藜麦副产物常规养分与抗营养因子的检测及饲用价值评价
English
-
随着人口数量持续上涨和全球范围内气候异常现象频发,粮食安全问题日益凸显。联合国2030年可持续发展议程强调,需要设计可持续的粮食系统,为日益增长的人口提供健康的饮食[1]。藜麦(Chenopodium quinoa)因其优异的营养特性、对极端恶劣环境较强的适应性以及在无谷蛋白饮食中的适用性和可持续性[2-3],受到世界各国的广泛关注。
藜麦是一年生草本植物,最初长于南美洲安第斯山脉一带,长期作为印加人的传统主食来源[2-4]。藜麦籽粒中含有优质的蛋白质和丰富的膳食纤维,且各种氨基酸占比合理,搭配平衡[5-6];另外各种矿物质在藜麦籽实中的分布也较为充裕,如钙(874 mg·kg−1)和铁(81 mg·kg−1)的含量与一些平常所见的谷类相比更加丰富 [2, 7],因此被评为营养价值最高的粮食产品,有“营养黄金”之称[8-9]。近些年来,由于科学家们针对藜麦展开了大量的研究,人们对藜麦的认识不断提高。然而,对于藜麦的探究主要聚集在如何提高其产量和品质以及将它作为人类食物的开发利用方面上,对于藜麦副产物饲料化的研究并不多见。由于其丰富的纤维成分和生物活性物质,藜麦可产生较高的产品附加值[10]。有研究显示,藜麦籽实可以有效调节动物饲料中氨基酸的配比,其茎杆营养也很丰富,可作为畜禽饲料[11]。在仔猪日粮中添加适量的藜麦麸皮对仔猪的生长速度以及饲料采食量无不良影响[12],藜麦秸秆对绵羊的饲喂效果超越了大麦(Hordeum vulgare)和燕麦(Avena sativa) [13-14]。藜麦籽实及副产物饲用优势明显,但是其营养价值的高效利用受到抗营养因子等因素的影响。目前对藜麦抗营养因子的研究多数集中在皂苷,而对抗营养因子系统的研究相对较少。本研究拟通过对藜麦秕谷、麸皮、糠和秸秆中常规养分、抗营养因子进行检测以及灰色关联度分析,对其饲用价值作出评价,以期为藜麦副产物在畜禽饲料中的高效利用提供数据支撑和技术保障。
1. 材料与方法
1.1 试验材料
选取藜麦秕谷、麸皮、糠和秸秆进行常规养分以及皂苷、非淀粉多糖(non-starch polysaccharides, NSP)、植酸和单宁含量的检测,藜麦为2020年10月份收获的台湾红藜,由甘肃省农业科学院天祝藜麦高寒试验站(103°39′72.79″ E, 39°40′12.05″ N)提供。
试剂:常春藤皂苷元,齐墩果酸标准品(源叶,纯度≥98%),HPLC级甲醇,乙腈(OCEANPAK,纯度≥99.9%),乙酸乙酯(国药集团化学试剂有限公司,分析纯,纯度≥99.5%),磷酸(国药集团化学试剂有限公司,优级纯,纯度≥85.0%),盐酸(国药集团化学试剂有限公司,优级纯,36.0%~38.0%),氢氧化钠(国药集团化学试剂有限公司,优级纯,纯度≥99 %),乙醇,甘露糖、葡萄糖、半乳糖和木糖标准品,α-淀粉酶,α-葡萄糖苷酶(源叶,纯度≥98%),1-苯基-3-甲基-5-吡唑啉酮(PMP)(国药集团,纯度≥98%),三氟乙酸,氢氧化钠,磷酸,三氯甲烷均购自国药集团,HPLC级乙腈(J&K CHEMICAL LTD,纯度≥99.9%),HPLC级甲醇(J&K CHEMICAL LTD,纯度≥99.9%),植酸钠,没食子酸标准品(源叶,纯度≥98%),Na2SO4溶液,TCA溶液,磷酸缓冲液,磺基水杨酸-氯化铁溶液,试剂一(钨酸钠,磷钼酸,磷酸溶液),试剂二(Na2CO3溶液),超纯水,蒸馏水。
试验仪器:Agilent1100高效液相色谱仪,Compass C18(2)反相色谱柱(250 mm × 4.6 mm,5 μm),氮吹仪,KQ2200DE型数控超声波清洗器,赛默飞Thermo Micro CL 17R高速冷冻离心机,旋涡混合器,烘箱,酶标仪,水浴锅,可调式移液器,金属震荡仪,96孔板,天平,全自动球磨仪。
1.2 试验方法
藜麦副产物常规养分的检测参考袁缨[15]的方法进行。
饲喂价值通过干物质消化率(digestible dry matter, DDM)、干物质采食量(dry matter intake, DMI)、总可消化养分(total digestible nutrients, TDN)、粗饲料相对值(relative feed value, RFV) 等指标来衡量。计算方法参考熊乙等[16]的方法。
1.2.1 皂苷含量检测
样品前处理:称取约1.0 g样本,加入8.0 mL 70%乙醇,在超声条件下反应1 h。以8 000 r·min−1的转速离心10 min,留取上清液①,再加入2.0 mL 70%乙醇复提,留取上清液②,将①和②混匀并定容至10 mL,随后吸取2 mL混合液置于15 mL离心管中,加入2 mL 6 mol·L−1 HCL在110 ℃下水解2 h,冷却后用NaOH溶液中和,乙酸乙酯萃取3次,N2吹干,0.2 mL甲醇复溶,针头式过滤器过滤后待测。
液相色谱条件:使用Agilent1100高效液相色谱仪,Compass C18(2)反相色谱柱(250 mm × 4.6 mm,5 μm),柱温35 ℃,以1 mL·min−1的速度进样10 μL,流动相0.2%磷酸水溶液 ꞉ 乙腈为20 ꞉ 80。
称量常春藤皂苷元和齐墩果酸标准品,溶于甲醇,配置的5~6个标准溶液(0.5~200 μg·mL−1),并检测标准液的峰面积,横坐标为浓度,纵坐标为峰面积,计算得出标准曲线。
1.2.2 非淀粉多糖含量检测
样品前处理参考Fan B等[17]的方法,并略作调整。
液相色谱条件:Agilent1100高效液相色谱仪,Compass C18(2)反相色谱柱(250 mm × 4.6 mm, 5 μm),柱温30 ℃,流速1 mL·min−1,检测40 min,进样体积10 μL,检测波长250 nm,流动相0.1 mol·L−1的磷酸盐溶液(pH = 6.5) ꞉ 乙腈 = 80 ꞉ 20。
标准曲线绘制:精确称量甘露糖、葡萄糖、半乳糖、木糖标准品,用水溶解,配置成5~6个标准溶液(5~200 μg·mL−1),按上述色谱条件分别检测标准液的峰面积,横坐标为浓度,纵坐标为峰面积,计算得出甘露糖、葡萄糖、半乳糖、木糖的标准曲线,相关系数与线性范围。
1.2.3 植酸含量检测
植酸含量采用植酸(Phytic acid)含量试剂盒(苏州梦犀生物医药科技有限公司)进行测定。
1.2.4 单宁含量检测
参照NY-T 1600-2008 《水果、蔬菜及其制品中单宁含量的测定》的方法测定单宁的含量。
1.3 灰色关联度分析
参照路平乐等[18]的方法,根据灰色系统理论,将常规养分与抗营养因子含量不同的藜麦副产物作为灰色系统的一个因素,采用灰色关联度法对藜麦秕谷、麸皮、糠和秸秆的饲用价值进行总体判定。首先,确定参考数列;其次,指标的无量纲化;最后,计算等权关联度、加权关联度。关联度越大,则表明比较数列越趋于参考数列,则该藜麦副产物饲用价值越高。
1.4 数据处理
运用Excel 2010对所有数据进行统计,采用SPSS 26.0进行单因素方差分析和多重比较,结果以“平均值 ± 标准差”表示,P < 0.05表示差异显著,P < 0.01表示差异极显著。
2. 结果与分析
2.1 藜麦副产物中常规养分及饲用价值评估
秕谷中粗蛋白和粗脂肪含量极显著高于糠、麸皮及秸秆(P < 0.01)(表1),且秕谷中粗蛋白含量高于苜蓿干草和青贮玉米,糠、麸皮粗蛋白含量高于青贮玉米;糠和麸皮中粗灰分含量极显著高于秕谷和秸秆(P < 0.01);秸秆中中性洗涤纤维和酸性洗涤纤维含量极显著高于秕谷、糠和麸皮(P < 0.01),且酸性洗涤纤维低于苜蓿干草,中性洗涤纤维低于玉米青贮。藜麦秕谷、糠和麸皮中总可消化养分和粗饲料相对值均高于藜麦秸秆、苜蓿干草和青贮玉米(表2)。
表 1 藜麦副产物常规营养成分Table 1. Routine nutrients in Chenopodium quinoa byproducts类项
Item干物质
Dry
matter/%粗蛋白
Crude
protein/%粗脂肪
Ether
extract/%粗灰分
Ash/%中性洗涤纤维
Neutral detergent
fibers/%酸性洗涤纤维
Acid detergent
fibers/%秕谷
Blighted grain89.99 ± 0.14Aa 17.53 ± 0.03Aa 5.84 ± 0.27Aa 3.49 ± 0.16Cd 23.77 ± 3.36Bb 17.16 ± 1.91Bb 糠 Chaff 91.11 ± 0.80Aa 10.51 ± 0.18Cc 3.86 ± 0.78Bb 15.46 ± 0.37Ab 27.68 ± 7.18Bb 11.77 ± 2.01Cc 麸皮 Bran 83.47 ± 4.54Bb 12.42 ± 0.17Bb 3.53 ± 0.81Bb 16.32 ± 0.03Aa 25.53 ± 2.64Bb 17.54 ± 3.16Bb 秸秆Straw 87.20 ± 0.41ABab 6.96 ± 0.06Dd 3.25 ± 0.73Bb 8.75 ± 0.67Bc 51.03 ± 1.30Aa 33.95 ± 2.96Aa 苜蓿干草
Alfalfa hay[18]94.19 15.10 0.15 10.45 46.24 38.51 玉米青贮
Corn silage [19]89.58 8.68 2.72 5.32 57.84 33.94 同列不同小写字母表示差异显著(P < 0.05),不同大写字母表示极显著(P < 0.01);下表同。
Different lowercase and capital letters within the same column indicate significant differences at 0.05 and 0.01 levels. This is applicable for the following tables as well.表 2 藜麦副产物饲用价值评估Table 2. Feeding value evaluation of Chenopodium quinoa byproducts类项
Item总可消化养分
Total digestible nutrients干物质消化率
Digestible dry matter干物质采食量
Dry matter intake粗饲料相对值
Relative feed value秕谷 Blighted grain 69.48 75.53 5.05 295.59 糠 Chaff 73.53 79.73 4.34 268.05 麸皮 Bran 69.20 75.24 4.70 274.13 秸秆 Straw 56.87 62.45 2.35 113.85 苜蓿干草 Alfalfa hay[16] 53.43 58.90 2.59 118.26 玉米青贮 Corn silage[20] 56.87 62.46 2.07 100.45 2.2 藜麦副产物抗营养因子
2.2.1 藜麦副产物中皂苷的检测
常春藤和齐墩果酸型皂苷标准曲线分别为y = 2.6948x – 0.1867和y = 3.034x – 0.006 4 (图1),相关系数均在0.9996以上,说明具有较理想的线性拟合度,且线性关系较强,得出的结果真实可信。藜麦糠中常春藤型和齐墩果酸型皂苷含量极显著高于藜麦秕谷、麸皮和秸秆(P < 0.01),其中藜麦秸秆中两种皂苷含量最低(表3)。
表 3 藜麦副产物皂苷的含量Table 3. Saponin contents of Chenopodium quinoa byproducts类项
Item常春藤型皂苷
Ivy saponins/
(μg·g−1)齐墩果酸型皂苷
Oleanolic acid-type
saponins/(μg·g−1)秕谷
Blighted grain806.52 ± 29.90Bb 1 995.55 ± 31.44Bb 糠 Chaff 4 158.71 ± 25.68Aa 8 292.30 ± 48.93Aa 麸皮 Bran 401.23 ± 11.46Cc 636.56 ± 16.66Cc 秸秆 Straw 9.91 ± 0.39Dd 1.03 ± 0.09Dd 2.2.2 藜麦副产物中非淀粉多糖的含量
甘露糖和葡萄糖含量在5~100 μg·mL−1,半乳糖和木糖含量在12.5~200 μg·mL−1,各单糖质量浓度和峰面积具有理想的线性关系,相关系数在0.999 1~0.999 9 (表4)。藜麦秸秆中总NSP及葡萄糖、半乳糖和木糖3种单糖的含量极显著高于藜麦秕谷、麸皮和糠(P < 0.01)(表5)。
表 5 藜麦副产物非淀粉多糖的含量Table 5. Non-starch polysaccharides content of Chenopodium quinoa byproducts类项
Item甘露糖
Mannose/(mg·g−1)葡萄糖
Glucose/(mg·g−1)半乳糖
Galactose/(mg·g−1)木糖
Xylose/(mg·g−1)总非淀粉多糖
Total non-starch polysaccharides/(mg·g−1)秕谷 Blighted grain 1.30 ± 0.28Cc 12.82 ± 0.24Bb 5.83 ± 0.02Cc 2.06 ± 0.01Dd 22.01 ± 0.22Dd 糠 Chaff 2.20 ± 0.19Bb 9.89 ± 0.28Dd 19.83 ± 0.85Bb 5.20 ± 0.23Cc 37.12 ± 1.38Cc 麸皮 Bran 3.03 ± 0.47Aa 11.93 ± 0.16Cc 21.01 ± 0.29Bb 8.47 ± 0.13Bb 44.45 ± 0.13Bb 秸秆 Straw 2.86 ± 0.11ABa 22.07 ± 0.32Aa 22.86 ± 0.16Aa 62.06 ± 0.31Aa 109.85 ± 0.81Aa 表 4 各单糖标准溶液的线性方程、线性范围及相关系数Table 4. Simple linear equations of standard curve, linear range, and correlation coefficient单糖
Simple sugar标准曲线
Standard curve相关系数
Correlation coefficient线性范围
Linear range/(μg·mL−1)甘露糖 Mannose y = 0.058 8x + 0.683 6 R2 = 0.999 1 5~100 葡萄糖 Glucose y = 2.101 8x − 3.105 9 R2 = 0.999 1 5~100 半乳糖 Galactose y = 2.033 0x − 7.026 5 R2 = 0.999 6 12.5~200 木糖 Xylose y = 3.237 6x − 10.493 R2 = 0.999 9 12.5~200 2.2.3 藜麦副产物中植酸和单宁的检测
植酸和单宁的标准曲线分别为y = 2.028 4x + 0.009 6,R2 = 0.993;y =1.243 4x – 0.042 2,R2 = 0.998 0;x为植酸钠、没食子酸标准品浓度(mg·mL−1),y为吸光值ΔA (A2 – A1)(图2)。藜麦糠、麸皮和秸秆中植酸含量极显著高于秕谷(P < 0.01),糠中单宁含量极显著高于麸皮、秸秆和秕谷(P < 0.01)(表6)。
表 6 藜麦副产物植酸和单宁的含量Table 6. Phytic acid and tannin contents of Chenopodium quinoa byproducts类项
Item植酸
Phytic acid/(mg·g−1)单宁
Tannins/(mg·g−1)秕谷 Blighted grain 14.32 ± 2.58Cc 1.52 ± 0.09Cc 糠 Chaff 30.27 ± 1.03Aa 4.98 ± 0.29Aa 麸皮 Bran 28.67 ± 1.52ABb 3.12 ± 0.17Bb 秸秆 Straw 25.38 ± 1.49Bb 1.73 ± 0.05Cc 2.3 灰色关联度综合评价
通过灰色关联度综合评价可知,不同藜麦副产物的关联值排序为秕谷 > 麸皮 > 糠 > 秸秆,且不同藜麦副产物的加权关联度具有与等权关联度相同的排序(表7)。
表 7 藜麦副产物的关联度及排序Table 7. Correlation degree and order of Chenopodium quinoa byproduct类项
Item等权关联度 Equal weight correlation 权重系数
Weight coefficient加权关联度 Weighted correlation 关联值 Associated value 排序 Rank 关联值 Associated value 排序 Rank 秕谷 Blighted grain 0.767 8 Ⅰ 0.211 3 0.037 8 Ⅰ 糠 Chaff 0.620 3 Ⅲ 0.170 7 0.030 6 Ⅲ 麸皮 Bran 0.627 4 Ⅱ 0.172 7 0.030 9 Ⅱ 秸秆 Straw 0.586 6 Ⅳ 0.161 4 0.028 9 Ⅳ 3. 讨论
3.1 藜麦副产物中常规养分含量分析
研究发现,不但藜麦籽粒有丰富的营养价值,其副产物中也含有多种营养成分,且蛋白质含量较高。本研究中秕谷、麸皮和糠中粗蛋白含量分别达到17.53%、12.42%和10.51%,均显著高于秸秆(P < 0.05),远高于青贮玉米(8.68%),尤其是秕谷,其蛋白含量高于优质进口苜蓿干草(15.10%),藜麦副产物较高的蛋白含量使其具备作为优质饲料的潜力。RFV可综合反映NDF和ADF对饲草料品质的影响,一般认为饲草中NDF和ADF的含量与RFV呈负相关关系,其含量越高,RFV越低。本研究中,藜麦秸秆的RFV低于藜麦秕谷、糠和麸皮,但高于青贮玉米饲料。而且本研究中所测得的藜麦秸秆中蛋白含量(6.96%)也与玉米秸秆相近(6.14%) [10],所以,藜麦秸秆作为饲料比玉米秸秆的饲用优势更加明显。
通常可用TDN来评价机体的消化性能和饲草料的消化率,一般认为TDN与蛋白含量成正比,与纤维含量成反比[21],由表2可知,秕谷、麸皮和糠的TDN高于青贮玉米饲料和苜蓿干草。也有报道显示[19],与玉米秸秆相比,以藜麦秸秆制成的全价颗粒饲料,其饲料消化率和消化性能更好。综上所述,从营养价值的角度来分析,藜麦副产物秕谷、麸皮、糠和秸秆均具有良好的饲用价值。
3.2 藜麦副产物中抗营养因子含量分析
虽然藜麦副产物作为畜禽饲料具有较大的潜力和优势,但是其营养价值的高效利用仍然受到多种因素的制约,尤其是抗营养因子。皂苷、单宁和植酸是藜麦中主要的抗营养因子[22]。研究得出,三萜类皂苷在藜麦的花、果实、叶片、种皮和种子中均有发现,且主要的三帖皂苷是齐墩果酸和常春藤型皂苷[23-24]。本研究通过HPLC测得藜麦副产物中上述两种类型皂苷,且发现藜麦糠中两种皂苷含量极显著高于其他组(P < 0.01),秕谷次之,秸秆最低。皂苷会产生苦味物质,降低饲料的适口性,从而对动物的采食量、消化能力和生产性能产生负面影响[25]。在鸡日粮中加入100~400 g·kg−1不同水平的藜麦,发现鸡的增重速率随着其含量的增加而下降,说明日粮中添加过量未去皂苷的藜麦籽粒对鸡的增重产生影响[26],故在畜禽饲料中添加藜麦时,首先应消除或减少皂苷的含量。藜麦籽粒及副产物用来饲喂非反刍动物时,其量应超过日粮的30%,从而避免对畜禽的摄食行为和生产性能带来不利影响[27]。对于反刍动物而言,适量的皂苷有助于增强其消化机能,可与微生物细胞膜上所含的胆固醇发生作用,使得细胞凋亡,从而有效减少瘤胃中产甲烷古菌和原生动物的数量,进而使温室气体,如甲烷等的产生量下降[28-31]。有研究表明,20%的藜麦麸皮可以有效改善畜禽的生产性能[32]。Jacobsen等[26]在鸡日粮中添加150 g·kg−1去皮藜麦,饲喂39 d,鸡的死亡率显著高于添加同等水平生藜麦组。这可能是由于藜麦皮中所含皂苷是一种具有广泛生理活性的功能物质,如抗菌消炎、缓解疼痛、降低氧化速度等,还可增强机体免疫力[33-34]。NSP在动物肠道内可产生粘性胶体物质,这种胶体物质会阻断底物与酶结合的途径,使得已被消化的物质无法向肠壁运送,而影响谷物的消化和营养物质的吸收。本研究通过HPLC测得藜麦副产物中NSP中的4种单糖即甘露糖、葡萄糖、半乳糖和木糖,且藜麦秸秆中葡萄糖、半乳糖和木糖3种单糖及总NSP的含量极显著高于藜麦秕谷、麸皮和糠(P < 0.01)。
与玉米及其副产物中总NSP相比,藜麦秕谷、麸皮和糠中的含量均低于玉米及其副产物,而藜麦秸秆中的含量与喷浆玉米皮接近[35]。单宁会产生较强的苦涩味,能与蛋白质发生反应形成高分子沉淀使得机体难以消化吸收[36]。谷类和豆类中的磷大多以植酸的形式存在,可与不同的矿物质,如Zn2+ 、Fe2+ 、Ca2+ 等作用产生不易被机体吸收的植酸盐络合物;还可通过与蛋白质结合,降低其生理功能和生物活性[37-38]。有研究显示,皂苷极性较大易溶于水,一般可通过水洗、浸泡等方法去除;采用干处理技术可显著降低皂苷、植酸和单宁的含量,饲料中添加酶制剂也可降低植酸和非淀粉多糖,另外用微生物发酵饲料也可有效地减少抗营养成分和增加氨基酸含量[39-41]。
3.3 灰色关联度分析
藜麦不同副产物中常规养分和抗营养因子的含量具有显著性差异,故不能只凭借某个指标作出评价。因此有必要对每个指标进一步做标准化处理,若关联度越大,则表明该藜麦副产物越趋于参考数列,综合营养价值越好。通过灰色关联度综合评价可知,不同藜麦副产物的关联值排序为秕谷 > 麸皮 > 糠 > 秸秆,且不同藜麦副产物的加权关联度具有与等权关联度相同的排序。
4. 结论
本研究对藜麦副产物的常规养分和抗营养因子的检测与分析以及与苜蓿干草、玉米青贮等粗饲料比较得出,藜麦秕谷、麸皮、糠和秸秆均具有饲用优势和潜力,饲用价值表现为秕谷 > 麸皮 > 糠 > 秸秆。
参考文献
[1] RANGANATHAN J. Food and Agriculture Organization, World Health Organization. Sustainable Healthy Diets: Guiding Principles. Rome, Italy: Food and Agriculture Organization, 2019.
[2] VEGA-GÁLVEZ A, MIRANDA M, VERGARA J, URIBE E, PUENTE L, MARTÍNEZ E A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 2010, 90(15): 2541-2547. doi: 10.1002/jsfa.4158
[3] MELINI V, MELINI F. Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods, 2021, 10(2): 351. doi: 10.3390/foods10020351
[4] KOZIOL M J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 1992, 5(1): 35-68. doi: 10.1016/0889-1575(92)90006-6
[5] ANDO H, CHEN Y, TANG H, SHIMIZU M, WATANABE K, MITSUNAGA T. Food components in fractions of quinoa seed. Food Science Technology Research, 2002, 8(1): 80-84. doi: 10.3136/fstr.8.80
[6] BHARGAVA A, SHUKLA S, OHRI D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research, 2007, 101(1): 104-116. doi: 10.1016/j.fcr.2006.10.001
[7] KONISHI Y, HIRANO S, TSUBOI H, WADA M. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 2004, 68(1): 231-234. doi: 10.1271/bbb.68.231
[8] 刘敏国, 杨倩, 杨梅, 杨惠敏. 藜麦的饲用潜力及适应性. 草业科学, 2017, 34(6): 1264-1271. doi: 10.11829/j.issn.1001-0629.2016-0508 LIU M G, YANG Q, YANG M, YANG H M. Advances in the studies on feeding potential and adaptability of Quinoa. Pratacultural Science, 2017, 34(6): 1264-1271. doi: 10.11829/j.issn.1001-0629.2016-0508
[9] OUDE GROENIGER J, VAN LENTHE F J, BEENACKERS M A, KAMPHUIS C B. Does social distinction contribute to socioeconomic inequalities in diet: The case of “superfoods” consumption. International Journal of Behavioral Nutrition and Physical Activity, 2017, 14(1): 40.
[10] 陈光, 孙旸, 王刚, 陈欢, 唐珊珊, 于潇潇. 藜麦全植株的综合利用及开发前景. 吉林农业大学学报, 2018, 40(1): 1-6. CHENG G, SUN Y, WANG G, CHEN H, TANG S S, YU X X. Comprehensive utilization and development prospect of whole-plant of Chenopodium quinoa. Journal of Jilin Agricultural University, 2018, 40(1): 1-6.
[11] JACOBSEN S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 2003, 19(1/2): 167-177. doi: 10.1081/FRI-120018883
[12] CARLSON D, FERNANDEZ JA, POULSEN HD, NIELSEN B, JACOBSEN S E. Effects of quinoa hull meal on piglet performance and intestinal epithelial physiology. Journal of Animal Physiology and Animal Nutrition, 2012, 96(2): 198-205. doi: 10.1111/j.1439-0396.2011.01138.x
[13] REPO-CARRASCO R, ESPINOZA C, JACOBSEN S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaiwa (Chenopodium pallidicaule). Food Reviews International, 2003, 19(1): 179-189.
[14] NASCIMENTO AC, MOTA C, COELHO I, GUEIFãO S, SANTOS M, MATOS AS, GIMENEZ A, LOBO M. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and purple corn(Zea mays L.) consumed in the north of Argentina: proximates, minerals and trace elements. Food Chemistry, 2014, 148(4): 420-426.
[15] 袁缨. 动物营养学实验教程. 北京: 中国农业大学出版社, 2006: 12-32. YUAN Y. Animal Nutrition Experiment Course. Beijing: China Agricultural University Press, 2006: 12-32.
[16] 熊乙, 许庆方, 玉柱, 吉高, 欧翔, 马菱艺, 梁琪, 史悦, 李金俐. 不同苜蓿干草营养成分及饲用价值评价. 中国草地学报, 2018, 26(5): 1262-1266. XIONG Y, XU Q F, YU Z, JI G, OU X, MA L Y, LIANG Q, SHI Y, LI J L. Evaluation of nutritional components and feeding value of different alfalfa hay. Chinese Journal of Grassland, 2018, 26(5): 1262-1266.
[17] FAN B, LI T, SONG X, WU C, QIAN C. A rapid, accurate and sensitive method for determination of monosaccharides in different varieties of osmanthus fragrans lour by pre-Column derivatization with HPLC-MS/MS. International Journal of Biological Macromolecules, 2019, 125: 221-231. doi: 10.1016/j.ijbiomac.2018.12.033
[18] 路平乐, 魏玉明, 杨发荣, 江小帆, 李倩, 赵生国, 蔡原, 焦婷. 体外产气法评价全株藜麦与全株玉米混合青贮饲料饲用价值. 草地学报, 2021, 29(11): 2391-2398. LU P L, WEI Y M, YANG F R, JIANG X F, LI Q, ZHAO S G, CAI Y, JIAO T. The feeding value of whole plant green quinoa and whole plant green corn mixed silage were evaluated using an in vitro gas production technique. Chinese Journal of Grassland, 2021, 29(11): 2391-2398.
[19] KARIMIZADEH E, CHAJI M, MOHAMMADABADI T. Effects of physical form of diet on nutrient digestibility, rumen fermentation, rumination, growth performance and protozoa population of finishing lambs. Animal Nutrition, 2017, 3(2): 139-144. doi: 10.1016/j.aninu.2017.01.004
[20] 王建福. 玉米秸秆和苜蓿饲用化利用价值评价与数据库建立. 兰州: 甘肃农业大学博士学位论文, 2017. WANG J F. Evaluation of maize straw and alfalfa feeding quality and it’s database construction. PhD Thesis. Lanzhou: Gansu Agricultural University, 2017.
[21] 张琴萍, 邢宝, 周帮伟, 孙梦涵, 么杨, 杨修仕, 任贵兴, 秦培友. 藜麦饲用研究进展与应用前景分析. 中国草地学报, 2020, 42(2): 162-168. ZHANG Q P, XING B, ZHOU B W, SUN M H, YAO Y, YANG X S, REN G X, QIN P Y. Research progress and application prospects of quinoa (Chenopodium quinoa Willd.) as feed source. Chinese Journal of Grassland, 2020, 42(2): 162-168.
[22] FILHO A M, PIROZI M R, BORGES J T, PINHEIRO SANT’ANA H M, CHAVES J, COIMBRA J S. Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 2017, 57(8): 1618-1630. doi: 10.1080/10408398.2014.1001811
[23] CUADRADOC, AYETG, BURBANOC, MUZQUIZM, CAMCHOL, CAVIERESE. Occurrence of saponins and sapogenols in Andeancrops. Journal of the Science of Food & Agriculture, 1995, 67(2): 169-172.
[24] BURNOUF-RADOSEVICH M, DELFEL NE, ENGLAND R. Gas chromatography-mass spectrometry of oleanane- and ursane-type triterpenes: Application to Chenopodium quinoa triterpenes. Phytochemistry, 1985, 24(9): 2063-2066. doi: 10.1016/S0031-9422(00)83122-2
[25] ROGOSIC J, ESTELL R E, IVANKOVIC S, RAZOW J. Potential mechanisms to increase shrub intake and performance of small ruminants in Mediterranean shrubby ecosystems. Small Ruminant Research, 2008, 74(1-3): 1-15. doi: 10.1016/j.smallrumres.2007.07.006
[26] JACOBSEN E E, SKADHAUGE B, JACOBSEN S E. Effect of dietary inclusion of quinoa on broiler growth performance. Animal Feed Science and Technology, 1997, 65(65): 5-14.
[27] BAZILE D, BERTERO H D, NIETO C. State of the Art Report on Quinoa Around the World in 2013. Santiago, Chile: FAO; Montpellier, France: CIRAD, 2014: 250-265.
[28] MAKKAR H P S, BECKER K. Adaptation of cattle to tannins: Role of proline-rich proteins in oak-fed cattle. Animal Science, 1998, 67(2): 277-281. doi: 10.1017/S1357729800010031
[29] JAYANEGARA A, LEIBER F, KREUZER M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 2012, 96(3): 365-375. doi: 10.1111/j.1439-0396.2011.01172.x
[30] BARROS-RODRÍGUEZ M A, SOLORIO-SÁNCHEZ F J, SANDOVAL-CASTRO C A. Effect of intake of diets containing tannins and saponins on in vitro gas production and sheep performance. Animal Production Science, 2014, 54(9): 1486-1489. doi: 10.1071/AN14294
[31] ABREU A, CARULLA J E, LASCANO C E, DÍAZ T E, KREUZER M, HESS H D. Effects of sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Journal of Animal Science, 2004, 82(5): 1392-1400. doi: 10.2527/2004.8251392x
[32] SÁNCHEZ GAVILANES D E. Degradación ruminal de la materia seca y comportamiento productivo de ovinos consumiendo forraje de Chenopodium quinoa. PhD Thesis. Colombia: Universidad Técnica de Ambato, 2016.
[33] YAO Y, YANG X, SHI Z, REN G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. Journal of Food Science, 2014, 79(5): 1018-1023. doi: 10.1111/1750-3841.12425
[34] GÜÇIÜ-ÜSTÜNDAĞ Ö, MAZZA G. Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition, 2007, 47(3): 231-258. doi: 10.1080/10408390600698197
[35] 吴端钦, 林谦, 戴求仲, 蒋桂韬, 张旭. 玉米及其加工副产品非淀粉多糖含量研究. 中国饲料, 2015(23): 7-9. WU D Q, LIN Q, DAI Q Z, JIANG G T, ZHANG X. Study on non-starch polysaccharide content in corn and its by-products. China Feed, 2015(23): 7-9.
[36] HASSAN S, AHMAD N, AHMAD T, IMRANM, XUCHM, KHAN M K. Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient. Journal of Food Processing and Preservation, 2019, 43(5): e13924. doi: 10.1111/jfpp.13924
[37] MORAES R A, OLIVEIRA F D, QUEIROZ V. Domestic processing effects on antioxidant capacity, total phenols and phytate content of sorghum. Current Nutrition & Food Science, 2020, 4(16): 501-507.
[38] FEIZOLLAHI E, MIRMAHDI RS, ZOGHI A, ZIJLSTRA RT, ROOPESH MS, VASANTHAN T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, 2021, 143(1): 110284.
[39] FUGLIE L J. The Miracle Tree: Moringa Oleifera, Natural Nutrition for the Tropics. Dakar: Church World Service, 1999: 68.
[40] VITTI D, NOZELLA E F, ABDALLA A L, BUENO I C S, SILVA FILHO J C, COSTA C, GODOY P B. The effect of drying and urea treatment on nutritional and anti-nutritional components of browses collected during wet and dry seasons. Animal Feed Science and Technology, 2005, 122(1): 123-133.
[41] SUN H, TANG J W, YAO X H, WU Y F, WANG X, FENG X. Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers. Trop Anim Health Prod, 2013, 45(4): 987-993. doi: 10.1007/s11250-012-0322-y
-
表 1 藜麦副产物常规营养成分
Table 1 Routine nutrients in Chenopodium quinoa byproducts
类项
Item干物质
Dry
matter/%粗蛋白
Crude
protein/%粗脂肪
Ether
extract/%粗灰分
Ash/%中性洗涤纤维
Neutral detergent
fibers/%酸性洗涤纤维
Acid detergent
fibers/%秕谷
Blighted grain89.99 ± 0.14Aa 17.53 ± 0.03Aa 5.84 ± 0.27Aa 3.49 ± 0.16Cd 23.77 ± 3.36Bb 17.16 ± 1.91Bb 糠 Chaff 91.11 ± 0.80Aa 10.51 ± 0.18Cc 3.86 ± 0.78Bb 15.46 ± 0.37Ab 27.68 ± 7.18Bb 11.77 ± 2.01Cc 麸皮 Bran 83.47 ± 4.54Bb 12.42 ± 0.17Bb 3.53 ± 0.81Bb 16.32 ± 0.03Aa 25.53 ± 2.64Bb 17.54 ± 3.16Bb 秸秆Straw 87.20 ± 0.41ABab 6.96 ± 0.06Dd 3.25 ± 0.73Bb 8.75 ± 0.67Bc 51.03 ± 1.30Aa 33.95 ± 2.96Aa 苜蓿干草
Alfalfa hay[18]94.19 15.10 0.15 10.45 46.24 38.51 玉米青贮
Corn silage [19]89.58 8.68 2.72 5.32 57.84 33.94 同列不同小写字母表示差异显著(P < 0.05),不同大写字母表示极显著(P < 0.01);下表同。
Different lowercase and capital letters within the same column indicate significant differences at 0.05 and 0.01 levels. This is applicable for the following tables as well.表 2 藜麦副产物饲用价值评估
Table 2 Feeding value evaluation of Chenopodium quinoa byproducts
类项
Item总可消化养分
Total digestible nutrients干物质消化率
Digestible dry matter干物质采食量
Dry matter intake粗饲料相对值
Relative feed value秕谷 Blighted grain 69.48 75.53 5.05 295.59 糠 Chaff 73.53 79.73 4.34 268.05 麸皮 Bran 69.20 75.24 4.70 274.13 秸秆 Straw 56.87 62.45 2.35 113.85 苜蓿干草 Alfalfa hay[16] 53.43 58.90 2.59 118.26 玉米青贮 Corn silage[20] 56.87 62.46 2.07 100.45 表 3 藜麦副产物皂苷的含量
Table 3 Saponin contents of Chenopodium quinoa byproducts
类项
Item常春藤型皂苷
Ivy saponins/
(μg·g−1)齐墩果酸型皂苷
Oleanolic acid-type
saponins/(μg·g−1)秕谷
Blighted grain806.52 ± 29.90Bb 1 995.55 ± 31.44Bb 糠 Chaff 4 158.71 ± 25.68Aa 8 292.30 ± 48.93Aa 麸皮 Bran 401.23 ± 11.46Cc 636.56 ± 16.66Cc 秸秆 Straw 9.91 ± 0.39Dd 1.03 ± 0.09Dd 表 5 藜麦副产物非淀粉多糖的含量
Table 5 Non-starch polysaccharides content of Chenopodium quinoa byproducts
类项
Item甘露糖
Mannose/(mg·g−1)葡萄糖
Glucose/(mg·g−1)半乳糖
Galactose/(mg·g−1)木糖
Xylose/(mg·g−1)总非淀粉多糖
Total non-starch polysaccharides/(mg·g−1)秕谷 Blighted grain 1.30 ± 0.28Cc 12.82 ± 0.24Bb 5.83 ± 0.02Cc 2.06 ± 0.01Dd 22.01 ± 0.22Dd 糠 Chaff 2.20 ± 0.19Bb 9.89 ± 0.28Dd 19.83 ± 0.85Bb 5.20 ± 0.23Cc 37.12 ± 1.38Cc 麸皮 Bran 3.03 ± 0.47Aa 11.93 ± 0.16Cc 21.01 ± 0.29Bb 8.47 ± 0.13Bb 44.45 ± 0.13Bb 秸秆 Straw 2.86 ± 0.11ABa 22.07 ± 0.32Aa 22.86 ± 0.16Aa 62.06 ± 0.31Aa 109.85 ± 0.81Aa 表 4 各单糖标准溶液的线性方程、线性范围及相关系数
Table 4 Simple linear equations of standard curve, linear range, and correlation coefficient
单糖
Simple sugar标准曲线
Standard curve相关系数
Correlation coefficient线性范围
Linear range/(μg·mL−1)甘露糖 Mannose y = 0.058 8x + 0.683 6 R2 = 0.999 1 5~100 葡萄糖 Glucose y = 2.101 8x − 3.105 9 R2 = 0.999 1 5~100 半乳糖 Galactose y = 2.033 0x − 7.026 5 R2 = 0.999 6 12.5~200 木糖 Xylose y = 3.237 6x − 10.493 R2 = 0.999 9 12.5~200 表 6 藜麦副产物植酸和单宁的含量
Table 6 Phytic acid and tannin contents of Chenopodium quinoa byproducts
类项
Item植酸
Phytic acid/(mg·g−1)单宁
Tannins/(mg·g−1)秕谷 Blighted grain 14.32 ± 2.58Cc 1.52 ± 0.09Cc 糠 Chaff 30.27 ± 1.03Aa 4.98 ± 0.29Aa 麸皮 Bran 28.67 ± 1.52ABb 3.12 ± 0.17Bb 秸秆 Straw 25.38 ± 1.49Bb 1.73 ± 0.05Cc 表 7 藜麦副产物的关联度及排序
Table 7 Correlation degree and order of Chenopodium quinoa byproduct
类项
Item等权关联度 Equal weight correlation 权重系数
Weight coefficient加权关联度 Weighted correlation 关联值 Associated value 排序 Rank 关联值 Associated value 排序 Rank 秕谷 Blighted grain 0.767 8 Ⅰ 0.211 3 0.037 8 Ⅰ 糠 Chaff 0.620 3 Ⅲ 0.170 7 0.030 6 Ⅲ 麸皮 Bran 0.627 4 Ⅱ 0.172 7 0.030 9 Ⅱ 秸秆 Straw 0.586 6 Ⅳ 0.161 4 0.028 9 Ⅳ -
[1] RANGANATHAN J. Food and Agriculture Organization, World Health Organization. Sustainable Healthy Diets: Guiding Principles. Rome, Italy: Food and Agriculture Organization, 2019.
[2] VEGA-GÁLVEZ A, MIRANDA M, VERGARA J, URIBE E, PUENTE L, MARTÍNEZ E A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 2010, 90(15): 2541-2547. doi: 10.1002/jsfa.4158
[3] MELINI V, MELINI F. Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods, 2021, 10(2): 351. doi: 10.3390/foods10020351
[4] KOZIOL M J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 1992, 5(1): 35-68. doi: 10.1016/0889-1575(92)90006-6
[5] ANDO H, CHEN Y, TANG H, SHIMIZU M, WATANABE K, MITSUNAGA T. Food components in fractions of quinoa seed. Food Science Technology Research, 2002, 8(1): 80-84. doi: 10.3136/fstr.8.80
[6] BHARGAVA A, SHUKLA S, OHRI D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research, 2007, 101(1): 104-116. doi: 10.1016/j.fcr.2006.10.001
[7] KONISHI Y, HIRANO S, TSUBOI H, WADA M. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry, 2004, 68(1): 231-234. doi: 10.1271/bbb.68.231
[8] 刘敏国, 杨倩, 杨梅, 杨惠敏. 藜麦的饲用潜力及适应性. 草业科学, 2017, 34(6): 1264-1271. doi: 10.11829/j.issn.1001-0629.2016-0508 LIU M G, YANG Q, YANG M, YANG H M. Advances in the studies on feeding potential and adaptability of Quinoa. Pratacultural Science, 2017, 34(6): 1264-1271. doi: 10.11829/j.issn.1001-0629.2016-0508
[9] OUDE GROENIGER J, VAN LENTHE F J, BEENACKERS M A, KAMPHUIS C B. Does social distinction contribute to socioeconomic inequalities in diet: The case of “superfoods” consumption. International Journal of Behavioral Nutrition and Physical Activity, 2017, 14(1): 40.
[10] 陈光, 孙旸, 王刚, 陈欢, 唐珊珊, 于潇潇. 藜麦全植株的综合利用及开发前景. 吉林农业大学学报, 2018, 40(1): 1-6. CHENG G, SUN Y, WANG G, CHEN H, TANG S S, YU X X. Comprehensive utilization and development prospect of whole-plant of Chenopodium quinoa. Journal of Jilin Agricultural University, 2018, 40(1): 1-6.
[11] JACOBSEN S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 2003, 19(1/2): 167-177. doi: 10.1081/FRI-120018883
[12] CARLSON D, FERNANDEZ JA, POULSEN HD, NIELSEN B, JACOBSEN S E. Effects of quinoa hull meal on piglet performance and intestinal epithelial physiology. Journal of Animal Physiology and Animal Nutrition, 2012, 96(2): 198-205. doi: 10.1111/j.1439-0396.2011.01138.x
[13] REPO-CARRASCO R, ESPINOZA C, JACOBSEN S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaiwa (Chenopodium pallidicaule). Food Reviews International, 2003, 19(1): 179-189.
[14] NASCIMENTO AC, MOTA C, COELHO I, GUEIFãO S, SANTOS M, MATOS AS, GIMENEZ A, LOBO M. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and purple corn(Zea mays L.) consumed in the north of Argentina: proximates, minerals and trace elements. Food Chemistry, 2014, 148(4): 420-426.
[15] 袁缨. 动物营养学实验教程. 北京: 中国农业大学出版社, 2006: 12-32. YUAN Y. Animal Nutrition Experiment Course. Beijing: China Agricultural University Press, 2006: 12-32.
[16] 熊乙, 许庆方, 玉柱, 吉高, 欧翔, 马菱艺, 梁琪, 史悦, 李金俐. 不同苜蓿干草营养成分及饲用价值评价. 中国草地学报, 2018, 26(5): 1262-1266. XIONG Y, XU Q F, YU Z, JI G, OU X, MA L Y, LIANG Q, SHI Y, LI J L. Evaluation of nutritional components and feeding value of different alfalfa hay. Chinese Journal of Grassland, 2018, 26(5): 1262-1266.
[17] FAN B, LI T, SONG X, WU C, QIAN C. A rapid, accurate and sensitive method for determination of monosaccharides in different varieties of osmanthus fragrans lour by pre-Column derivatization with HPLC-MS/MS. International Journal of Biological Macromolecules, 2019, 125: 221-231. doi: 10.1016/j.ijbiomac.2018.12.033
[18] 路平乐, 魏玉明, 杨发荣, 江小帆, 李倩, 赵生国, 蔡原, 焦婷. 体外产气法评价全株藜麦与全株玉米混合青贮饲料饲用价值. 草地学报, 2021, 29(11): 2391-2398. LU P L, WEI Y M, YANG F R, JIANG X F, LI Q, ZHAO S G, CAI Y, JIAO T. The feeding value of whole plant green quinoa and whole plant green corn mixed silage were evaluated using an in vitro gas production technique. Chinese Journal of Grassland, 2021, 29(11): 2391-2398.
[19] KARIMIZADEH E, CHAJI M, MOHAMMADABADI T. Effects of physical form of diet on nutrient digestibility, rumen fermentation, rumination, growth performance and protozoa population of finishing lambs. Animal Nutrition, 2017, 3(2): 139-144. doi: 10.1016/j.aninu.2017.01.004
[20] 王建福. 玉米秸秆和苜蓿饲用化利用价值评价与数据库建立. 兰州: 甘肃农业大学博士学位论文, 2017. WANG J F. Evaluation of maize straw and alfalfa feeding quality and it’s database construction. PhD Thesis. Lanzhou: Gansu Agricultural University, 2017.
[21] 张琴萍, 邢宝, 周帮伟, 孙梦涵, 么杨, 杨修仕, 任贵兴, 秦培友. 藜麦饲用研究进展与应用前景分析. 中国草地学报, 2020, 42(2): 162-168. ZHANG Q P, XING B, ZHOU B W, SUN M H, YAO Y, YANG X S, REN G X, QIN P Y. Research progress and application prospects of quinoa (Chenopodium quinoa Willd.) as feed source. Chinese Journal of Grassland, 2020, 42(2): 162-168.
[22] FILHO A M, PIROZI M R, BORGES J T, PINHEIRO SANT’ANA H M, CHAVES J, COIMBRA J S. Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 2017, 57(8): 1618-1630. doi: 10.1080/10408398.2014.1001811
[23] CUADRADOC, AYETG, BURBANOC, MUZQUIZM, CAMCHOL, CAVIERESE. Occurrence of saponins and sapogenols in Andeancrops. Journal of the Science of Food & Agriculture, 1995, 67(2): 169-172.
[24] BURNOUF-RADOSEVICH M, DELFEL NE, ENGLAND R. Gas chromatography-mass spectrometry of oleanane- and ursane-type triterpenes: Application to Chenopodium quinoa triterpenes. Phytochemistry, 1985, 24(9): 2063-2066. doi: 10.1016/S0031-9422(00)83122-2
[25] ROGOSIC J, ESTELL R E, IVANKOVIC S, RAZOW J. Potential mechanisms to increase shrub intake and performance of small ruminants in Mediterranean shrubby ecosystems. Small Ruminant Research, 2008, 74(1-3): 1-15. doi: 10.1016/j.smallrumres.2007.07.006
[26] JACOBSEN E E, SKADHAUGE B, JACOBSEN S E. Effect of dietary inclusion of quinoa on broiler growth performance. Animal Feed Science and Technology, 1997, 65(65): 5-14.
[27] BAZILE D, BERTERO H D, NIETO C. State of the Art Report on Quinoa Around the World in 2013. Santiago, Chile: FAO; Montpellier, France: CIRAD, 2014: 250-265.
[28] MAKKAR H P S, BECKER K. Adaptation of cattle to tannins: Role of proline-rich proteins in oak-fed cattle. Animal Science, 1998, 67(2): 277-281. doi: 10.1017/S1357729800010031
[29] JAYANEGARA A, LEIBER F, KREUZER M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 2012, 96(3): 365-375. doi: 10.1111/j.1439-0396.2011.01172.x
[30] BARROS-RODRÍGUEZ M A, SOLORIO-SÁNCHEZ F J, SANDOVAL-CASTRO C A. Effect of intake of diets containing tannins and saponins on in vitro gas production and sheep performance. Animal Production Science, 2014, 54(9): 1486-1489. doi: 10.1071/AN14294
[31] ABREU A, CARULLA J E, LASCANO C E, DÍAZ T E, KREUZER M, HESS H D. Effects of sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Journal of Animal Science, 2004, 82(5): 1392-1400. doi: 10.2527/2004.8251392x
[32] SÁNCHEZ GAVILANES D E. Degradación ruminal de la materia seca y comportamiento productivo de ovinos consumiendo forraje de Chenopodium quinoa. PhD Thesis. Colombia: Universidad Técnica de Ambato, 2016.
[33] YAO Y, YANG X, SHI Z, REN G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. Journal of Food Science, 2014, 79(5): 1018-1023. doi: 10.1111/1750-3841.12425
[34] GÜÇIÜ-ÜSTÜNDAĞ Ö, MAZZA G. Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition, 2007, 47(3): 231-258. doi: 10.1080/10408390600698197
[35] 吴端钦, 林谦, 戴求仲, 蒋桂韬, 张旭. 玉米及其加工副产品非淀粉多糖含量研究. 中国饲料, 2015(23): 7-9. WU D Q, LIN Q, DAI Q Z, JIANG G T, ZHANG X. Study on non-starch polysaccharide content in corn and its by-products. China Feed, 2015(23): 7-9.
[36] HASSAN S, AHMAD N, AHMAD T, IMRANM, XUCHM, KHAN M K. Microwave processing impact on the phytochemicals of sorghum seeds as food ingredient. Journal of Food Processing and Preservation, 2019, 43(5): e13924. doi: 10.1111/jfpp.13924
[37] MORAES R A, OLIVEIRA F D, QUEIROZ V. Domestic processing effects on antioxidant capacity, total phenols and phytate content of sorghum. Current Nutrition & Food Science, 2020, 4(16): 501-507.
[38] FEIZOLLAHI E, MIRMAHDI RS, ZOGHI A, ZIJLSTRA RT, ROOPESH MS, VASANTHAN T. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International, 2021, 143(1): 110284.
[39] FUGLIE L J. The Miracle Tree: Moringa Oleifera, Natural Nutrition for the Tropics. Dakar: Church World Service, 1999: 68.
[40] VITTI D, NOZELLA E F, ABDALLA A L, BUENO I C S, SILVA FILHO J C, COSTA C, GODOY P B. The effect of drying and urea treatment on nutritional and anti-nutritional components of browses collected during wet and dry seasons. Animal Feed Science and Technology, 2005, 122(1): 123-133.
[41] SUN H, TANG J W, YAO X H, WU Y F, WANG X, FENG X. Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers. Trop Anim Health Prod, 2013, 45(4): 987-993. doi: 10.1007/s11250-012-0322-y
-
期刊类型引用(2)
1. 郭富成,林彤,曾孟琼,杨燕,林春. 云南藜麦产业发展与规划. 河北农业科学. 2024(02): 82-86+108 . 百度学术
2. 郭子渊,邓晓青,平椿源,吴晓蒙,李想,李道通,肖鑫鑫,孔瑞雪. 藜麦营养组分及功能活性研究进展. 食品安全质量检测学报. 2024(22): 49-57 . 百度学术
其他类型引用(1)