L, Feng G. Phosphorus transfer via mycorrhizal hyphal links from red clover to rye grass. Chinese Journal of Applied Ecology, 1999(5): 615-618. (in Chinese) [本文引用:1]
[36] 张俊伶, 李晓林, 左元梅, 杨志福. 三叶草根间菌丝桥传递衰亡根系中磷的作用. 生态学报, 1998, 18(6): 589-594.
Zhang J L, Li X L, Zuo Y M, Yang Z F. Underground P transfer among roots of red clover via VAM hyphae links. Acta Ecologica Sinica, 1998, 18(6): 589-594. (in Chinese) [本文引用:1]
[37] Liu J F, Xia R X, Wang M Y, Wang P, Ran Q Q, Luo Y. Effects of inoculation with arbuscular mycorrhizal fungi on AlPO4 uptake by Poncirus trifoliata. The Journal of Applied Ecology, 2008, 19(10): 2155-2160. [本文引用:1]
[38] Shibata R, Yano K. Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction. Applied Soil Ecology, 2003, 24(2): 133-141. [本文引用:1]
[39] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. [本文引用:2]
[40] 陈龙池, 廖利平, 汪思龙, 肖复明. 根系分泌物生态学研究. 生态学杂志, 2002, 21(6) : 57-62.
Chen L C, Liao L P, Wang S L, Xiao F M. A review for research of root exudates ecology. Chinese Journal of Ecology, 2002, 21(6): 57-62. (in Chinese) [本文引用:1]
[41] Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Biology, 2001, 52(1): 527-560. [本文引用:1]
[42] Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 2002, 245(1): 35-47. [本文引用:1]
[43] Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57: 233-266. [本文引用:1]
[44] Tarafdar J C, Jungk A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils, 1987, 3(4): 199-204. [本文引用:1]
[45] Asmar F, Singh T, Nielsen N E. Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil. Plant and Soil, 1995, 172(1): 117-122. [本文引用:1]
[46] Chen C R, Condron L M, Davis M R, Sherlock R R. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L. ) and radiata pine (Pinus radiata D. Don. ). Soil Biology and Biochemistry, 2002, 34(4): 487-499. [本文引用:1]
[47] 于富强, 刘培贵. 外生菌根研究及应用的回顾与展望. 生态学报, 2002, 22(12): 2217-2226.
Yu F Q, Liu P G. Reviews and prospects of the ectomycorrhizal research and application. Acta Ecologica Sinica, 2002, 22(12): 2217-2226. (in Chinese) [本文引用:1]
[48] 毕国昌, 臧穆, 郭秀珍. 滇西北高山针叶林区主要林型下外生菌根真菌的分布. 林业科学, 1989, 25(1): 33-39.
Bi G C, Zang M, Guo X Z. Distribution of ectomycorrhizal fungi under several chief forest types in alpine coniferou region of northwestern Yunnan. Scientia Silvae Sinicae, 1989, 25(1): 33-39. (in Chinese) [本文引用:1]
[49] 宋勇春, 冯固, 李晓林. 不同磷源对红三叶草根际和菌根际磷酸酶活性的影响. 应用生态学报, 2003, 14(5): 781-784.
Song Y C, Feng G, Li X L. Effects of different P sources on phosphatase activity of mycorrhizosphere of red clover inoculated with AMF. Chinese Journal of Applied Ecology, 2003, 14(5): 781-784. (in Chinese) [本文引用:1]
[50] Amaya-Carpio L, Davies F T, Fox T, He C. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica, 2009, 47(1): 1-10. [本文引用:1]
[51] Xie X Y, Weng B S, Cai B P, Dong Y R, Yan C L. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kand elia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Applied Soil Ecology, 2014, 75: 162-171. [本文引用:1]
[52] Abdel-Fattah G M, Asrar A A, Al-Amri S M, Abdel-Salam E M. Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L. ) plants. Photosynthetica, 2014, 52(4): 581-588. [本文引用:1]
[53] 苏友波, 林春, 王三根. AM 菌根磷酸酶对玉米菌根际土壤磷的影响及其细胞化学定位. 西南农业大学学报, 2003, 25(2): 115-119.
Su Y B, Li C, Wang S G. Effects of arbuscular mycorrhizal fungi (AMF) on phosphatase in utilizing soil P in the rhizosphere of corn. Journal of Southwest Agricultural University, 2003, 25(2): 115-119. (in Chinese) [本文引用:1]
[54] Wu Q S, Zou Y N, He X H. Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Scientia Horticulturae, 2011, 129(2): 294-298. [本文引用:1]
[55] 尹念辅, 杨兵, 李铁松, 戈峰. Bt棉与丛枝菌根真菌对植物根际土壤营养物质和土壤酶活性的影响. 农业环境与生态安全——第五届全国农业环境科学学术研讨会论文集. 南京: 农业部环境保护科研监测所, 中国农业生态环境保护协会, 2013.
Yin N F, Yang B, Li T S, Ge F. Effects of Bt cotton and the incubation of arbuscular mycorrhizal fungi on the soil nutrients content and soil enzyme activity in plant rhizosphere. Agricultural Environment and Ecology Security, the Fifth National Agricultural Academic Conference on Environmental Science. Nanjing: Agro-Environmental Protection Institute, Ministry of Agriculture, Chinese Society of Agro-Ecological Environment Protection, 2013. (in Chinese) [本文引用:1]
[56] Häussling M, Marschner H. Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce [Picea abies (L. ) Karst. ]trees. Biology and Fertility of Soils, 1989, 8(2): 128-133. [本文引用:1]
[57] Wang F, Jiang R F, Kertesz M A, Zhang F S, Feng G. Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (Zea mays L. ). Soil Biology and Biochemistry, 2013, 65: 69-74. [本文引用:1]
[58] 刘国栋, 李继云, 李振声. 低磷胁迫下小麦根系反应的基因型差异. 植物营养与肥料学报, 1996, 2(3): 212-218.
Liu G D, Li J Y, Li Z S. The genotypic differences in response of wheat root system to low-phosphorus stress. Plant Nutrition and Fertilizer Science, 1996, 2(3): 212-218. (in Chinese) [本文引用:1]
[59] 张福锁, 曹一平. 根际动态过程与植物营养. 土壤学报, 1992, 29(3): 239-250.
Zhang F S, Cao Y P. Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 1992, 29(3): 239-250. (in Chinese) [本文引用:1]
[60] 刘进法, 王鹏, 罗园, 谢亚超, 万渊, 夏仁学. 低磷胁迫下 AM 真菌对枳实生苗吸磷效应及根系分泌有机酸的影响. 亚热带植物科学, 2010, 39(1): 9-13.
Liu J F, Wang P, Luo Y, Xie Y C, Wan Y, Xia R X. Effects of mycorrhizal fungus on absorbing phosphorus and excreting organic acids of Poncirus trifoliata seedlings under low-phosphorus stress. Subtropical Plant Science, 2010, 39(1): 9-13. (in Chinese) [本文引用:1]
[61] 杨红军, 李勇, 黄建国. 磷与信号抑制剂对外生菌根真菌分泌草酸的调控作用. 微生物学报, 2015, 55(6): 788-794.
Yang H J, Li Y, Huang J G. Effect of phosphorus supply and signal inhibitors on oxalate efflux in ectomycorrhizal fungi. Acta Microbiologica Sinica, 2015, 55(6): 788-794. (in Chinese) [本文引用:1]
[62] Kuang R, Chan K H, Yeung E, Lim B L. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis. Plant Physiology, 2009, 151(1): 199-209. [本文引用:1]
[63] Turner B L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology, 2010, 76(19): 6485-6493. [本文引用:1]
[64] Vladimir K, Marcel B. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 2005, 10(1): 22-29. [本文引用:1]
[65] Cox G, Moran K J, Sand ers F, Nockolds C, Tinker P B. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. Ⅲ. polyphosphate granules and phosphorus translocation. New Phytologist, 1980, 84(4): 649-659. [本文引用:1]
[66] Solaiman M Z, Ezawa T, Kojima T, Saito M. Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Applied and Environmental Microbiology, 1999, 65(12): 5604-5606. [本文引用:1]
[67] 谢贤安. 丛枝菌根共生体磷信号转运受体的发现及其分子机制的研究. 武汉: 华中农业大学博士学位论文, 2013.
Xie X A. Transport and signaling through the AM symbioticphosphate transceptor. PhD Thesis. Wuhan: Huazhong Agricultural University, 2013. (in Chinese) [本文引用:1]
[68] Javot H, Penmetsa R V, Terzaghi N, Cook D R, Harrison M J. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 2007, 104(5): 1720-1725. [本文引用:2]
[69] Smith S E, Read D J. Mycorrhizal Symbiosis. New York: Academic Press, 2010. [本文引用:1]
[70] Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist, 2009, 181(4): 950-959. [本文引用:1]
[71] Smith S E, Smith F A, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 2004, 162(2): 511-524. [本文引用:1]
[72] Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 2001, 414: 462-470. [本文引用:1]
[73] Harrison M J, Dewbre G R, Liu J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell, 2002, 14(10): 2413-2429. [本文引用:2]
[74] Grace E J, Cotsaftis O, Tester M, Smith F A, Smith S E. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytologist, 2009, 181(4): 938-949. [本文引用:1]
[75] Javot H, Pumplin N, Harrison M J. Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant, Cell and Environment, 2007, 30(3): 310-322. [本文引用:1]
[76] Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal, 2010, 64(6): 1002-1017. [本文引用:1]
[77] Maeda D, Ashida K, Iguchi K, Chechetka S A, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology, 2006, 47(7): 807-817. [本文引用:1]
[78] Poulsen K H, Réka N, Gao L L, Smith S E, Bucher M, Smith F A, Jakobsen I. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist, 2005, 168(2): 445-454. [本文引用:1]
[79] Tian H, Drijber R A, Li X, Miller D N, Wienhold B J. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L. ). Mycorrhiza, 2013, 23(6): 507-514. [本文引用:2]
[80] Burleigh S H, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. Journal of Experimental Botany, 2002, 53(374): 1593-1601. [本文引用:2]
[81] 彭小伟. AM 真菌磷转运基因及其受体功能研究. 武汉: 华中农业大学硕士学位论文, 2014.
Peng X W. Phosphate transporter genes and their receptor function in AM fungi. Master Thesis. Wuhan: Huazhong Agricultural University, 2014. (in Chinese) [本文引用:1]
[82] Karthikeyan A S, Varadarajan D K, Mukatira U T, D'Urzo M P, Damsz B, Raghothama K G. Regulated expression of Arabidopsis phosphate transporters. Plant Physiology, 2002, 130(1): 221-233. [本文引用:1]
[83] Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal, 2002, 31(3): 341-353. [本文引用:1]
[84] Schiinmann P H, Richardson A E, Vickers C E, Delhaize E. Promoter analysis of the barley Phtl; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiology, 2004, 136: 4205-4214. [本文引用:1]
[85] 常小箭. 水稻磷酸盐转运蛋白基因家族的功能分析. 武汉: 华中农业大学硕士学位论文, 2012.
Chang X J. Functional analysis of the Oryza sativa phosphate transporter gene family. Master Thesis. Wuhan: Huazhong Agricultural University, 2012. (in Chinese) [本文引用:1]
[86] Smith S E, Jakobsen I, Grønlund M, Smith A F. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understand ing and manipulating plant phosphorus acquisition. Plant Physiology, 2011, 156(3): 1050-1057. [本文引用:1]
[87] Benedetto A, Magurno F, Bonfante P, Lanfranco L. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza, 2005, 15(8): 620-627. [本文引用:1]
[88] Fiorilli V, Lanfranco L, Bonfante P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta, 2013, 237(5): 1267-1277. [本文引用:1]
[89] Gómez-Ariza J, Balestrini R, Novero M, Bonfante P. Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots. Biology and Fertility of Soils, 2009, 45(8): 845-853. [本文引用:1]
[90] Fiorilli V, Lanfranco L, Bonfante P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta, 2013, 237(5): 1267-1277. [本文引用:1]
[91] Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Molecular Plant-Microbe Interactions, 2007, 20(9): 1055-1062. [本文引用:1]
[92] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil, 2001, 237(2): 173-195. [本文引用:1]