土壤干扰、秸秆覆盖及AM真菌对蒺藜苜蓿生长及土壤水稳性团聚体的影响
English
-
丛枝菌根(arbuscular mycorrhizal,AM)真菌能与多种作物共生,可为宿主植物提供一系列益处,如提高作物抗逆性(抗病、抗旱、抗盐碱、抗虫等)、增强作物对土壤养分的利用率以及促进植物生长[1-5]。此外,自然界中广泛存在的AM真菌在草地生态系统中有着不可替代的作用,它们不仅能够通过改善宿主特性提高植物的生存能力,缓解植被因各种不利因素造成的退化,而且能够建立植物–土壤之间的物质转移轨道,进而影响整个生态系统的功能性[6-7]。因此,AM真菌成为当前生态农业的热点。
不同耕作方式引起不同程度的土壤扰动会使根际土壤微生物群落结构发生显著变化[8]。作为土壤微生物群落的重要组成部分,AM真菌也会因土壤干扰而受到影响。密集耕作会降低AM真菌物种丰富度、孢子密度和AM真菌侵染率,而少耕或免耕则会促进菌根定植,从而增加植物对P的吸收,提高植物生物量[9-11]。同样的,秸秆覆盖也会对AM真菌产生显著影响,其原理在于提高了土壤有机物含量,改善了微生物的生存环境,从而提高了AM真菌在土壤中的丰度,促进了菌根的定植[12]。
不同耕作方式会影响土壤结构的稳定性,土壤干扰会显著影响土壤团聚体的分布和含量[13],相比之下,免耕则有利于土壤团聚体的形成和土壤结构的保持[14],因为降低土壤干扰可以改善土壤微生物群落结构以及提高土壤的有机质含量[15]。使用秸秆覆盖也有利于土壤结构的发展和土壤养分的保持,秸秆还田显著提高了团聚体在土壤中的比例,秸秆降解过程中释放的养分对土壤团聚体的形成有着直接和间接的促进作用[16]。
土壤干扰和秸秆覆盖对土壤团聚体的影响与其对土壤微生物群落结构和多样性的影响息息相关[17]。以往的研究多倾向于单一的土壤干扰或秸秆覆盖处理对土壤结构或土壤微生物群落的影响,而对于土壤干扰和秸秆覆盖两种因素对AM真菌–植物共生体以及土壤水稳性团聚体的影响则少有报道。本试验研究了土壤干扰、秸秆覆盖和AM真菌对豆科模式植物蒺藜苜蓿(Medicago truncatula)生长以及土壤水稳性团聚体形成的影响,以期为田间条件下利用保护性耕作(免耕和秸秆还田)促进AM真菌–作物共生体的形成、提高农业生产力和维持土壤结构提供理论依据。
1. 材料与方法
1.1 试验材料
植物材料为小麦(Triticum aestivum)和蒺藜苜蓿。试验所用AM真菌有两种,分别为根内球囊霉(Glomus intraradices)和珍珠巨孢囊霉(Gigaspora margarita)。试验用粗沙 ꞉ 细沙为3 ꞉ 1的沙(90%) + 土(10%)混合物,试验所用土壤和沙子用高压灭菌器灭菌,灭菌温度为121 ℃,灭菌1 h,24 h后,再次灭菌1 h。冷却后,置于110 ℃烘箱烘干。试验所用土壤和沙子的pH和速效磷含量如表1所列。
表 1 供试土壤pH和速效磷含量Table 1. pH and available phosphorus of the tested soil成分
Composition速效磷(干土) Available
phosphorus (dry soil)/(mg·kg−1)pH 细沙 Fine sand 4~6 6.9 粗沙 Coarse sand 5~7 6.8 土壤 Soil 10~12 6.9 沙 + 土混合物
Sand + soil mix6~7 6.9 1.2 试验设计
1.2.1 小麦生长试验
将140 g AM真菌接种物和1260 g沙土混合物装入塑料花盆中,设置4种接种处理:根内球囊霉、珍珠巨孢囊霉、根内球囊霉 + 珍珠巨孢囊霉和不接种处理(NM)。每个接种处理20盆,每盆为一个重复,共4个处理,共计80盆。按照段廷玉[18]所述方法进行小麦种子发芽前处理。发芽后,将其移至花盆内,每盆4株,7 d后,留2株生长一致的定栽。70 d后,齐地面剪取地上部分,称茎重和穗重。取2 g粉碎用于P含量测定,剩余秸秆,用作秸秆覆盖处理。
1.2.2 蒺藜苜蓿生长试验
取足量蒺藜苜蓿种子,用浓硫酸打破种子休眠。然后用3% NaClO溶液浸泡90 s,再用无菌水冲洗5次。将其摆放在含有湿滤纸的培养皿内,每个培养皿摆放30粒。在黑暗条件下,置于25 ℃下培养2 d。收获小麦后,4个接种处理均保留一半不干扰处理(NR,共40盆),另一半进行土壤干扰处理(共40盆)。干扰时,将小麦根剪碎后与捏碎后的土壤充分混合。4个接种处理在土壤干扰和不干扰处理下各取5盆(共40盆),每盆用4 g小麦秸秆覆盖(R)。每盆加入200 mL 磷含量为10 mg·kg−1 的KH2PO4溶液,以满足蒺藜苜蓿生长养分需求。
1.3 测量指标
AM真菌侵染率:植物根在洗去土壤后,取0.1~0.2 g,用Giovannetti和Mosse[19]所述方法测定丛枝菌根菌侵染率。
蒺藜苜蓿生物量:蒺藜苜蓿生长14 d后,齐地面剪取地上部分,在70 ℃烘箱内烘2 d,测量干重(g)。
磷含量:采用氯酸硫酸消煮法[20]测定土壤和植物磷含量。
菌丝长度(hyphal length density,HLD):按照文献[21]所述方法测定。
土壤团聚体:按照文献[22]所述方法测定。
1.4 数据分析
数据采用SPSS 17.0软件进行方差分析(ANOVA),应用最小显著性差异法(LSD)对平均数进行比较(P < 0.05)。
2. 结果
2.1 小麦试验结果
与不接种AM真菌(NM)相比,接种AM真菌显著降低了小麦的茎干重和穗干重(P < 0.05)。从AM真菌侵染率看,根内球囊霉的侵染率最高(77%),其次是混合接种的侵染率(69%),单独接种珍珠巨孢囊霉的侵染率最低(32%)。接种AM真菌未对小麦地上部分磷含量造成影响(表2)。
表 2 小麦AM真菌侵染率、茎干重、穗干重、磷含量Table 2. Arbuscular mycorrhizal fungi (AMF) infection rate, stem dry weight, grain dry weight, and phosphours content of wheat处理 Treatment AM真菌侵染率
AMF infection
rate/%茎干重
Stem dry
weight/g穗干重
Grain dry
weight/g磷含量
Phosphours content/
(mg·g−1)不接种 Non-mycorrhizal 0.00 ± 0.00c 3.33 ± 0.08a 3.33 ± 0.07a 0.25 ± 0.02a 根内球囊霉 Glomus intraradices 77.00 ± 0.04a 2.18 ± 0.02d 1.98 ± 0.03d 0.21 ± 0.02a 珍珠巨孢囊霉 Gigaspora margarita 32.00 ± 0.04b 2.94 ± 0.04b 2.38 ± 0.04b 0.25 ± 0.05a 混合接种 Mixed 69.00 ± 0.03a 2.41 ± 0.06c 2.30 ± 0.02c 0.19 ± 0.02a 同列不同小写字母表示AM真菌处理间差异显著(P < 0.05)。
Different lowercase letters within the same column indicate significant differences between AMF treatments at the 0.05 level.2.2 蒺藜苜蓿生物量
土壤干扰、秸秆覆盖以及接种AM真菌均对蒺藜苜蓿生物量造成了影响(图1)。与不干扰处理相比,土壤干扰显著降低了接种处理蒺藜苜蓿的茎叶干重(P < 0.05);与不加秸秆处理相比,秸秆覆盖显著增加了不接种处理以及在不干扰条件下接种根内球囊霉和混合接种处理蒺藜苜蓿的茎叶干重和接种珍珠巨孢囊霉处理的根干重(图1);与不接种处理相比,接种AM真菌显著提高了蒺藜苜蓿的茎叶干重和根干重。
2.3 植物组织磷含量
与不接种AM真菌处理相比,接种AM真菌显著提高了植物茎叶及根的磷含量(P < 0.05),接种根内球囊霉蒺藜苜蓿磷含量最高,其次是混合接种,接种珍珠巨孢囊霉最低。与不干扰处理相比,土壤干扰显著降低了接种根内球囊霉蒺藜苜蓿茎叶和接种珍珠巨孢囊霉蒺藜苜蓿根磷含量。蒺藜苜蓿对磷吸收并未受到秸秆覆盖的影响(P > 0.05) (图2)。
图 1 不同处理蒺藜苜蓿茎叶干重、根干重R:秸秆覆盖;NR:未加秸秆。不同小写字母表示不同干扰及AM真菌组合处理下存在显著差异(P < 0.05);*表示同一土壤干扰及AM真菌处理下,秸秆覆盖与不覆盖处理存在显著差异(P < 0.05);下图同。Figure 1. Shoot dry weight and root dry weight of Medicago truncatula under different treatmentsR: residue application; NR: non-residue. Different lowercase letters on the bars indicate significant differences between soil disturbance and arbuscular mycorrhizal fungi (AMF) combination treatments at the 0.05 level, and * indicate significant differences between residue application and non-residue under the same soil and AMF treatment at the 0.05 level; this is applicable for the following figures as well.2.4 菌丝长度(HLD)
与不接种处理相比,接种AM真菌显著提高了土壤中的HLD (P < 0.05),其中,接种珍珠巨孢囊霉的土壤HLD提高幅度最低(图3)。HLD未受到土壤干扰的影响(P > 0.05)。与不加秸秆处理相比,秸秆覆盖显著提高了混合接种处理的HLD。
2.5 土壤团聚体
与未接种处理相比,接种AM真菌整体上促进了土壤水稳性团聚体的形成。所有处理中,均是0.5~1 mm直径的土壤水稳性团聚体含量最高,> 2 mm直径的土壤水稳性团聚体含量最低。土壤干扰和秸秆覆盖对土壤水稳性团聚体的影响因其不同直径而异。土壤干扰显著降低了秸秆覆盖条件下接种珍珠巨孢囊霉处理 > 2 mm直径土壤水稳性团聚体的含量(P < 0.05),却显著提高了0.5~1 mm直径土壤水稳性团聚体含量。秸秆覆盖对> 2 mm直径土壤水稳性团聚体无显著影响(P > 0.05),显著提高了接种根内球囊霉处理下的0.5~2 mm直径土壤水稳性团聚体含量,却显著降低了接种根内球囊霉0.25~0.5 mm直径土壤水稳性团聚体含量(表3)。
表 3 不同处理下土壤水稳性团聚体分布Table 3. Composition of different water stable aggregates under different treatments处理
Treatment团聚体直径 Diameter > 2 mm 1~2 mm 0.5~1 mm 0.25~0.5 mm < 0.25 mm 根内球囊霉
Glomus intraradicesD + R 5.44 ± 1.02abc 23.85 ± 1.02hi 31.94 ± 0.64cde 24.86 ± 0.70b 13.91 ± 2.20abc D 6.16 ± 1.15ab 20.03 ± 0.41j 26.99 ± 0.63g 35.73 ± 0.67a 11.10 ± 0.61bc ND + R 6.71 ± 1.13a 26.02 ± 1.28defgh 32.02 ± 0.45cde 25.66 ± 1.04b 9.59 ± 0.50bc ND 6.16 ± 0.80ab 22.56 ± 0.90ij 26.60 ± 1.04g 34.65 ± 0.78a 10.03 ± 0.85bc 珍珠巨孢囊霉
Gigaspora margaritaD + R 3.34 ± 0.50bcde 28.82 ± 1.13abcde 37.51 ± 2.17a 16.11 ± 2.73e 14.22 ± 1.42ab D 2.13 ± 0.40de 30.67 ± 1.69ab 35.57 ± 1.95ab 18.44 ± 2.16de 13.19 ± 1.23abc ND + R 6.44 ± 3.24a 29.35 ± 1.71abc 31.39 ± 1.80cde 19.66 ± 1.69cde 13.16 ± 3.04abc ND 4.15 ± 0.75abcde 28.89 ± 0.90abcd 34.79 ± 0.99abc 18.78 ± 2.47de 13.38 ± 2.73abc 混合接种
MixedD + R 3.12 ± 0.47cde 25.10 ± 0.91ghi 31.27 ± 1.16de 23.58 ± 0.91bc 16.94 ± 2.64a D 5.44 ± 0.77abc 25.61 ± 1.10fghi 33.05 ± 0.52bcde 22.56 ± 2.63bcd 13.34 ± 2.51abc ND + R 4.71 ± 0.74abcd 29.08 ± 0.75abcd 32.48 ± 0.76bcde 21.89 ± 1.57bcd 11.83 ± 1.90bc ND 4.88 ± 0.90abcd 27.06 ± 0.75cdefg 34.43 ± 0.55abcd 24.69 ± 0.60b 8.93 ± 0.41c 不接种
Non-mycorrhizalD + R 1.86 ± 0.39d 28.43 ± 1.31bcdef 32.26 ± 0.50bcde 25.51 ± 0.73b 11.95 ± 0.76abc D 2.63 ± 0.72cde 26.97 ± 1.38cdefgh 32.49 ± 0.92bcde 26.01 ± 1.14b 11.90 ± 1.17abc ND + R 1.54 ± 0.38e 31.90 ± 1.31a 30.83 ± 1.10ef 21.86 ± 0.88bcd 13.87 ± 1.47abc ND 1.27 ± 0.17e 25.62 ± 1.02efghi 27.41 ± 2.37fg 33.88 ± 1.58a 11.82 ± 2.11bc D: 干扰; ND: 不干扰; R: 秸秆覆盖; NR: 未加秸秆。不同小写字母表示同一水稳性团聚体内,不同土壤干扰、秸秆覆盖及AM真菌处理组合间存在显著差异。
D: soil disturbance; ND: non-disturbance; R: residue application; NR: non-residue. Different lowercase letters indicate significant differences among the various soil disturbance, residue retention, and AMF combinations within the same diameter of soil water stable aggregates at the 0.05 level.土壤干扰主要对直径为0.5~2 mm土壤水稳性团聚体形成有显著影响(P < 0.05);秸秆覆盖主要对直径1~2 mm和0.25~0.5 mm土壤水稳性团聚体形成有显著影响;土壤干扰和秸秆覆盖对直径 > 2 mm的土壤水稳性团聚体形成无显著影响(P > 0.05);接种AM真菌对直径 > 0.25 mm的土壤水稳性团聚体形成有显著影响。所有土壤、秸秆覆盖、接种AM真菌均未对直径 < 0.25 mm土壤水稳性团聚体形成造成显著影响(表4)。
表 4 不同处理的多因素方差分析P值Table 4. P values of multivariate analysis of variance under different treatments指标
Indicator土壤干扰
Soil
disturbance (S)覆盖秸秆
Residue
application (R)接种丛枝菌根菌
Mycorrhizal
(M)交互效应 Interactions S × R S × M R × M S × R × M 茎重 Stem weight < 0.0001 0.0001 < 0.0001 0.0944 < 0.0001 0.0265 0.1160 根重 Root weight 0.0024 0.0393 < 0.0001 0.1248 0.0021 0.3496 0.2249 茎部磷含量 Shoot phosphorus content < 0.0001 0.0579 < 0.0001 0.6607 0.0032 0.2514 0.5005 根部磷含量 Root phosphorus content 0.1001 0.1049 < 0.0001 0.6686 0.0217 0.4162 0.0852 菌丝长度 Hyphal length density 0.6757 0.2510 < 0.0001 0.5162 0.959 0.2448 0.9725 土壤团聚体 > 2 mm SWA > 2 mm 0.1858 0.9820 < 0.0001 0.2042 0.1775 0.2689 0.982 0 土壤团聚体 1~2 mm SWA 1~2 mm 0.0176 0.0012 < 0.0001 0.0445 0.1616 0.0118 0.4656 土壤团聚体 0.5~1 mm SWA 0.5~1 mm 0.0283 0.0980 < 0.0001 0.7854 0.0175 0.0006 0.0903 土壤团聚体 0.25~0.5 mm SWA 0.25~0.5 mm 0.1897 < 0.0001 < 0.0001 0.1043 0.6526 < 0.0001 0.0044 土壤团聚体 < 0.25 mm SWA < 0.25 mm 0.0554 0.1052 0.3255 0.6588 0.1278 0.7049 0.7834 SWA: soil water-stable aggregate. 3. 讨论
本研究模拟田间条件下的小麦→苜蓿轮作系统,在温室条件下研究了土壤干扰、秸秆覆盖以及不同AM真菌接种处理对植物生物量、磷吸收以及土壤团聚体的影响。在第1阶段小麦生长试验中,与接种珍珠巨孢囊霉相比,接种根内球囊霉和混合接种具有相对较高的AM真菌侵染率,这和Li等[23-24]的报道一致,反映了不同AM真菌对同种宿主植物的侵染能力的差异。
接种AM真菌降低了小麦的地上生物量,且不同接种处理对小麦生长的抑制效应有差异,这可能与AM真菌–植物多样性相关。根内球囊霉和混合菌比珍珠巨孢囊霉需要更多的碳,植物提供的给AM真菌碳越多,留给自身的碳就越少,碳的限制抑制了小麦的生长[25]。
3.1 接种AM真菌、土壤干扰和秸秆覆盖对蒺藜苜蓿生物量的影响
接种AM真菌促进了蒺藜苜蓿的生长,这和Smith等[26]的报道一致,造成AM真菌对小麦和蒺藜苜蓿生长影响的差异性的原因是不同植物对AM真菌促生作用响应不同,如Klironomos[27]对64种植物研究发现,同一种AM真菌可以促进或抑制不同植物的生长,体现了AM真菌影响植物生长的多样性。土壤干扰抑制了接种AM真菌处理下蒺藜苜蓿的生长,却未影响未接种处理的植物生长。这表明土壤干扰主要是通过影响AM真菌间接对植物生长造成影响。除此之外,土壤干扰对蒺藜苜蓿和AM真菌不同组合的影响有差异,类似的,秸秆覆盖对蒺藜苜蓿的影响也因接种不同AM真菌而表现差异,表明不同AM真菌–植物共生体对环境适应性的多样化[28]。秸秆覆盖处理对植物生长的影响表现出不规律性,可能是由于本研究采用表面覆盖秸秆的方式且覆盖时间较短,以致减缓了秸秆降解的速度[29];因此本研究中秸秆覆盖主要是通过对微环境的改变影响植物生长。有研究表明,秸秆覆盖能对土壤保温保湿,促进植物生长[30]。
3.2 接种AM真菌、土壤干扰和秸秆覆盖对蒺藜苜蓿磷含量的影响
接种AM真菌提高了蒺藜苜蓿对磷的吸收效率,虽然不同的AM真菌对植物磷吸收的促进效应有差异,但总体上接种AM真菌有利于植物对土壤养分的吸收和利用[31]。土壤干扰降低了植物对磷的吸收,这个结果与Xomphoutheb等[32]的研究相似,他们发现免耕能提高作物对土壤中磷的吸收。秸秆覆盖并未影响蒺藜苜蓿对磷的吸收,原因如前所述,本研究中秸秆覆盖释放的养分较少,在促进植物养分吸收方面影响较小。另外Hasbullah等[33]报道,秸秆类型也可以影响植物对磷的吸收,如未成熟的蚕豆秸秆覆盖促进植物对磷的吸收,而成熟的蚕豆(Vicia faba)秸秆和鹰嘴豆(Cicer arietinum)秸秆覆盖则降低了植物对磷的吸收。
3.3 土壤干扰、秸秆覆盖对AM真菌菌丝长度的影响
研究表明,土壤干扰可影响AM真菌孢子数量、组成和多样性[34-35],破坏土壤中AM真菌菌丝网[36],从而影响AM真菌对植物的侵染。本研究中,土壤干扰未影响AM真菌菌丝长度,表明其未影响AM真菌对蒺藜苜蓿的侵染,这和前人的报道相反[37-40],具体原因还需后续试验进行探究。秸秆覆盖对AM真菌菌丝长度的影响因不同接菌处理而异,仅对混合接种处理的土壤菌丝长度有显著提高,形成此结果的原因可能是覆盖时间较短,差异性还未显现。
3.4 接种AM真菌、土壤干扰和秸秆覆盖对土壤水稳性团聚体的影响
研究表明,耕作及秸秆覆盖均可显著影响土壤团聚体的形成及分布[13]。本研究进一步明确了不同AM真菌、秸秆覆盖和土壤干扰均可影响土壤水稳性团聚体的组成,且三者对0.25~0.5 mm直径土壤团聚体的影响存在交互效应。不同AM真菌对不同直径的土壤团聚体有不同影响,表明不同的AM真菌对土壤水稳性团聚体的形成,具有不同的作用[41]。AM真菌对0.25~2 mm直径土壤水稳性团聚体形成均有显著的影响,却不能影响 < 0.25 mm粒径的土壤团聚体,这说明AM真菌的菌丝及菌丝分泌物可能对直径 > 0.25 mm的土壤颗粒具有更好的粘附作用[42]。秸秆覆盖对0.25~0.5 mm直径的土壤水稳性团聚体的形成有显著影响,这是由于秸秆中与土壤团聚体形成密切相关的碳含量高且较易分解[43]。莫艳华等[44]研究表明,室内条件下,外加营养源5 d即可显著影响 > 0.25 mm直径土壤团聚体的组成。土壤干扰会直接改变土壤水稳性团聚体的分布以及相关碳含量,也可能通过改变土壤中微生物如AM真菌的群落结构间接影响土壤水稳性团聚体[40]。因此,选择合适的AM真菌、减少土壤干扰和增加秸秆覆盖,对改善土壤结构具有积极的意义。
4. 结论
AM真菌和蒺藜苜蓿的不同组合对干扰和秸秆覆盖的响应存在差异性。土壤干扰对蒺藜苜蓿的生长和磷吸收具有负作用,AM真菌和秸秆覆盖促进了蒺藜苜蓿生长和磷吸收。土壤干扰、秸秆覆盖和AM接种对土壤水稳性团聚体的形成的影响,因土壤水稳性团聚体颗粒直径大小而异。可通过免耕、秸秆还田及适宜的AM真菌菌剂改善土壤结构、减少水土流失和提高作物产量。
参考文献
[1] 任承钢, 孔存翠, 李岩, 刘卫, 解志红. 丛枝菌根真菌-植物共生体耐盐机制的研究进展. 中国科学: 生命科学, 2016, 46(9): 1062-1068. doi: 10.1360/N052016-00066 REN C G, KONG C C, LI Y, LIU W, XIE Z H. Advances on salt tolerance mechanism of arbuscular mycorrhizal fungi-plant symbiosis. Scientia Sinica Vitae, 2016, 46(9): 1062-1068. doi: 10.1360/N052016-00066
[2] 高萍, 李芳, 郭艳娥, 段廷玉. 丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展. 草地学报, 2017, 25(2): 236-242. doi: 10.11733/j.issn.1007-0435.2017.02.003 GAO P, LI F, GUO Y E, DUAN T Y. Advances in AM fungi and rhizobium to control plant fungal diseases. Acta Grassland Sinica, 2017, 25(2): 236-242. doi: 10.11733/j.issn.1007-0435.2017.02.003
[3] 王维华, 许琳, 刘润进. 不同AMF组合提高黄瓜抗根结线虫效果的比较. 菌物学报, 2017, 36(7): 1010-1017. WANG W H, XU L, LIU R J. Effects of combined inoculation with various arbuscular mycorrhizal fungi on plant resistance to root-knot nematode disease in cucumber. Mycosystema, 2017, 36(7): 1010-1017.
[4] 林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 35(1): 115-122. doi: 10.11829/j.issn.1001-0629.2017-0158 LIN Z R, ZHANG Y J. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress. Pratacultural Science, 2018, 35(1): 115-122. doi: 10.11829/j.issn.1001-0629.2017-0158
[5] LUISA L, VALENTINA F, CAROLINE G. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 2018, 220(4): 1031-1046. doi: 10.1111/nph.15230
[6] MEI L L, YANG X, ZHANG S Q, ZHANG T, GUO J X. Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N: P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of The Total Environment, 2019, 686: 1129-1139. doi: 10.1016/j.scitotenv.2019.06.035
[7] POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 2018, 220(4): 1059-1075. doi: 10.1111/nph.15119
[8] WANG Z T, LI Y Z, LI T, ZHAO D L, LIAO Y C. Conservation tillage decreases selection pressure on community assembly in the rhizosphere of arbuscular mycorrhizal fungi. Science of the Total Environment, 2020, 710: 136326. doi: 10.1016/j.scitotenv.2019.136326
[9] VIVANI DE LA CRUZ-ORTIZ A, ALVAREZ-LOPEZTELLO J, ROBLES C, HERNANDEZ-CUEVAS L V. Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec Isthmus (Oaxaca), Mexico. Applied Soil Ecology, 2020, 149: 103519. doi: 10.1016/j.apsoil.2020.103519
[10] ROSNER K, HAGE-AHMED K, BODNER G, STEINKELLNER S. Soil tillage and herbicide applications in pea: Arbuscular mycorrhizal fungi, plant growth and nutrient concentration respond differently. Archives of Agronomy and Soil Science, 2019, 12(66): 1679-1691.
[11] ROSNER K, BODNER G, HAGE-AHMED K, STEINKELLNER S. Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower. Agronomy Journal, 2018, 110(6): 2664-2672. doi: 10.2134/agronj2018.03.0177
[12] DERKOWSKA E, PASZT L S, SUMOROK B, DYKI B. Colonisation of apple and blackcurrant roots by arbuscular mycorrhizal fungi following mycorrhization and the use of organic mulches. Folia Horticulturae, 2013, 25(2): 117-122. doi: 10.2478/fhort-2013-0013
[13] WANG X, QI J Y, ZHANG X Z, LI S S, VIRK A L, ZHAO X, XIAO X P, ZHANG H L. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil and Tillage Research, 2019, 194: 104339. doi: 10.1016/j.still.2019.104339
[14] YAN L, JIANG X X, JI X N, ZHOU L T, LI S Y, CHEN C, LI P Y, ZHU Y C, DONG T H, MENG Q F. Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in northeast china. Journal of Soils and Sediments, 2020, 20(1): 24-31. doi: 10.1007/s11368-019-02361-z
[15] MODAK K, BISWAS D R, GHOSH A, PRAMANIK P, DAS T K, DAS S, KUMAR S, KRISHNAN P, BHATTACHARYYA R. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil and Tillage Research, 2020, 202: 104649. doi: 10.1016/j.still.2020.104649
[16] HUANG R, LAN M L, LIU J, GAO M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environmental Science and Pollution Research, 2017, 24(36): 27942-27952. doi: 10.1007/s11356-017-0372-9
[17] BU R Y, REN T, LEI M J, LIU B, LI X K, CONG R H, ZHANG Y Y, LU J W. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agriculture Ecosystems and Environment, 2020, 287: 106681. doi: 10.1016/j.agee.2019.106681
[18] 段廷玉. 干扰与竞争条件下丛枝菌根菌和数种作物的互作. 兰州: 兰州大学博士学位论文, 2010. DUAN T Y. Interactions of arbuscular mycorrhizal (AM) fungi and several crop species under disturbance and competition. PhD Thesis. Lanzhou: Lanzhou University, 2010.
[19] GIOVANNETTI M, MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 1980, 84(3): 489-500. doi: 10.1111/j.1469-8137.1980.tb04556.x
[20] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2011. BAO S D. Soil Agrochemical Analysis (The Third Edition). Beijing: China Agricultural Press, 2011.
[21] JOHNSON D, LEAKE J R, READ D J. Novel in-grown core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist, 2001, 152(3): 555-562. doi: 10.1046/j.0028-646X.2001.00273.x
[22] TISDALL J M, OADES J M. Stabilization of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research, 1979, 17(3): 429-441. doi: 10.1071/SR9790429
[23] LI H Y, ZHU Y G, MARSCHNER P, SMITH F A, SMITH S E. Wheat response to arbuscular mycorrhizal fungi in a highly calcareous soils differ from those of clover, and change with plant development and P supply. Plant and Soil, 2005, 277(1): 221-232.
[24] LI H Y, SMITH S E, HOLLOWAY R E. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 2006, 172(3): 536-543. doi: 10.1111/j.1469-8137.2006.01846.x
[25] DAI M, HAMEL C, BAINARD L D, ST AENAUD M, GEANT C A, LUPWAYI N Z, MALHI S S, LEMKE R. Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian Prairie. Soil Biology and Biochemistry, 2014, 74: 156-166. doi: 10.1016/j.soilbio.2014.03.016
[26] SMITH S E, SMITH FA, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380
[27] KLIRONOMOS J N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 2003, 84(9): 2292-2301. doi: 10.1890/02-0413
[28] DUAN T Y, FACELLI E, SMITH S E, SMITH F A, NAN Z B. Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biology and Biochemistry, 2011, 43(3): 571-578. doi: 10.1016/j.soilbio.2010.11.024
[29] PANKHURST C E, KIRKBY C A, HAWKE B G, HARCH B D. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biology and Fertility of Soils, 2002, 35(3): 189-196. doi: 10.1007/s00374-002-0459-3
[30] 陈汝, 王来平, 翟浩, 薛晓敏, 王金政. 有机物料覆盖对土壤微环境、树体生长及光合速率的影响. 天津农业科学, 2019, 25(5): 18-21. doi: 10.3969/j.issn.1006-6500.2019.05.005 CHEN R, WANG L P, ZHAI H, XUE X M, WANG J M. Effects of organic material coverage on soil microenvironment, tree growth and photosynthetic rate. Tianjin Agricultural Sciences, 2019, 25(5): 18-21. doi: 10.3969/j.issn.1006-6500.2019.05.005
[31] FREW A. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C-3 and C-4 crop plants. Soil Biology and Biochemistry, 2019, 135: 248-250. doi: 10.1016/j.soilbio.2019.05.015
[32] XOMPHOUTHEB T, JIAO S, GUO X, MABAGALA F S, SUI B, WANG H, ZHAO L, ZHAO X. The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in northeast china. Scientific Reports, 2020, 10(1): 6574. doi: 10.1038/s41598-020-63567-7
[33] HASBULLAH, MARSCHNER P, AND MCNEILL A. Legume residue influence arbuscular mycorrhizal colonisation and P uptake by wheat. Biology and Fertility of Soils, 2011, 47(6): 701-707. doi: 10.1007/s00374-011-0581-1
[34] SHENG M, LALANDE R, HAMEL C, ZIADI N. Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of eastern Canada. Plant and Soil, 2013, 369(1): 599-613.
[35] SALE V, AGUILERA P, LACZKO E, MADER P. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2015, 84: 38-52. doi: 10.1016/j.soilbio.2015.02.005
[36] SMITH S E, READ D J. Mycorrhizal symbiosis. Quarterly Review of Biology, 2008, 3(3): 273-281.
[37] AVIO L, CASTALDINI M, FABIANI A, BEDINI S, SBRANA C, TURRINI A, GIOVANNETTI M. Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biology and Biochemistry, 2013, 67: 285-294. doi: 10.1016/j.soilbio.2013.09.005
[38] WANG P, WANG Y, AND WU Q S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil and Tillage Research, 2016, 155: 54-61. doi: 10.1016/j.still.2015.07.009
[39] DE PONTES J S, OEHL F, PEREIRA C D, DE TOLEDO MACHADO C T, COYNE D, DA SILVA D K A, MAIA C L. Diversity of arbuscular mycorrhizal fungi in the Brazilian's Cerrado and in soybean under conservation and conventional tillage. Applied Soil Ecology, 2017, 117: 178-189.
[40] LU X Y, LU X N, AND LIAO Y C. Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Frontiers in Microbiology, 2018, 9: 2986. doi: 10.3389/fmicb.2018.02986
[41] BARBOSA M V, PEDROSO D D F, CURI N, CARNEIRO M A C. Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Science and Agrotechnology, 2019, 43(1): 1-9.
[42] MILLER R M, KLING M. The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant and Soil, 2000, 226(2): 209-309.
[43] 王志明, 朱培立, 黄东迈. 14C标记秸秆碳素在淹水土壤中的转化与平衡. 江苏农业学报, 1998(2): 3-5. WANG Z M, ZHU P L, HUANG D M. Carbon transformation and balance of 14C-labelled straw in submerged soils. Jiangsu Journal of Agricultural Sciences, 1998(2): 3-5.
[44] 莫艳华, 汤佳, 张仁铎, 李方舟. 外加营养源作用下微生物黏结剂对土壤团聚体的影响. 环境科学, 2012, 33(3): 952-957. MO Y H, TANG J, ZHANG R D, LI F Z. Impact of microbial aggregating agents on soil aggregate stability under addition of exogenous nutrients. Environmental Science, 2012, 33(3): 952-957.
-
图 1 不同处理蒺藜苜蓿茎叶干重、根干重
R:秸秆覆盖;NR:未加秸秆。不同小写字母表示不同干扰及AM真菌组合处理下存在显著差异(P < 0.05);*表示同一土壤干扰及AM真菌处理下,秸秆覆盖与不覆盖处理存在显著差异(P < 0.05);下图同。
Figure 1. Shoot dry weight and root dry weight of Medicago truncatula under different treatments
R: residue application; NR: non-residue. Different lowercase letters on the bars indicate significant differences between soil disturbance and arbuscular mycorrhizal fungi (AMF) combination treatments at the 0.05 level, and * indicate significant differences between residue application and non-residue under the same soil and AMF treatment at the 0.05 level; this is applicable for the following figures as well.
表 1 供试土壤pH和速效磷含量
Table 1 pH and available phosphorus of the tested soil
成分
Composition速效磷(干土) Available
phosphorus (dry soil)/(mg·kg−1)pH 细沙 Fine sand 4~6 6.9 粗沙 Coarse sand 5~7 6.8 土壤 Soil 10~12 6.9 沙 + 土混合物
Sand + soil mix6~7 6.9 表 2 小麦AM真菌侵染率、茎干重、穗干重、磷含量
Table 2 Arbuscular mycorrhizal fungi (AMF) infection rate, stem dry weight, grain dry weight, and phosphours content of wheat
处理 Treatment AM真菌侵染率
AMF infection
rate/%茎干重
Stem dry
weight/g穗干重
Grain dry
weight/g磷含量
Phosphours content/
(mg·g−1)不接种 Non-mycorrhizal 0.00 ± 0.00c 3.33 ± 0.08a 3.33 ± 0.07a 0.25 ± 0.02a 根内球囊霉 Glomus intraradices 77.00 ± 0.04a 2.18 ± 0.02d 1.98 ± 0.03d 0.21 ± 0.02a 珍珠巨孢囊霉 Gigaspora margarita 32.00 ± 0.04b 2.94 ± 0.04b 2.38 ± 0.04b 0.25 ± 0.05a 混合接种 Mixed 69.00 ± 0.03a 2.41 ± 0.06c 2.30 ± 0.02c 0.19 ± 0.02a 同列不同小写字母表示AM真菌处理间差异显著(P < 0.05)。
Different lowercase letters within the same column indicate significant differences between AMF treatments at the 0.05 level.表 3 不同处理下土壤水稳性团聚体分布
Table 3 Composition of different water stable aggregates under different treatments
处理
Treatment团聚体直径 Diameter > 2 mm 1~2 mm 0.5~1 mm 0.25~0.5 mm < 0.25 mm 根内球囊霉
Glomus intraradicesD + R 5.44 ± 1.02abc 23.85 ± 1.02hi 31.94 ± 0.64cde 24.86 ± 0.70b 13.91 ± 2.20abc D 6.16 ± 1.15ab 20.03 ± 0.41j 26.99 ± 0.63g 35.73 ± 0.67a 11.10 ± 0.61bc ND + R 6.71 ± 1.13a 26.02 ± 1.28defgh 32.02 ± 0.45cde 25.66 ± 1.04b 9.59 ± 0.50bc ND 6.16 ± 0.80ab 22.56 ± 0.90ij 26.60 ± 1.04g 34.65 ± 0.78a 10.03 ± 0.85bc 珍珠巨孢囊霉
Gigaspora margaritaD + R 3.34 ± 0.50bcde 28.82 ± 1.13abcde 37.51 ± 2.17a 16.11 ± 2.73e 14.22 ± 1.42ab D 2.13 ± 0.40de 30.67 ± 1.69ab 35.57 ± 1.95ab 18.44 ± 2.16de 13.19 ± 1.23abc ND + R 6.44 ± 3.24a 29.35 ± 1.71abc 31.39 ± 1.80cde 19.66 ± 1.69cde 13.16 ± 3.04abc ND 4.15 ± 0.75abcde 28.89 ± 0.90abcd 34.79 ± 0.99abc 18.78 ± 2.47de 13.38 ± 2.73abc 混合接种
MixedD + R 3.12 ± 0.47cde 25.10 ± 0.91ghi 31.27 ± 1.16de 23.58 ± 0.91bc 16.94 ± 2.64a D 5.44 ± 0.77abc 25.61 ± 1.10fghi 33.05 ± 0.52bcde 22.56 ± 2.63bcd 13.34 ± 2.51abc ND + R 4.71 ± 0.74abcd 29.08 ± 0.75abcd 32.48 ± 0.76bcde 21.89 ± 1.57bcd 11.83 ± 1.90bc ND 4.88 ± 0.90abcd 27.06 ± 0.75cdefg 34.43 ± 0.55abcd 24.69 ± 0.60b 8.93 ± 0.41c 不接种
Non-mycorrhizalD + R 1.86 ± 0.39d 28.43 ± 1.31bcdef 32.26 ± 0.50bcde 25.51 ± 0.73b 11.95 ± 0.76abc D 2.63 ± 0.72cde 26.97 ± 1.38cdefgh 32.49 ± 0.92bcde 26.01 ± 1.14b 11.90 ± 1.17abc ND + R 1.54 ± 0.38e 31.90 ± 1.31a 30.83 ± 1.10ef 21.86 ± 0.88bcd 13.87 ± 1.47abc ND 1.27 ± 0.17e 25.62 ± 1.02efghi 27.41 ± 2.37fg 33.88 ± 1.58a 11.82 ± 2.11bc D: 干扰; ND: 不干扰; R: 秸秆覆盖; NR: 未加秸秆。不同小写字母表示同一水稳性团聚体内,不同土壤干扰、秸秆覆盖及AM真菌处理组合间存在显著差异。
D: soil disturbance; ND: non-disturbance; R: residue application; NR: non-residue. Different lowercase letters indicate significant differences among the various soil disturbance, residue retention, and AMF combinations within the same diameter of soil water stable aggregates at the 0.05 level.表 4 不同处理的多因素方差分析P值
Table 4 P values of multivariate analysis of variance under different treatments
指标
Indicator土壤干扰
Soil
disturbance (S)覆盖秸秆
Residue
application (R)接种丛枝菌根菌
Mycorrhizal
(M)交互效应 Interactions S × R S × M R × M S × R × M 茎重 Stem weight < 0.0001 0.0001 < 0.0001 0.0944 < 0.0001 0.0265 0.1160 根重 Root weight 0.0024 0.0393 < 0.0001 0.1248 0.0021 0.3496 0.2249 茎部磷含量 Shoot phosphorus content < 0.0001 0.0579 < 0.0001 0.6607 0.0032 0.2514 0.5005 根部磷含量 Root phosphorus content 0.1001 0.1049 < 0.0001 0.6686 0.0217 0.4162 0.0852 菌丝长度 Hyphal length density 0.6757 0.2510 < 0.0001 0.5162 0.959 0.2448 0.9725 土壤团聚体 > 2 mm SWA > 2 mm 0.1858 0.9820 < 0.0001 0.2042 0.1775 0.2689 0.982 0 土壤团聚体 1~2 mm SWA 1~2 mm 0.0176 0.0012 < 0.0001 0.0445 0.1616 0.0118 0.4656 土壤团聚体 0.5~1 mm SWA 0.5~1 mm 0.0283 0.0980 < 0.0001 0.7854 0.0175 0.0006 0.0903 土壤团聚体 0.25~0.5 mm SWA 0.25~0.5 mm 0.1897 < 0.0001 < 0.0001 0.1043 0.6526 < 0.0001 0.0044 土壤团聚体 < 0.25 mm SWA < 0.25 mm 0.0554 0.1052 0.3255 0.6588 0.1278 0.7049 0.7834 SWA: soil water-stable aggregate. -
[1] 任承钢, 孔存翠, 李岩, 刘卫, 解志红. 丛枝菌根真菌-植物共生体耐盐机制的研究进展. 中国科学: 生命科学, 2016, 46(9): 1062-1068. doi: 10.1360/N052016-00066 REN C G, KONG C C, LI Y, LIU W, XIE Z H. Advances on salt tolerance mechanism of arbuscular mycorrhizal fungi-plant symbiosis. Scientia Sinica Vitae, 2016, 46(9): 1062-1068. doi: 10.1360/N052016-00066
[2] 高萍, 李芳, 郭艳娥, 段廷玉. 丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展. 草地学报, 2017, 25(2): 236-242. doi: 10.11733/j.issn.1007-0435.2017.02.003 GAO P, LI F, GUO Y E, DUAN T Y. Advances in AM fungi and rhizobium to control plant fungal diseases. Acta Grassland Sinica, 2017, 25(2): 236-242. doi: 10.11733/j.issn.1007-0435.2017.02.003
[3] 王维华, 许琳, 刘润进. 不同AMF组合提高黄瓜抗根结线虫效果的比较. 菌物学报, 2017, 36(7): 1010-1017. WANG W H, XU L, LIU R J. Effects of combined inoculation with various arbuscular mycorrhizal fungi on plant resistance to root-knot nematode disease in cucumber. Mycosystema, 2017, 36(7): 1010-1017.
[4] 林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 35(1): 115-122. doi: 10.11829/j.issn.1001-0629.2017-0158 LIN Z R, ZHANG Y J. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress. Pratacultural Science, 2018, 35(1): 115-122. doi: 10.11829/j.issn.1001-0629.2017-0158
[5] LUISA L, VALENTINA F, CAROLINE G. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 2018, 220(4): 1031-1046. doi: 10.1111/nph.15230
[6] MEI L L, YANG X, ZHANG S Q, ZHANG T, GUO J X. Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N: P ratios under warming and nitrogen addition in a temperate meadow ecosystem. Science of The Total Environment, 2019, 686: 1129-1139. doi: 10.1016/j.scitotenv.2019.06.035
[7] POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 2018, 220(4): 1059-1075. doi: 10.1111/nph.15119
[8] WANG Z T, LI Y Z, LI T, ZHAO D L, LIAO Y C. Conservation tillage decreases selection pressure on community assembly in the rhizosphere of arbuscular mycorrhizal fungi. Science of the Total Environment, 2020, 710: 136326. doi: 10.1016/j.scitotenv.2019.136326
[9] VIVANI DE LA CRUZ-ORTIZ A, ALVAREZ-LOPEZTELLO J, ROBLES C, HERNANDEZ-CUEVAS L V. Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec Isthmus (Oaxaca), Mexico. Applied Soil Ecology, 2020, 149: 103519. doi: 10.1016/j.apsoil.2020.103519
[10] ROSNER K, HAGE-AHMED K, BODNER G, STEINKELLNER S. Soil tillage and herbicide applications in pea: Arbuscular mycorrhizal fungi, plant growth and nutrient concentration respond differently. Archives of Agronomy and Soil Science, 2019, 12(66): 1679-1691.
[11] ROSNER K, BODNER G, HAGE-AHMED K, STEINKELLNER S. Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower. Agronomy Journal, 2018, 110(6): 2664-2672. doi: 10.2134/agronj2018.03.0177
[12] DERKOWSKA E, PASZT L S, SUMOROK B, DYKI B. Colonisation of apple and blackcurrant roots by arbuscular mycorrhizal fungi following mycorrhization and the use of organic mulches. Folia Horticulturae, 2013, 25(2): 117-122. doi: 10.2478/fhort-2013-0013
[13] WANG X, QI J Y, ZHANG X Z, LI S S, VIRK A L, ZHAO X, XIAO X P, ZHANG H L. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil and Tillage Research, 2019, 194: 104339. doi: 10.1016/j.still.2019.104339
[14] YAN L, JIANG X X, JI X N, ZHOU L T, LI S Y, CHEN C, LI P Y, ZHU Y C, DONG T H, MENG Q F. Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in northeast china. Journal of Soils and Sediments, 2020, 20(1): 24-31. doi: 10.1007/s11368-019-02361-z
[15] MODAK K, BISWAS D R, GHOSH A, PRAMANIK P, DAS T K, DAS S, KUMAR S, KRISHNAN P, BHATTACHARYYA R. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil and Tillage Research, 2020, 202: 104649. doi: 10.1016/j.still.2020.104649
[16] HUANG R, LAN M L, LIU J, GAO M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environmental Science and Pollution Research, 2017, 24(36): 27942-27952. doi: 10.1007/s11356-017-0372-9
[17] BU R Y, REN T, LEI M J, LIU B, LI X K, CONG R H, ZHANG Y Y, LU J W. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agriculture Ecosystems and Environment, 2020, 287: 106681. doi: 10.1016/j.agee.2019.106681
[18] 段廷玉. 干扰与竞争条件下丛枝菌根菌和数种作物的互作. 兰州: 兰州大学博士学位论文, 2010. DUAN T Y. Interactions of arbuscular mycorrhizal (AM) fungi and several crop species under disturbance and competition. PhD Thesis. Lanzhou: Lanzhou University, 2010.
[19] GIOVANNETTI M, MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 1980, 84(3): 489-500. doi: 10.1111/j.1469-8137.1980.tb04556.x
[20] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2011. BAO S D. Soil Agrochemical Analysis (The Third Edition). Beijing: China Agricultural Press, 2011.
[21] JOHNSON D, LEAKE J R, READ D J. Novel in-grown core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytologist, 2001, 152(3): 555-562. doi: 10.1046/j.0028-646X.2001.00273.x
[22] TISDALL J M, OADES J M. Stabilization of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research, 1979, 17(3): 429-441. doi: 10.1071/SR9790429
[23] LI H Y, ZHU Y G, MARSCHNER P, SMITH F A, SMITH S E. Wheat response to arbuscular mycorrhizal fungi in a highly calcareous soils differ from those of clover, and change with plant development and P supply. Plant and Soil, 2005, 277(1): 221-232.
[24] LI H Y, SMITH S E, HOLLOWAY R E. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 2006, 172(3): 536-543. doi: 10.1111/j.1469-8137.2006.01846.x
[25] DAI M, HAMEL C, BAINARD L D, ST AENAUD M, GEANT C A, LUPWAYI N Z, MALHI S S, LEMKE R. Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian Prairie. Soil Biology and Biochemistry, 2014, 74: 156-166. doi: 10.1016/j.soilbio.2014.03.016
[26] SMITH S E, SMITH FA, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380
[27] KLIRONOMOS J N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 2003, 84(9): 2292-2301. doi: 10.1890/02-0413
[28] DUAN T Y, FACELLI E, SMITH S E, SMITH F A, NAN Z B. Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biology and Biochemistry, 2011, 43(3): 571-578. doi: 10.1016/j.soilbio.2010.11.024
[29] PANKHURST C E, KIRKBY C A, HAWKE B G, HARCH B D. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biology and Fertility of Soils, 2002, 35(3): 189-196. doi: 10.1007/s00374-002-0459-3
[30] 陈汝, 王来平, 翟浩, 薛晓敏, 王金政. 有机物料覆盖对土壤微环境、树体生长及光合速率的影响. 天津农业科学, 2019, 25(5): 18-21. doi: 10.3969/j.issn.1006-6500.2019.05.005 CHEN R, WANG L P, ZHAI H, XUE X M, WANG J M. Effects of organic material coverage on soil microenvironment, tree growth and photosynthetic rate. Tianjin Agricultural Sciences, 2019, 25(5): 18-21. doi: 10.3969/j.issn.1006-6500.2019.05.005
[31] FREW A. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C-3 and C-4 crop plants. Soil Biology and Biochemistry, 2019, 135: 248-250. doi: 10.1016/j.soilbio.2019.05.015
[32] XOMPHOUTHEB T, JIAO S, GUO X, MABAGALA F S, SUI B, WANG H, ZHAO L, ZHAO X. The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in northeast china. Scientific Reports, 2020, 10(1): 6574. doi: 10.1038/s41598-020-63567-7
[33] HASBULLAH, MARSCHNER P, AND MCNEILL A. Legume residue influence arbuscular mycorrhizal colonisation and P uptake by wheat. Biology and Fertility of Soils, 2011, 47(6): 701-707. doi: 10.1007/s00374-011-0581-1
[34] SHENG M, LALANDE R, HAMEL C, ZIADI N. Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of eastern Canada. Plant and Soil, 2013, 369(1): 599-613.
[35] SALE V, AGUILERA P, LACZKO E, MADER P. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2015, 84: 38-52. doi: 10.1016/j.soilbio.2015.02.005
[36] SMITH S E, READ D J. Mycorrhizal symbiosis. Quarterly Review of Biology, 2008, 3(3): 273-281.
[37] AVIO L, CASTALDINI M, FABIANI A, BEDINI S, SBRANA C, TURRINI A, GIOVANNETTI M. Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biology and Biochemistry, 2013, 67: 285-294. doi: 10.1016/j.soilbio.2013.09.005
[38] WANG P, WANG Y, AND WU Q S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil and Tillage Research, 2016, 155: 54-61. doi: 10.1016/j.still.2015.07.009
[39] DE PONTES J S, OEHL F, PEREIRA C D, DE TOLEDO MACHADO C T, COYNE D, DA SILVA D K A, MAIA C L. Diversity of arbuscular mycorrhizal fungi in the Brazilian's Cerrado and in soybean under conservation and conventional tillage. Applied Soil Ecology, 2017, 117: 178-189.
[40] LU X Y, LU X N, AND LIAO Y C. Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Frontiers in Microbiology, 2018, 9: 2986. doi: 10.3389/fmicb.2018.02986
[41] BARBOSA M V, PEDROSO D D F, CURI N, CARNEIRO M A C. Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Science and Agrotechnology, 2019, 43(1): 1-9.
[42] MILLER R M, KLING M. The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant and Soil, 2000, 226(2): 209-309.
[43] 王志明, 朱培立, 黄东迈. 14C标记秸秆碳素在淹水土壤中的转化与平衡. 江苏农业学报, 1998(2): 3-5. WANG Z M, ZHU P L, HUANG D M. Carbon transformation and balance of 14C-labelled straw in submerged soils. Jiangsu Journal of Agricultural Sciences, 1998(2): 3-5.
[44] 莫艳华, 汤佳, 张仁铎, 李方舟. 外加营养源作用下微生物黏结剂对土壤团聚体的影响. 环境科学, 2012, 33(3): 952-957. MO Y H, TANG J, ZHANG R D, LI F Z. Impact of microbial aggregating agents on soil aggregate stability under addition of exogenous nutrients. Environmental Science, 2012, 33(3): 952-957.
-
期刊类型引用(5)
1. 任永峰,刘丹,张向前,路战远,程玉臣,张德健,何进,赵小庆,高艳华. 北方农牧交错区秸秆覆盖防风蚀技术创新与应用. 北方农业学报. 2024(02): 97-106 . 百度学术
2. 王晔,陈宗福,黄康庭,陈晓龙,陈利军,王亚琼,柯琴,吴立潮. 免炼山管理对桉树人工林土壤团聚体养分及稳定性的影响. 土壤通报. 2023(03): 614-625 . 百度学术
3. 孟翔,褚皓清,赵越,颜安,谢开云,刘伟,孙伶俐. 灌溉、磷肥及AM真菌互作对紫花苜蓿营养价值的影响. 草业科学. 2023(05): 1293-1303 . 本站查看
4. 孟翔,刘伟,褚皓清,颜安,谢开云,孙伶俐,赵越. 灌溉、磷肥及AM真菌互作对紫花苜蓿地土壤养分的影响. 草业科学. 2023(05): 1220-1231 . 本站查看
5. 陈建爱,郭来春,任长忠,陈为京. 燕麦+木霉调控黄河三角洲盐渍土主要障碍因子效应研究. 安徽农业科学. 2023(15): 73-77 . 百度学术
其他类型引用(3)